Quality and Physiology of Selected Mentha Genotypes Under Coloured Shading Nets
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Cultivation
2.2. Harvest and Data Collection
2.3. Essential Oil Extraction and Analysis
- Apparatus “KOL” (behr Labor Technik GmbH, Düsseldorf, Germany).
- Agilent 7890B gas chromatograph (Agilent Technologes, Palo Alto, CA, USA) with a ZEBRON ZB 1 MS (30 m, 0.25 mm i.d. × 0.1 µm df).
- Helium as carrier gas (flow of 1.0 mL/min).
- Column temperature: 50 °C for 2 min, then increased to 200 °C with 3 °C/min steps, then 225 °C for 10 min.
2.4. Statistical Analysis
3. Results and Discussion
3.1. Temperature and Relative Humidity
3.2. Plant Height
3.3. Biomass
3.4. Vegetation Indices
3.5. Essential Oil Content
3.6. Essential Oil Composition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AM | ’Apfelminze’ |
ANOVA | analysis of variance |
B | blue shading |
C | control |
DM | dry matter |
DOY | day of the year |
DS | dry substance |
EI | electron-ionization |
EO | essential oil |
FB | ’Fränkische Blaue’ |
FM | fresh matter |
FR | far-red |
G × E × M | genotype × environment × management |
HSD | honest significant difference |
LUE | light-use efficiency |
MAPs | medicinal and aromatic plants |
MCARI1 | Modified Chlorophyll Absorption in Reflectance Index 1 |
MM | ’Multimentha’ |
N | number of replicates or samples |
PAR | photosynthetic active radiation |
PRI | Photochemical Reflectance Index |
PSRI | Plant Senescence Reflectance Index |
R | red shading |
R | real number |
REIP1 | Red-Edge Inflection Point 1 |
rh | relative humidity |
spp. | species |
UV | ultraviolet radiation |
UV-A | ultraviolet radiation from 315 to 380 nm |
UV-B | ultraviolet radiation from 280 to 315 nm |
VI | vegetation index |
VIS | visible light spectrum |
References
- Schmitt, J.; Offermann, F.; Söder, M.; Frühauf, C.; Finger, R. Extreme weather events cause significant crop yield losses at the farm level in German agriculture. Food Policy 2022, 112, 102359. [Google Scholar] [CrossRef]
- Devlet, A. Modern agriculture and challenges. Front. Life Sci. Relat. Technol. 2021, 2, 21–29. [Google Scholar] [CrossRef]
- Anwar, F.; Abbas, A.; Mehmood, T.; Gilani, A.-H.; Rehman, N.-U. Mentha: A genus rich in vital nutra-pharmaceuticals-A review. Phytother. Res. PTR 2019, 33, 2548–2570. [Google Scholar] [CrossRef]
- Riaz, U.; Iqbal, S.; Sohail, M.I.; Samreen, T.; Ashraf, M.; Akmal, F.; Siddiqui, A.; Ahmad, I.; Naveed, M.; Khan, N.I.; et al. A Comprehensive Review on Emerging Importance and Economical Potential of Medicinal and Aromatic Plants (MAPs) in Current Scenario. Pak. J. Agric. Res. 2021, 34, 381–392. [Google Scholar] [CrossRef]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother. Res. PTR 2006, 20, 619–633. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Walthall, C.L. Meeting Global Food Needs: Realizing the Potential via Genetics × Environment × Management Interactions. Agron. J. 2015, 107, 1215–1226. [Google Scholar] [CrossRef]
- Hubert-Schöler, C.; Tsiaparas, S.; Luhmer, K.; Moll, M.D.; Passon, M.; Wüst, M.; Schieber, A.; Pude, R. Essential Oil Composition and Physiology of Three Mentha Genotypes Under Shaded Field Conditions. Plants 2024, 13, 3155. [Google Scholar] [CrossRef]
- Saric-Kundalic, B.; Fialova, S.; Dobes, C.; Ölzant, S.; Tekelova, D.; Grancai, D.; Reznicek, G.; Saukel, J. Multivariate Numerical Taxonomy of Mentha Species, Hybrids, Varieties and Cultivars. Sci. Pharm. 2009, 77, 851–876. [Google Scholar] [CrossRef]
- Duriyaprapan, S.; Britten, E.J. The Effects of Solar Radiation on Plant Growth, Oil Yield and Oil Quality of Japanese Mint. J. Exp. Biol. 1982, 33, 1319–1324. [Google Scholar] [CrossRef]
- Ostadi, A.; Javanmard, A.; Amani Machiani, M.; Morshedloo, M.R.; Nouraein, M.; Rasouli, F.; Maggi, F. Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Mentha x piperita L. Ind. Crops Prod. 2020, 148, 112290. [Google Scholar] [CrossRef]
- Karkanis, A.; Lykas, C.; Liava, V.; Bezou, A.; Petropoulos, S.; Tsiropoulos, N. Weed interference with peppermint (Mentha x piperita L.) and spearmint (Mentha spicata L.) crops under different herbicide treatments: Effects on biomass and essential oil yield. J. Sci. Food Agric. 2018, 98, 43–50. [Google Scholar] [CrossRef]
- Kizil, S.; Tonçer, Ö. Influence of different harvest times on the yield and oil composition of spearmint (Mentha spicata L. var. spicata). J. Food Agric. Environ. 2006, 4, 135–137. [Google Scholar]
- Hubert, C.; Tsiaparas, S.; Kahlert, L.; Luhmer, K.; Moll, M.D.; Passon, M.; Wüst, M.; Schieber, A.; Pude, R. Effect of Different Postharvest Methods on Essential Oil Content and Composition of Three Mentha Genotypes. Horticulturae 2023, 9, 960. [Google Scholar] [CrossRef]
- Maffei, M.; Chialva, F.; Sacco, T. Glandular trichomes and essential oils in developing peppermint leaves. New Phytol. 1989, 111, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Europäisches Arzneibuch (Ed.) European Pharmacopoeia 10.: Europäisches Arzneibuch; Amtliche Deutsche Ausgabe; Deutscher Apotheker Verlag: Stuttgart, Germany, 2020; ISBN 978-3-7692-7515-5. [Google Scholar]
- Grulova, D.; De Martino, L.; Mancini, E.; Salamon, I.; De Feo, V. Seasonal variability of the main components in essential oil of Mentha × piperita L. J. Sci. Food Agric. 2015, 95, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Deraman, D.S.; Paee, F.; Nasim, N.; Sabran, S.F.; Zairi, M. Effect of different light intensities on growth rate in Mentha arvensis. IOP Conf. Ser. Earth Environ. Sci. 2019, 269, 012016. [Google Scholar] [CrossRef]
- Sharafzadeh, S. Growth and Secondary Metabolites of Basil, Mint and Thyme as affected by Light. Int. J. Pharma Bio Sci. 2012, 3, 43–49. [Google Scholar]
- Loconsole, D.; Santamaria, P. UV Lighting in Horticulture: A Sustainable Tool for Improving Production Quality and Food Safety. Horticulturae 2021, 7, 9. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef]
- Olle, M.; Virsile, A. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agric. Food Sci. 2013, 22, 223–234. [Google Scholar] [CrossRef]
- Moll, M.D.; Vieregge, A.S.; Wiesbaum, C.; Blings, M.; Vana, F.; Hillebrand, S.; Ley, J.; Kraska, T.; Pude, R. Dihydroisocoumarin Content and Phenotyping of Hydrangea macrophylla subsp. serrata Cultivars under Different Shading Regimes. Agronomy 2021, 11, 1743. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, S.; Pathania, V. Effect of shading and plant density on growth, yield and oil composition of clary sage (Salvia sclarea L.) in north western Himalaya. J. Essent. Oil Res. 2013, 25, 23–32. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, Y. Magic Blue Light: A Versatile Mediator of Plant Elongation. Plants 2023, 13, 115. [Google Scholar] [CrossRef]
- Maffei, M.; Scannerini, S. Photomorphogenic and Chemical Responses to Blue Light in Mentha piperita. J. Essent. Oil Res. 1999, 11, 730–738. [Google Scholar] [CrossRef]
- Oliveira, G.C.; Vieira, W.L.; Bertolli, S.C.; Pacheco, A.C. Photosynthetic behavior, growth and essential oil production of Melissa officinalis L. cultivated under colored shade nets. Chilean J. Agric. Res. 2016, 76, 123–128. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Ribeiro, M.S.; Bertolucci, S.K.V.; Bittencourt, W.J.M.; de Carvalho, A.A.; Tostes, W.N.; Alves, E.; Pinto, J.E.B.P. Colored shade nets induced changes in growth, anatomy and essential oil of Pogostemon cablin. An. Acad. Bras. Cienc. 2018, 90, 1823–1835. [Google Scholar] [CrossRef]
- Pott, R.; Hüppe, J. Spezielle Geobotanik: Pflanze—Klima—Boden; Mit 31 Tabellen; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 9783540493563. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejadad, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y.U. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Boochs, F.; Kupfer, G.; Dockter, K.; Kühbauch, W. Shape of the red edge as vitality indicator for plants. Int. J. Remote Sens. 1990, 11, 1741–1753. [Google Scholar] [CrossRef]
- Roberts, D.A.; Roth, K.L.; Perroy, R.L. Hyperspectral Vegetation Indices; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2011. [Google Scholar]
- Mahmood, A.; Hu, Y.; Tanny, J.; Asante, E.A. Effects of shading and insect-proof screens on crop microclimate and production: A review of recent advances. Sci. Hortic. 2018, 241, 241–251. [Google Scholar] [CrossRef]
- Meena, R.K.; Vashisth, A.; Singh, R.; Singh, B.; Manjaih, K.M. Study on change in microenvironment unter different colour shade nets and its impact on yield of spinach (Spinacia oleracea L.). J. Agrometeorol. 2014, 16, 104–111. [Google Scholar] [CrossRef]
- Kittas, C.; Katsoulas, N.; Rigakis, V.; Bartzanas, T.; Kitta, E. Effects on microclimate, crop production and quality of a tomato crop grown under shade nets. J. Hortic. Sci. Biotechnol. 2012, 87, 7–12. [Google Scholar] [CrossRef]
- Kendrick, R.E.; Kronenberg, G. (Eds.) Photomorphogenesis in Plants, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 9401118841. [Google Scholar]
- Viana, A.J.S.; Alves de Carvalho, A.; Alves de Assis, R.M.; Mendonça, S.C.; Rocha, J.P.M.; Pinto, J.E.B.P.; Bertolucci, S.K.V. Impact of Colored Shade Nets on Biomass Production, Essential Oil Composition and Orientin and Isoorientin Content in Lippia gracilis Schauer. Chem. Biodivers. 2023, 20, e202300809. [Google Scholar] [CrossRef]
- Stamm, P.; Kumar, P.P. The phytohormone signal network regulating elongation growth during shade avoidance. J. Exp. Bot. 2010, 61, 2889–2903. [Google Scholar] [CrossRef]
- Court, W.A.; Pocs, R.; Roy, R.C. Effect of harvest date on the yield and quality of the essential oil of peppermint. Can. J. Plant Sci. 1993, 73, 815–824. [Google Scholar] [CrossRef]
- Soltanbeigi, A.; Özgüven, M.; Hassanpouraghdam, M.B. Planting-date and cutting-time affect the growth and essential oil composition of Mentha × piperita and Mentha arvensis. Ind. Crops Prod. 2021, 170, 113790. [Google Scholar] [CrossRef]
- Ruberti, I.; Sessa, G.; Ciolfi, A.; Possenti, M.; Carabelli, M.; Morelli, G. Plant adaptation to dynamically changing environment: The shade avoidance response. Biotechnol. Adv. 2012, 30, 1047–1058. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Kooistra, L. Using Hyperspectral Remote Sensing Data for Retrieving Canopy Chlorophyll and Nitrogen Content. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 574–583. [Google Scholar] [CrossRef]
- Chagas, J.H.; Pinto, J.E.B.P.; Bertolucci, S.K.V.; Costa, A.G.; de Jesus, H.C.R.; Alves, P.B. Production, content and chemical composition of essential oil of mint cultivated under color shading nets. Hortic. Bras. 2013, 31, 297–303. [Google Scholar] [CrossRef]
- Gordon, W.P.; Huitric, A.C.; Seth, C.L.; McClanahan, R.H.; Nelson, S.D. The metabolism of the abortifacient terpene, (R)-(+)-pulegone, to a proximate toxin, menthofuran. Drug Metab. Dispos. 1987, 15, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Nair, B. Final report on the safety assessment of Mentha Piperita (Peppermint) Oil, Mentha Piperita (Peppermint) Leaf Extract, Mentha Piperita (Peppermint) Leaf, and Mentha Piperita (Peppermint) Leaf Water. Int. J. Toxicol. 2001, 20 (Suppl. 3), 61–73. [Google Scholar] [PubMed]
- Hubert, C.; Steyns, G.; Kraska, T.; Luhmer, K.; Moll, M.D.; Pude, R. Essential oil content and physiological response of Mentha genotypes under different UV-treatments. Acta Hortic. 2023, 1358, 319–326. [Google Scholar] [CrossRef]
- Maffei, M.; Scannerini, S. UV-B Effect on Photomorphogenesis and Essential Oil Composition in Peppermint (Mentha piperita L.). J. Essent. Oil Res. 2000, 12, 523–529. [Google Scholar] [CrossRef]
- Milenković, L.; Ilić, Z.S.; Stanojević, L.; Šunić, L.; Milenković, A.; Stanojević, J.; Cvetković, D. Does photoselective netting influence yield, chemical composition and antioxidant activities of essential oils in cultivated sage? Front. Plant Sci. 2025, 16, 1540520. [Google Scholar] [CrossRef]
- Stanojević, L.; Stanojević, J.; Milenković, L.; Šunić, L.; Kovač, R.; Cvetković, D.; Babić, M.; Ilić, Z. Aroma Profile and Antioxidant Activity of Sweet Basil Aqueous Extracts Affect by Light Modification. J. Essent. Oil Bear. Plants 2022, 25, 1131–1144. [Google Scholar] [CrossRef]
2023 | 2024 | |||
---|---|---|---|---|
Month | Temperature [°C] | Precipitation [mm] | Temperature [°C] | Precipitation [mm] |
Jan. | 4.5 ± 4.7 | 40.8 | 2.5 ± 5.3 | 43.1 |
Feb. | 4.8 ± 3.6 | 21.0 | 7.9 ± 2.3 | 45.2 |
Mar. | 6.8 ± 4.2 | 66.0 | 8.6 ± 2.2 | 49.1 |
Apr. | 8.4 ± 2.6 | 46.0 | 8.9 ± 5.0 | 56.9 |
May | 13.4 ± 2.3 | 73.2 | 14.9 ± 1.9 | 170.0 |
Jun. | 19.5 ± 2.5 | 44.0 | 16.4 ± 3.4 | 10.2 |
Jul. | 19.1 ± 2.5 | 60.3 | 18.8 ± 2.7 | 70.6 |
Aug. | 18.4 ± 2.8 | 77.6 | 20.4 ± 2.3 | 71.0 |
Sep. | 18.1 ± 3.1 | 40.4 | 15.4 ± 3.7 | 60.3 |
Oct. | 13.3 ± 4.0 | 53.6 | 11.7 ± 2.6 | 34.0 |
Nov. | 7.0 ± 3.4 | 72.7 | 6.2 ± 3.0 | 36.7 |
Dec. | 5.8 ± 3.8 | 48.6 | 3.8 ± 3.1 | 32.0 |
2023 | 2024 | |||||
---|---|---|---|---|---|---|
Control | Red | Blue | Control | Red | Blue | |
UV-A (W/m2) | 26.0 ± 10.0 | 4.6 ± 2.2 | 4.2 ± 1.6 | 26.0 ± 8.4 | 5.4 ± 1.5 | 4.3 ± 1.4 |
UV-B (W/m2) | 0.6 ± 0.3 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.6 ± 0.2 | 0.1 ± 0.0 | 0.1 ± 0.2 |
PAR (PPFD) | 1187 ± 526 | 307 ± 178 | 283 ± 146 | 1188 ± 445 | 312 ± 97 | 270 ± 95 |
UV [%] | Blue [%] | Green [%] | Red [%] | FR [%] | |
---|---|---|---|---|---|
Control | 1.77 | 21.25 | 27.22 | 27.52 | 22.24 |
Red | 0.97 | 8.89 | 11.17 | 40.75 | 38.22 |
Blue | 1.26 | 39.98 | 29.21 | 12.87 | 16.67 |
2023 | 2024 | |||||||
---|---|---|---|---|---|---|---|---|
Measurement | Date | DOY | Measurement | Date | DOY | Measurement | Date | DOY |
1st | 3 August | 215 | 1st | 23 April | 114 | 10th | 18 July | 200 |
2nd | 10 August | 222 | 2nd | 2 May | 123 | 11th | 24 July | 206 |
3rd | 18 August | 230 | 3rd | 8 May | 129 | 12th | 31 July | 213 |
4th | 24 August | 236 | 4th | 14 May | 135 | 13th | 19 September | 263 |
5th | 22 September | 265 | 5th | 21 May | 142 | 14th | 24 September | 268 |
6th | 29 September | 272 | 6th | 20 June | 172 | 15th | 2 October | 276 |
7th | 4 October | 277 | 7th | 27 June | 179 | 16th | 8 October | 282 |
8th | 11 October | 284 | 8th | 4 July | 186 | |||
9th | 18 October | 291 | 9th | 11 July | 193 |
Vegetation Index | Group 1 | Equation |
---|---|---|
MCARI1 | Biochemical/chlorophyll | 1.2 × (2.5 × (R790 − R670) − 1.3 × (R790 − R550)) |
PRI | Physiology/LUE | (R530 − R570)/(R530 + R570) |
PSRI | Biochemical/pigments | (R680 − R500)/R750 |
REIP1 | Physiology/stress | 700 + 40 × ((((R670 + R780)/2) − R700)/R740 − R700) |
Genotype | Treatment | Harvest | DOY | FM [g/m2] | DM [g/m2] | DS [%] |
---|---|---|---|---|---|---|
‘Multimentha’ | Control | Summer | 241 | 1892.3 ± 29.0 a | 293.0 ± 6.4 a | 15.5 ± 0.2 a |
‘Multimentha’ | Red | Summer | 241 | 1182.1 ± 131.8 bc | 141.4 ± 15.8 cd | 12.0 ± 0.3 b |
‘Multimentha’ | Blue | Summer | 241 | 1158.3 ± 342.1 bc | 138.9 ± 34.4 cd | 12.1 ± 0.7 b |
‘Fr. Blaue’ | Control | Summer | 241 | 1547.5 ± 110.1 ab | 233.0 ± 24.9 b | 15.0 ± 0.7 a |
‘Fr. Blaue’ | Red | Summer | 241 | 1033.9 ± 77.5 c | 119.9 ± 4.7 cd | 11.6 ± 0.7 b |
‘Fr. Blaue’ | Blue | Summer | 241 | 798.3 ± 60.8 c | 91.5 ± 5.9 d | 11.5 ± 0.5 b |
‘Apfelminze’ | Control | Summer | 241 | 1144.5 ± 277.3 bc | 173.1 ± 35.9 c | 15.3 ± 1.4 a |
‘Apfelminze’ | Red | Summer | 241 | 825.2 ± 27.7 c | 98.7 ± 5.2 d | 12.0 ± 0.5 b |
‘Apfelminze’ | Blue | Summer | 241 | 919.5 ± 69.2 c | 102.8 ± 7.8 d | 11.2 ± 0.3 b |
‘Multimentha’ | Control | Autumn | 291 | 913.4 ± 146.9 a | 161.2 ± 18.9 a | 17.7 ± 0.7 a |
‘Multimentha’ | Red | Autumn | 291 | 775.3 ± 128.7 ab | 106.3 ± 18.4 ab | 13.7 ± 0.1 cd |
‘Multimentha’ | Blue | Autumn | 291 | 750.6 ± 155.5 ab | 97.2 ± 27.4 ab | 12.8 ± 0.9 d |
‘Fr. Blaue’ | Control | Autumn | 291 | 689.8 ± 106.0 ab | 117.0 ± 21.9 ab | 16.9 ± 0.9 ab |
‘Fr. Blaue’ | Red | Autumn | 291 | 461.5 ± 147.1 b | 70.2 ± 23.8 b | 15.1 ± 1.2 bc |
‘Fr. Blaue’ | Blue | Autumn | 291 | 499.0 ± 67.5 ab | 75.5 ± 12.8 b | 15.1 ± 0.7 bc |
‘Apfelminze’ | Control | Autumn | 291 | 664.7 ± 257.2 ab | 109.0 ± 38.5 ab | 16.5 ± 0.6 ab |
‘Apfelminze’ | Red | Autumn | 291 | 570.3 ± 158.2 ab | 76.1 ± 22.5 b | 13.3 ± 0.3 cd |
‘Apfelminze’ | Blue | Autumn | 291 | 459.4 ± 50.3 b | 58.3 ± 4.4 b | 12.7 ± 0.5 d |
Genotype | Treatment | Harvest | DOY | FM [g/m2] | DM [g/m2] | DS [%] |
---|---|---|---|---|---|---|
‘Multimentha’ | Control | Spring | 142 | 1988.4 ± 443.1 ab | 302.0 ± 74.7 ab | 15.2 ± 0.8 a |
‘Multimentha’ | Red | Spring | 142 | 1934.9 ± 235.8 b | 220.5 ± 29.3 bc | 11.4 ± 1.1 bc |
‘Multimentha’ | Blue | Spring | 142 | 1838.5 ± 145.3 b | 214.6 ± 50.0 bc | 11.6 ± 1.9 bc |
‘Fr. Blaue’ | Control | Spring | 142 | 1970.7 ± 121.0 ab | 297.7 ± 11.3 ab | 15.1 ± 0.4 a |
‘Fr. Blaue’ | Red | Spring | 142 | 1846.8 ± 498.3 b | 200.5 ± 54.7 bc | 10.8 ± 0.0 c |
‘Fr. Blaue’ | Blue | Spring | 142 | 1538.5 ± 224.9 b | 171.3 ± 24.4 c | 11.2 ± 1.2 bc |
‘Apfelminze’ | Control | Spring | 142 | 2867.3 ± 260.6 a | 389.4 ± 19.2 a | 13.6 ± 0.9 ab |
‘Apfelminze’ | Red | Spring | 142 | 2455.7 ± 236.3 ab | 270.3 ± 32.5 abc | 11.0 ± 0.3 bc |
‘Apfelminze’ | Blue | Spring | 142 | 2168.0 ± 481.9 ab | 221.7 ± 41.4 bc | 10.3 ± 0.4 c |
‘Multimentha’ | Control | Summer | 213 | 1241.3 ± 358.7 a | 293.7 ± 63.6 a | 24.0 ± 2.5 a |
‘Multimentha’ | Red | Summer | 213 | 1210.3 ± 362.1 a | 196.9 ± 71.1 ab | 16.1 ± 1.1 b |
‘Multimentha’ | Blue | Summer | 213 | 1006.9 ± 147.2 a | 155.8 ± 40.3 b | 15.3 ± 1.7 b |
‘Fr. Blaue’ | Control | Summer | 213 | 862.1 ± 113.0 a | 212.3 ± 52.5 ab | 24.4 ± 2.9 a |
‘Fr. Blaue’ | Red | Summer | 213 | 1121.9 ± 90.2 a | 189.9 ± 17.3 ab | 16.9 ± 1.3 b |
‘Fr. Blaue’ | Blue | Summer | 213 | 995.3 ± 82.7 a | 182.1 ± 53.8 ab | 18.2 ± 4.4 ab |
‘Apfelminze’ | Control | Summer | 213 | 1326.6 ± 92.0 a | 275.0 ± 4.9 ab | 20.8 ± 1.6 ab |
‘Apfelminze’ | Red | Summer | 213 | 1386.0 ± 156.4 a | 244.2 ± 42.8 ab | 17.5 ± 1.4 b |
‘Apfelminze’ | Blue | Summer | 213 | 1027.2 ± 159.5 a | 150.6 ± 27.2 b | 14.6 ± 1.0 b |
‘Multimentha’ | Control | Autumn | 290 | 390.1 ± 209.7 ab | 88.0 ± 38.6 abc | 23.4 ± 2.3 a |
‘Multimentha’ | Red | Autumn | 290 | 618.6 ± 32.7 ab | 108.6 ± 2.9 ab | 17.6 ± 1.0 bc |
‘Multimentha’ | Blue | Autumn | 290 | 535.1 ± 78.6 ab | 85.1 ± 11.2 abc | 15.9 ± 0.5 bc |
‘Fr. Blaue’ | Control | Autumn | 290 | 298.0 ± 89.0 b | 59.2 ± 14.1 bc | 20.2 ± 1.6 ab |
‘Fr. Blaue’ | Red | Autumn | 290 | 544.3 ± 118.2 ab | 81.8 ± 22.9 abc | 14.9 ± 1.6 c |
‘Fr. Blaue’ | Blue | Autumn | 290 | 431.7 ± 62.7 ab | 63.8 ± 6.9 bc | 14.8 ± 0.9 c |
‘Apfelminze’ | Control | Autumn | 290 | 699.7 ± 146.3 a | 134.3 ± 15.1 a | 19.5 ± 2.1 ab |
‘Apfelminze’ | Red | Autumn | 290 | 426.0 ± 54.4 ab | 68.1 ± 9.1 bc | 16.0 ± 0.3 bc |
‘Apfelminze’ | Blue | Autumn | 290 | 314.0 ± 177.8 b | 44.3 ± 18.2 c | 14.8 ± 2.1 c |
Compound | AM C | AM R | AM B | FB C | FB R | FB B | MM C | MM R | MM B |
---|---|---|---|---|---|---|---|---|---|
Eucalyptol/ Limonene | 12.86 ± 1.46 | 12.44 ± 1.21 | 8.26 ± 6.08 | 2.25 ± 0.16 | 1.72 ± 0.15 | 1.81 ± 0.07 | 1.32 ± 0.16 | 1.03 ± 0.02 | 1.22 ± 0.43 |
p-Menthone | - | - | - | 55.74 ± 2.68 | 62.76 ± 3.76 | 60.88 ± 2.77 | 65.99 ± 0.73 | 66.39 ± 1.74 | 59.92 ± 3.04 |
Isomenthone | - | - | - | 7.19 ± 0.10 | 7.32 ± 0.42 | 7.32 ± 0.50 | 4.15 ± 0.11 | 4.06 ± 0.15 | 4.90 ± 1.64 |
Menthofuran | - | - | - | 2.96 ± 0.54 | 2.98 ± 0.26 | 3.69 ± 0.20 | 3.42 ± 0.34 | 4.42 ± 0.33 | 4.33 ± 0.58 |
Menthol isomer A | - | - | - | 1.84 ± 0.33 | 1.59 ± 0.20 | 1.66 ± 0.24 | 3.45 ± 0.12 | 2.35 ± 0.23 | 2.48 ± 0.53 |
Menthol isomer B | - | - | - | 23.38 ± 1.74 | 17.28 ± 3.31 | 17.87 ± 2.70 | 16.31 ± 0.69 | 14.82 ± 2.13 | 19.41 ± 2.64 |
Dihydrocarvone | 10.58 ± 8.33 | 5.07 ± 1.74 | 5.79 ± 2.29 | - | - | - | - | - | - |
1,6-Dihydrocarveol | 1.32 ± 1.40 | - | - | - | - | - | - | - | - |
Pulegone | - | - | - | 1.07 ± 0.14 | 0.98 ± 0.11 | 1.52 ± 0.16 | - | 3.47 ± 0.32 | 3.19 ± 1.73 |
Carvone | 69.13 ± 8.33 | 75.14 ± 1.67 | 78.35 ± 3.57 | - | - | - | - | - | - |
Piperitone | - | - | 1.03 ± 0.16 | 1.27 ± 0.09 | 1.45 ± 0.04 | 1.40 ± 0.09 | 1.47 ± 0.10 | 1.34 ± 0.10 | 1.29 ± 0.01 |
Menthyl acetate | - | - | - | 1.07 ± 0.39 | - | 1.18 ± 0.47 | - | - | 1.04 ± 0.59 |
β-Copaene | - | 1.00 ± 1.58 | - | 1.15 ± 0.08 | 1.07 ± 0.03 | - | - | - | - |
β-Cubebene | 1.25 ± 1.14 | 1.61 ± 1.40 | 2.97 ± 1.27 | - | - | - | - | - | - |
Compound | AM C | AM R | AM B | FB C | FB R | FB B | MM C | MM R | MM B |
---|---|---|---|---|---|---|---|---|---|
Eucalyptol/ Limonene | 8.21 ± 2.79 | 7.49 ± 2.04 | 7.42 ± 1.77 | 2.02 ± 0.67 | 1.61 ± 0.48 | 1.28 ± 0.61 | 1.08 ± 0.70 | - | - |
p-Menthone | - | - | - | 38.41 ± 1.50 | 39.68 ± 4.69 | 42.20 ± 0.81 | 49.28 ± 5.29 | 56.02 ± 2.39 | 55.56 ± 2.05 |
Isomenthone | - | - | - | 5.07 ± 1.44 | 5.73 ± 0.49 | 5.12 ± 0.70 | 3.27 ± 0.43 | 3.66 ± 0.35 | 3.62 ± 0.99 |
Menthofuran | - | - | - | 4.35 ± 0.66 | 3.13 ± 2.40 | 3.20 ± 2.85 | 2.59 ± 2.29 | - | 3.50 ± 3.04 |
Menthol isomer A | - | - | - | 3.85 ± 1.17 | 4.64 ± 1.30 | 2.99 ± 0.60 | 6.51 ± 1.78 | 5.89 ± 0.79 | 3.48 ± 1.24 |
Menthol isomer B | - | - | 33.33 ± 5.40 | 31.26 ± 3.92 | 32.57 ± 4.15 | 31.41 ± 2.62 | 27.62 ± 0.92 | 27.33 ± 3.45 | |
Dihydrocarvone | 10.53 ± 6.09 | 15.37 ± 6.80 | 12.67 ± 2.94 | - | - | - | - | - | - |
1,6-Dihydrocarveol | - | 1.62 ± 1.03 | 1.42 ± 0.73 | - | - | - | - | - | - |
Pulegone | - | - | - | - | - | - | - | - | - |
Carvone | 76.23 ± 5.44 | 70.19 ± 6.67 | 73.79 ± 6.22 | - | - | - | - | - | - |
Piperitone | 1.12 ± 0.21 | 1.25 ± 0.55 | 1.37 ± 0.14 | 1.53 ± 0.70 | 1.89 ± 0.66 | 1.13 ± 0.72 | 1.20 ± 0.65 | 1.42 ± 0.63 | - |
Menthyl acetate | - | - | - | 9.80 ± 1.96 | 10.47 ± 3.01 | 10.05 ± 1.51 | 3.80 ± 2.07 | 3.53 ± 1.35 | 4.30 ± 3.58 |
β-Copaene | - | - | - | - | - | - | - | - | - |
β-Cubebene | - | 1.86 ± 1.28 | 1.28 ± 0.51 | - | - | - | - | - | - |
Compound | AM C | AM R | AM B | FB C | FB R | FB B | MM C | MM R | MM B |
---|---|---|---|---|---|---|---|---|---|
Eucalyptol/ Limonene | 8.56 ± 1.89 | 9.74 ± 1.01 | 6.51 ± 3.49 | 1.97 ± 0.78 | 1.76 ± 0.23 | 1.57 ± 0.53 | 1.47 ± 0.20 | 1.11 ± 0.31 | 1.43 ± 0.61 |
p-Menthone | - | - | - | 51.23 ± 11.04 | 57.65 ± 4.69 | 57.80 ± 2.44 | 60.81 ± 2.40 | 62.16 ± 3.24 | 61.72 ± 1.69 |
Isomenthone | - | - | - | 4.95 ± 1.16 | 6.13 ± 0.28 | 6.08 ± 0.23 | 3.91 ± 0.12 | 3.83 ± 0.10 | 4.57 ± 1.40 |
Menthofuran | - | - | - | - | - | - | - | 1.12 ± 0.06 | - |
Menthol isomer A | - | - | - | 4.08 ± 1.06 | 1.96 ± 0.25 | 2.25 ± 0.19 | 5.34 ± 1.12 | 5.02 ± 0.49 | 4.10 ± 1.71 |
Menthol isomer B | - | - | - | 26.27 ± 7.89 | 20.78 ± 4.30 | 21.23 ± 3.26 | 19.73 ± 2.76 | 19.16 ± 3.64 | 18.71 ± 1.12 |
Dihydrocarvone | 5.83 ± 3.37 | 5.25 ± 2.17 | 5.94 ± 3.07 | - | - | - | - | - | - |
1,6-Dihydrocarveol | - | - | - | - | - | - | - | - | - |
Pulegone | - | - | - | - | - | - | - | - | - |
Carvone | 75.56 ± 4.24 | 74.81 ± 2.37 | 77.74 ± 3.46 | - | - | - | - | - | - |
Piperitone | 1.32 ± 0.14 | 1.65 ± 0.23 | 1.90 ± 0.23 | 2.10 ± 0.59 | 2.73 ± 0.12 | 2.47 ± 0.32 | 2.61 ± 0.12 | 3.01 ± 0.33 | 2.50 ± 0.35 |
Menthyl acetate | - | - | - | 2.95 ± 1.56 | 1.44 ± 0.48 | 2.15 ± 0.77 | 1.15 ± 0.35 | 1.27 ± 0.40 | 1.34 ± 0.43 |
β-Caryophyllene | 1.45 ± 0.17 | 1.20 ± 0.18 | 1.04 ± 0.28 | 1.29 ± 0.74 | 1.17 ± 0.34 | 1.21 ± 0.57 | - | - | - |
β-Copaene | 4.13 ± 0.84 | 4.61 ± 0.89 | 3.88 ± 1.38 | 1.70 ± 0.78 | 1.88 ± 0.58 | 1.81 ± 0.93 | 1.07 ± 0.09 | - | 1.46 ± 1.23 |
Compound | AM C | AM R | AM B | FB C | FB R | FB B | MM C | MM R | MM B |
---|---|---|---|---|---|---|---|---|---|
Eucalyptol/ Limonene | 11.16 ± 2.27 | 10.48 ± 1.11 | 9.85 ± 0.46 | 2.97 ± 0.07 | 2.59 ± 0.12 | 2.52 ± 0.33 | 2.49 ± 0.47 | 1.62 ± 0.14 | 2.26 ± 0.74 |
p-Menthone | - | - | - | 45.45 ± 3.06 | 58.95 ± 2.01 | 58.71 ± 0.68 | 62.34 ± 6.66 | 68.21 ± 0.81 | 65.57 ± 9.22 |
Isomenthone | - | - | - | 6.32 ± 0.08 | 6.87 ± 0.17 | 6.69 ± 0.16 | 4.03 ± 0.08 | 4.10 ± 0.07 | 5.40 ± 1.73 |
Menthofuran | - | - | - | 1.07 ± 0.14 | 1.44 ± 0.30 | 1.77 ± 0.33 | 2.60 ± 1.51 | 2.54 ± 0.49 | 1.72 ± 0.42 |
Menthol isomer A | - | - | - | 2.74 ± 0.35 | 1.60 ± 0.03 | 1.71 ± 0.11 | 2.42 ± 0.75 | 2.87 ± 0.31 | 2.14 ± 0.67 |
Menthol isomer B | - | - | - | 31.28 ± 3.55 | 16.43 ± 3.87 | 17.83 ± 1.11 | 18.74 ± 3.89 | 12.91 ± 1.11 | 13.07 ± 6.06 |
Dihydrocarvone | 1.96 ± 0.44 | 1.82 ± 0.14 | 2.04 ± 0.13 | - | - | - | - | - | - |
1,6-Dihydrocarveol | - | - | - | - | - | - | - | - | - |
Pulegone | - | - | - | - | - | - | 1.10 ± 0.49 | 1.00 ± 0.17 | - |
Carvone | 78.81 ± 4.99 | 78.96 ± 1.10 | 79.60 ± 0.27 | - | - | - | - | - | - |
Piperitone | - | - | - | 1.39 ± 0.05 | 1.97 ± 0.08 | 1.90 ± 0.05 | 2.42 ± 0.53 | 2.29 ± 0.10 | 2.07 ± 0.28 |
Menthyl acetate | - | - | - | 1.22 ± 0.16 | - | - | - | - | - |
β-Caryophyllene | 1.83 ± 0.12 | 1.24 ± 0.08 | 1.20 ± 0.10 | 1.90 ± 0.43 | 1.71 ± 0.09 | 1.74 ± 0.09 | - | - | 1.37 ± 0.69 |
β-Copaene | 3.63 ± 0.51 | 4.57 ± 0.27 | 4.28 ± 0.48 | 2.13 ± 0.52 | 2.71 ± 0.08 | 2.62 ± 0.27 | 1.44 ± 0.43 | 1.12 ± 0.07 | 2.24 ± 0.97 |
Compound | AM C | AM R | AM B | FB C | FB R | FB B | MM C | MM R | MM B |
---|---|---|---|---|---|---|---|---|---|
Eucalyptol/ Limonene | 7.74 ± 0.77 | 8.81 ± 0.49 | 6.52 ± 2.37 | 1.90 ± 0.04 | 1.60 ± 0.11 | 1.57 ± 0.02 | 1.25 ± 0.16 | 1.15 ± 0.10 | 1.19 ± 0.34 |
p-Menthone | - | - | - | 31.40 ± 1.73 | 42.50 ± 4.28 | 40.67 ± 3.92 | 41.57 ± 4.81 | 48.99 ± 2.87 | 44.24 ± 6.26 |
Isomenthone | - | - | - | 4.52 ± 0.15 | 4.81 ± 0.29 | 4.50 ± 0.22 | 2.78 ± 0.16 | 2.61 ± 0.08 | 3.12 ± 1.07 |
Menthofuran | - | - | - | 6.96 ± 0.71 | 9.01 ± 1.85 | 10.90 ± 0.82 | 7.83 ± 0.72 | 11.54 ± 1.04 | 12.12 ± 1.19 |
Menthol isomer A | - | - | - | 3.83 ± 0.17 | 2.37 ± 0.30 | 2.30 ± 0.09 | 5.42 ± 0.77 | 3.33 ± 0.59 | 3.13 ± 0.84 |
Menthol isomer B | - | - | - | 40.55 ± 1.50 | 30.64 ± 1.41 | 30.16 ± 2.82 | 34.49 ± 2.74 | 27.14 ± 2.76 | 28.65 ± 4.20 |
Dihydrocarvone | 20.35 ± 1.03 | 12.86 ± 4.84 | 11.85 ± 5.26 | - | - | - | - | - | - |
1,6-Dihydrocarveol | 3.11 ± 0.60 | 1.39 ± 0.65 | 1.43 ± 1.34 | - | - | - | - | - | - |
Pulegone | - | - | - | - | - | - | - | - | - |
Carvone | 64.02 ± 2.06 | 72.87 ± 5.66 | 77.50 ± 10.96 | - | - | - | - | - | - |
Piperitone | - | 1.13 ± 0.06 | - | 1.11 ± 0.11 | 1.37 ± 0.08 | 1.18 ± 0.12 | 1.15 ± 0.18 | - | - |
Menthyl acetate | - | - | - | 7.92 ± 0.82 | 5.98 ± 1.93 | 6.69 ± 0.80 | 3.60 ± 0.93 | 2.06 ± 0.38 | 4.59 ± 2.49 |
β-Caryophyllene | - | - | - | - | - | - | - | - | - |
β-Copaene | - | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hubert-Schöler, C.; Tsiaparas, S.; Luhmer, K.; Moll, M.D.; Passon, M.; Wüst, M.; Schieber, A.; Pude, R. Quality and Physiology of Selected Mentha Genotypes Under Coloured Shading Nets. Agronomy 2025, 15, 1735. https://doi.org/10.3390/agronomy15071735
Hubert-Schöler C, Tsiaparas S, Luhmer K, Moll MD, Passon M, Wüst M, Schieber A, Pude R. Quality and Physiology of Selected Mentha Genotypes Under Coloured Shading Nets. Agronomy. 2025; 15(7):1735. https://doi.org/10.3390/agronomy15071735
Chicago/Turabian StyleHubert-Schöler, Charlotte, Saskia Tsiaparas, Katharina Luhmer, Marcel D. Moll, Maike Passon, Matthias Wüst, Andreas Schieber, and Ralf Pude. 2025. "Quality and Physiology of Selected Mentha Genotypes Under Coloured Shading Nets" Agronomy 15, no. 7: 1735. https://doi.org/10.3390/agronomy15071735
APA StyleHubert-Schöler, C., Tsiaparas, S., Luhmer, K., Moll, M. D., Passon, M., Wüst, M., Schieber, A., & Pude, R. (2025). Quality and Physiology of Selected Mentha Genotypes Under Coloured Shading Nets. Agronomy, 15(7), 1735. https://doi.org/10.3390/agronomy15071735