Efficacy of Pre- and Post-Transplant Herbicides in Tobacco (Nicotiana tabacum L.) Influenced by Precipitation and Soil Type
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Meteorological Conditions During and After the Herbicide Application
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghosh, S.; Gediya, K.M.; Patel, D.P. Efficacy of weed management practices on weeds in bidi tobacco (Nicotiana tabacum L.) nursery. Int. J. Chem. Stud. 2017, 5, 1886–1889. [Google Scholar]
- Bailey, W.A. Herbicides Used in Tobacco Herbicides. In Herbicides-Current Research and Case Studies in Use; Price, A.J., Kelton, J.A., Eds.; InTech: Rijeka, Croatia, 2013. [Google Scholar] [CrossRef]
- Anonymous. Alternatives to the Use of the Methyl Bromide; Faculty of Agriculture, Skopje: Skopje, North Macedonia, 2000. [Google Scholar]
- State Statistical Office. Statistical Yearbook of the Republic of North Macedonia; State Statistical Office: Skopje, North Macedonia, 2022; Available online: https://www.stat.gov.mk/PrikaziPublikacija_en.aspx?id=34&rbr=862 (accessed on 5 February 2025).
- Labrada, R.; Casesly, J.C.; Parker, C. Weed Management for Developing Countries; Food and Agriculture Organization of the United Nations: Rome, Italy, 1984. [Google Scholar]
- Hawks, S.N., Jr.; Collins, W.K. Principles of Flue-Cured Tobacco Production, 1st ed.; North Carolina State University: Raleigh, NC, USA, 1993; pp. 158–176. [Google Scholar]
- Wilson, R.W. Effects of Cultivation on Growth of Tobacco, Tech. Rep. 116; Agricultural Experiment Station: Raleigh, NC, USA, 1995. [Google Scholar]
- Ian, M.; Dzingai, R.; Walter, M.; Ezekia, S. Impact of Time of Weeding on Tobacco (Nicotiana tabacum) Growth and Yield; Hindawi Publishing Corporation: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Hauser, E.W.; Miles, J.D. Flue-cured tobacco yield and quality as effected by weed control methods. Weed Res. 1975, 15, 211–215. [Google Scholar] [CrossRef]
- Pacanoski, Z.; Glatkova, G. Evaluation of herbicides for weed control in tobacco and their influence on tobacco yield. Herbologia 2010, 11, 39–46. [Google Scholar]
- Rainbow, R.; Derpsch, R. Advances in No-Till Farming Technologies and Soil Compaction Management in Rainfed Farming Systems. In Rainfed Farming Systems; Tow, P., Cooper, I., Partridge, I., Eds.; Springer Nature: London, UK, 2011; pp. 991–1014. [Google Scholar]
- Haskins, B. Using Pre-Emergent Herbicides in Conservation Farming Systems NSW; The NSW Department of Primary Industries: New South Wales, Australia, 2012; Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0003/431247/Using-pre-emergent-herbicides-in-conservation-farming-systems.pdf (accessed on 5 February 2025).
- Novosel, K.M.; Renner, K.A.; Kells, J.J.; Spandl, E. Metolachlor efficacy as influenced by three acetolactate synthase-inhibiting herbicides. Weed Technol. 1998, 12, 248–253. [Google Scholar] [CrossRef]
- Chomas, A.J.; Kells, J.J. Triazine-resistant common lambsquarters (Chenopodium album) control in corn with preemergence herbicides. Weed Technol. 2004, 18, 551–554. [Google Scholar] [CrossRef]
- Steckel, L.E.; Sprague, C.L.; Hager, A.G. Common waterhemp (Amaranthus rudis) control in corn (Zea mays) with single preemergence and sequential applications of residual herbicides. Weed Technol. 2002, 16, 755–761. [Google Scholar] [CrossRef]
- Anonymous. Frontier® Herbicide Product Label; BASF Canada Inc.: Mississauga, ON, Canada, 2008; p. 17. [Google Scholar]
- Lyon, D.J.; Wilson, R.G. Chemical Weed Control in Dryland and Irrigated Chickpea. Weed Technol. 2005, 19, 959–965. [Google Scholar] [CrossRef]
- Loux, M.M.; Dobbels, A.F.; Johnson, W.G.; Nice, G.R.; Bauman, T.T.; Stachler, J.M. Weed Control Guide for Ohio and Indiana; Ohio State University: Columbus, OH, USA, 2008; p. 201. Available online: https://cpb-us-w2.wpmucdn.com/u.osu.edu/dist/7/3461/files/2017/11/2018-weed-guide-with-covers-1mqbvsq.pdf (accessed on 10 February 2025).
- Ferrell, M.A.; Whitson, T.D.; Miller, S.D. Basic Guide to Weeds and Herbicides; The University of Wyoming, College of Agriculture, Department of Plant Sciences, Cooperative Extension Service: Laramie, WY, USA, 2004; MP18; pp. 1–19. [Google Scholar]
- Boerboom, C.M.; Stolenberg, D.E.; Jeschke, M.R.; Trower, T.L.; Gaska, J.M. Factors affecting glyphosate control of Common lambsquarters. In Proceedings of the North Central Weed Science Society 61, Milwaukee, WI, USA, 12–14 December 2006; p. 54. Available online: https://ncwss.org/proceed/2006/abstracts/54.pdf (accessed on 7 March 2025).
- Lee, Y.; Kim, H.; Chung, J.; Jeong, B. Loss of Pendimethalin in Runoff and Leaching from Turfgrass Land under Simulated Rainfall. J. Agric. Food Chem. 2000, 48, 5376–5382. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.S. Efeito da associação do herbicida clomazone a nanoesferas de alginato/quitosana na sorção em solos. Quim Nova 2012, 35, 102–107. [Google Scholar] [CrossRef]
- Bond, J.A.; Griffin, J.L. Weed control in corn (Zea mays) with an imazethapyr plus imazapyr prepackaged mixture. Weed Technol. 2005, 19, 992–998. [Google Scholar] [CrossRef]
- Filipovski, G. Soil Classification of the Republic of Macedonia; Macedonian Academy of Sciences and Arts: Skopje, North Macedonia, 2006; pp. 313–323. ISBN 9989101590/9789989101595. Available online: https://books.google.mk/books?id=fN6CJAAACAAJ (accessed on 7 March 2025).
- Chinnusamy, N.; Chinnagounder, C.; Krishnan, P.N. Evaluation of weed control efficacy and seed cotton yield in glyphosate tolerant transgenic cotton. Am. J. Plant Sci. 2013, 4, 1159–1163. [Google Scholar] [CrossRef]
- Frans, R.E.; Talbert, R.; Marx, D.; Crowley, H. Experimental design and techniques for measuring and analyzing plant responses to weed control practices. In Research Methods in Weed Science, 3rd ed.; Camper, N.D., Ed.; Southern Weed Science Society; WSSA: Champaign, IL, USA, 1986; pp. 29–46. [Google Scholar]
- Ramsey, F.L.; Schafer, D.W. The Statistical Sleuth: A Course in Methods of Data Analysis, 2nd ed.; Duxbury/Thomson Learning Australia: Pacific Grove, CA, USA, 2002. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed–effects models using lme4. J. Stat. Softw. 2014, 67, 1–48. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 12 December 2024).
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mäcler, M.; Bolker, B.M. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Fei, Z.; YaMin, Y. Design of the Tobacco Seedling Transplanting Machine. 2nd International Conference on Manufacturing Technologies. IOP Conf. Series: Mater. Sci. Eng. 2018, 398, 012027. [Google Scholar] [CrossRef]
- Yousafzai, H.K.; Marwat, K.B.; Khan, M.A. Impact of herbicides on some agronomic and chemical characteristics of flue-cured virginia (FCV) tobacco (Nicotiana tabacum L.). Songklanakarin J. Sci. Technol 2006, 28, 929–935. [Google Scholar]
- Inoue, M.H.; Santana, D.C.; Oliveira, R.S., Jr.; Clemente, R.A.; Dallacort, R.; Possamai, A.C.S.; Santana, C.T.C.; Pereira, K.M. Leaching potential of herbicides used in cotton crop under soil column conditions. Planta Daninha 2010, 28, 825–833. [Google Scholar] [CrossRef]
- WSSA (Weed Science Society of America). Herbicide Handbook of the Weed Science Society of America; Weed Science Society of America: Lawrence, KS, USA, 2014. [Google Scholar]
- Heatherly, L.G.; Hodges, H.F. Soybean Production in the Midsouth; CRC Press: Boca, FL, USA; Raton, LA, USA; London, UK; New York, NY, USA; Washington, DC, USA, 1998. [Google Scholar]
- Buhler, D.D. Early preplant atrazine and metolachlor in conservation tillage corn (Zea mays). Weed Technol. 1991, 5, 66–71. [Google Scholar] [CrossRef]
- Wilcut, J.W.; York, A.C.; Wehtje, G.R. The control and interaction of weeds in peanut (Arachis hypogaea). Rev. Weed Sci. 1993, 6, 177–205. [Google Scholar]
- Janak, T.W.; Grichar, W.J. Weed control in corn (Zea mays L.) as influenced by preemergence herbicides. Int. J. Agron. 2016, 4, 1–9. [Google Scholar] [CrossRef]
- Paunescu, A.D.; Stanescu, V.; Paunescu, M.; Udrescu, E. Aspects of the chemical control of weeds in tobacco fields in Romania. In Proceedings of the CORESTA Congress, New Orleans, LA, USA, 6–10 October 2002; Available online: https://www.coresta.org/abstracts/aspects-chemical-control-weeds-tobacco-fields-romania-4346.html (accessed on 10 March 2025).
- Moayedzadeh, N. Evaluation on the chemical control of weeds in tobacco fields. In Proceedings of the Bulletin Special CORESTA Congress, Brighton, UK, 25–28 January 1999; p. 106. [Google Scholar]
- Travlos, I.S.; Kanatas, P.J.; Tsioros, S.; Papastylianou, P.; Papatheohari, Y.; Bilalis, D. Green Manure and Pendimethalin Impact on Oriental Sun-Cured Tobacco. Agron. J. 2014, 106, 1225–1230. [Google Scholar] [CrossRef]
- Bergmann, H. Proman-a strong base for flexible herbicide strategies in potato production. In Proceedings of the 27 Deutsche Arbeitsbesprechung uber Fragen der Unkrautbiologie und-bekampfung, Braunschweig, Germany, 23–25 February 2016. [Google Scholar]
- Mitchell, H.R.; Gage, E.V. Command 3 ME: Weed control in southern rice. Procidings South. Weed Sci. Soc. 1999, 52, 186. [Google Scholar]
- Talbert, R.E.; Schmidt, L.A.; Norsworthy, J.K.; Rutledge, J.S.; Fox, W.L. Confirmation of propanil-resistant barnyardgrass and strategies for control. In Rice Research Studies 1997; Norman, R.J., Johnston, T.H., Wells, B.R., Eds.; Arkansas Agriculture Experiment Station Research Series 460; Arkansas Agricultural Experiment Station: Fayetteville, AR, USA, 1998; pp. 80–90. [Google Scholar]
- Lee, D.J.; Senseman, S.A.; O’Barr, J.H.; Chandler, J.M.; Krutz, L.J.; McCauley, G.N.; Kuk, Y.I. Soil characteristics and water potential effects on plant-available clomazone in rice. Weed Sci. 2004, 52, 310–318. [Google Scholar] [CrossRef]
- Bailey, W.A. Dark tobacco (Nicotiana tabacum) tolerance to trifloxysulfuron and halosulfuron. Weed Technol. 2007, 21, 1016–1022. [Google Scholar] [CrossRef]
- Mohseni-Moghadam, M.; Doohan, D. Banana Pepper Response and AnnualWeed Control with S-metolachlor and Clomazone. Weed Technol. 2015, 29, 544–549. [Google Scholar] [CrossRef]
- Sasnauskas, A.; Kavaliauskaitė, D.; Karklelienė, R.; Bobinas, C. Weed control by herbicides and their combination in carrot crop. Acta Hortic. 2012, 936, 295–298. [Google Scholar] [CrossRef]
- Vouzounis, N.A.; Dararas, V.E.; Georghiou, G. Chemical Control of Weeds in the Aromatic Crops Lavender, Oregano and Sage; Technical Bulletin 218; Agricultural Research Institute Ministry of Agriculture, Natural Resources and the Environment: Nicosia, Cyprus, 2003; Available online: https://www.moa.gov.cy/moa/ari/ari.nsf/all/223482CFECEC94D0C22589CC00218134/$file/tb218-vouzounis.pdf (accessed on 15 March 2025).
- Pannacci, E.; Bartolini, S. Evaluation of chemical weed control strategies in biomass sorghum. J. Plant Prot. Res. 2018, 58, 404–412. [Google Scholar] [CrossRef]
- Everman, W.J.; Jordan, D.L. Chemical Weed Control; North Carolina Agricultural Chemicals Manual; NC State Extension: Raleigh, NC, USA, 2017; pp. 233–380. [Google Scholar]
- Bollman, S.L.; Sprague, C.L. Optimizing s-Metolachlor and Dimethenamid-P in Sugarbeet Microrate Treatments. Weed Technol. 2007, 21, 1054–1063. [Google Scholar] [CrossRef]
- Fennimore, S.A.; Smith, R.F.; Mcgiffen, M.E., Jr. Weed management in fresh market spinach (Spinacia oleracea) with S-metolachlor. Weed Technol. 2001, 15, 511–516. [Google Scholar] [CrossRef]
- Poling, K.W.; Renner, K.A.; Penner, D. Dry Edible Bean Class and Cultivar Response to Dimethenamid and Metolachlor. Weed Technol. 2009, 23, 73–80. [Google Scholar] [CrossRef]
- Tonks, D.J.; Eberlein, C.V.; Guttieri, M.J.; Brinkman, B.A. SAN 582 efficacy and tolerance in potato (Solanum tuberosum). Weed Technol. 1999, 13, 71–76. [Google Scholar] [CrossRef]
- Brown, D.; Masiunas, J. Evaluation of herbicides for pumpkin (Cucurbita spp.). Weed Technol. 2002, 16, 282–292. [Google Scholar] [CrossRef]
- Fisher, L.R.; Smith, W.D. Effect of Sulfentrazone Application and Combination with Clomazone or Pendimethalin on Weed Control and Phytotoxicity in Flue-Cured Tobacco. Tob. Sci. 2001, 45, 30–34. [Google Scholar] [CrossRef]
- Ritter, R.L.; Menbere, H.; Momen, B. Tolerance of Maryland-Type Tobacco (Nicotiana tabacum) to Sulfentrazone. Weed Technol. 2005, 19, 885–890. [Google Scholar] [CrossRef]
- Bailey, A.; Lax, T.; Hill, B. Comparison of Herbicide Systems for Dark Fire-Cured Tobacco. Plant Soil Sci. Res. Rep. 2014, 3, 1–9. [Google Scholar]
- Walker, E.R.; Mueller, T.C.; Rhodes, G.N., Jr.; Hayes, R.M. Spartan for weed control in tobacco. Proc. South. Weed Sci. Soc. 1998, 51, 32–33. [Google Scholar]
- Breeden, G.K.; Rhodes, G.N., Jr.; Mueller, T.C. Influence of application variables on performance of Spartan in tobacco. Proc. South. Weed Sci. Soc. 1999, 52, 20. [Google Scholar]
- Dhanapal, G.N.; Borg, S.J.; Struik, P.C. Post emergence chemical control of nodding broomrape (Orobanche cernua) in bidi tobacco (Nicotiana tabacum) in India. Weed Technol. 1998, 12, 652–659. [Google Scholar] [CrossRef]
- Dimeska, V.; Stojkov, S.; Gveroska, B. Effects of application of selective herbicides on the weeds, yields and quality of tobacco. Tobacco 2003, 53, 157–166. [Google Scholar]
Tobacco Type | “Prilep” cv. P-23 | |||
---|---|---|---|---|
Region | Prilep | Titov Veles | ||
Soil characteristics | fluvisol sandy loam | vertisol | ||
Coarse (%) | 18.50 | 3.50 | ||
Fine sand (%) | 55.10 | 34.20 | ||
Clay + silt (%) | 26.40 | 60.30 | ||
Organic matter (%) | 1.56 | 2.40 | ||
pH-water (%) | 6.90 | 7.20 | ||
Year | 2020 | 2021 | 2020 | 2021 |
Data of transplantation | 26.05.2020. | 19.05.2021. | 18.05.2020. | 11.05.2021. |
Inter-row/in-row plant spacing | 40 × 15 cm | |||
Herbicide (name, a.m., HRAC classification) | doses | |||
Stomp Aqua (pendimethalin 455 g/L, HRAC-3) | 3.0 L/ha | |||
Proman (metobromuron 500 g/L, HRAC-5) | 2.5 L/ha | |||
Gamit 4F (clomazone 320 g/L, HRAC-13) | 1.0 L/ha | |||
Challenge 600 EC (aclonifen 600 g/L, HRAC-34) | 2.5 L/ha | |||
Dual Gold 960 (S-metolachlor 960 g/L, HRAC-15) | 1.5 L/ha | |||
Frontier 900 EC (dimethenamid 900 g/L, HRAC-15) | 1.7 L/ha |
Prilep Region (Fluvisol Site) | Titov Veles Region (Vertisol Site) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | |||||||||||||
PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | |||||||||
Weeks | P mm | T °C | P mm | T °C | P mm | T °C | P mm | T °C | P mm | T °C | P mm | T °C | P mm | T °C | P mm | T °C |
1st WBA | 11 | 16 | 29 | 12 | 5 | 18 | 10 | 16 | 10 | 17 | 19 | 14 | 4 | 19 | 7 | 18 |
1st WAA | 29 | 12 | 11 | 18 | 10 | 16 | 19 | 16 | 19 | 14 | 14 | 19 | 7 | 18 | 8 | 22 |
2nd WAA | 11 | 18 | 3 | 20 | 19 | 16 | 15 | 19 | 14 | 19 | 3 | 22 | 8 | 22 | 7 | 21 |
3rd WAA | 3 | 20 | 1 | 22 | 15 | 19 | 7 | 21 | 3 | 22 | 0 | 23 | 7 | 21 | 12 | 23 |
4th WAA | 1 | 22 | 3 | 23 | 7 | 21 | 5 | 23 | 0 | 23 | 2 | 25 | 12 | 23 | 8 | 25 |
Prilep Region (Fluvisol Site) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatments Weeds | Pendimethalin 3.0 L/ha | Metobromuron 3.0 L/ha | Clomazone 1.0 L/ha | Aclonifen 2.5 L/ha | S-metolachlor 1.5 L/ha | Dimethenamid 1.7 L/ha | ||||||||||||||||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |||||||||||||
PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | |
28 DA PRE-T and POST-T (OT) A | ||||||||||||||||||||||||
DIGSA | 77 a | 97 a | 86 a | 75 a | 57 b | 90 c | 76 b | 62 c | 75 a | 100 a | 86 a | 73 a | 64 a | 94 b | 77 b | 66 a | 74 a | 100 a | 85 a | 74 a | 71 a | 100 a | 84 a | 72 a |
POROL | 68 c | 92 b | 84 a | 68 b | 66 a | 95 b | 83 a | 71 b | 63 b | 95 b | 79 b | 68 a | 71 a | 99 a | 82 a | 72 a | 70 ab | 100 a | 83 a | 69 ab | 68 a | 94 bc | 79 b | 70 a |
CHEAL | 74 ab | 95 ab | 87 a | 72 ab | 62 ab | 97 b | 85 a | 74 ab | 71 a | 95 b | 81 b | 68 a | 68 a | 100 a | 80 ab | 68 a | 67 ab | 93 b | 81 ab | 65 b | 70 a | 96 b | 78 b | 66 a |
AMARE | 71 bc | 97 a | 83 a | 71 ab | 64 a | 100 a | 86 a | 77 a | 62 b | 78 c | 69 c | 59 b | 70 a | 98 a | 83 a | 71 a | 65 b | 100 a | 77 b | 70 ab | 73 a | 93 c | 82 ab | 71 a |
LSD 0.05 | 5.40 | 3.63 | 6.21 | 8.37 | 6.76 | 2.64 | 5.49 | 5.52 | 5.90 | 2.85 | 3.79 | 5.43 | 7.64 | 2.58 | 4.80 | 6.85 | 7.59 | 1.48 | 5.90 | 5.50 | 5.23 | 2.82 | 4.20 | 6.04 |
interactions PT × PTOT | * | * | * | * | * | * | * | * | * | * | * | * | ||||||||||||
interactions PT and PTOT × year | * | * | * | * | * | * |
Titov Veles (Vertisol Site) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatments Weed | Pendimethalin 3.0 L/ha | Metobromuron 3.0 L/ha | Clomazone 1.0 L/ha | Aclonifen 2.5 L/ha | S-metolachlor 1.5 L/ha | Dimethenamid 1.7 L/ha | ||||||||||||||||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |||||||||||||
PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | PT | PTOT | |
28 DA PRE-T and POST-T (OT) A | ||||||||||||||||||||||||
AMARE | 85 a | 98 a | 70 ab | 74 ab | 88 a | 100 a | 72 b | 76 ab | 72 b | 79 b | 61 c | 70 b | 86 ab | 100 a | 73 a | 76 ab | 84 ab | 99 a | 69 c | 74 b | 87 a | 98 a | 69 b | 75 b |
POROL | 84 a | 96 a | 67 b | 70 b | 88 a | 99 b | 73 ab | 76 ab | 87 a | 99 a | 72 b | 78 a | 83 b | 100 a | 75 a | 78 a | 87 a | 97 a | 76 a | 78 ab | 83 a | 96 a | 77 a | 80 a |
CHEAL | 84 a | 96 a | 72 ab | 77 a | 85 a | 100 a | 76 a | 78 a | 84 a | 97 a | 74 b | 78 a | 87 a | 100 a | 70 a | 74 b | 86 ab | 99 a | 71 b | 74 b | 85 a | 98 a | 69 b | 76 ab |
POLAV | 87 a | 97 a | 75 a | 77 a | 84 a | 100 a | 70 b | 73 b | 88 a | 100 a | 78 a | 80 a | 88 a | 98 b | 75 a | 77 a | 82 b | 94 b | 74 ab | 79 a | 86 a | 99 a | 72 b | 78 ab |
LSD 0.05 | 4.76 | 2.91 | 5.50 | 6.15 | 5.52 | 0.88 | 3.69 | 4.29 | 4.57 | 4.48 | 3.86 | 5.64 | 3.88 | 1.85 | 5.79 | 2.73 | 4.54 | 2.74 | 4.74 | 4.60 | 5.71 | 3.12 | 4.64 | 4.74 |
interactions PT × PTOT | * | NS | * | NS | * | NS | * | NS | * | NS | * | NS | ||||||||||||
interactions PT and PTOT × year | * | * | * | * | * | * |
Treatments | Prilep Region (Fluvisol Site) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tobacco Injury | Tobacco Yield (kg/ha) | |||||||||||
2020 | 2021 | |||||||||||
PT | PTOT | PT | PTOT | 2020 | 2021 | |||||||
7 DAHA | 21 DAHA | 7 DAHA | 21 DAHA | 7 DAHA | 21 DAHA | 7 DAHA | 21 DAHA | PT | PTOT | PT | PTOT | |
Weedy control | 0 e | 0 e | 0 d | 0 b | 0 a | 0 a | 0 d | 0 d | 1280 e | 1280 d | 1490 e | 1490 f |
Weed-free control | 0 e | 0 e | 0 d | 0 b | 0 a | 0 a | 0 d | 0 d | 3540 a | 3540 a | 3370 a | 3370 a |
Pendimethalin | 24 a | 19 a | 4 b | 0 b | 0 a | 0 a | 20 a | 15 a | 2420 cd | 3470 abc | 3120 bc | 2470 de |
Metobromuron | 18 b | 12 b | 1 cd | 0 b | 0 a | 0 a | 15 b | 9 b | 2460 bcd | 3390 c | 3060 cd | 2540 bcd |
Clomazone | 11 cd | 7 c | 2 c | 1 b | 0 a | 0 a | 8 c | 3 c | 2490 bc | 3450 abc | 3100 bcd | 2590 bc |
Aclonifen | 8 d | 2 d | 2 c | 0 b | 0 a | 0 a | 7 c | 4 c | 2530 b | 3420 bc | 3030 d | 2510 cd |
S-metolachlor | 25 a | 21 a | 6 a | 3 a | 0 a | 0 a | 22 a | 17 a | 2390 d | 3530 a | 3170 b | 2420 e |
Dimethenamid | 16 bc | 10 bc | 2 c | 0 b | 0 a | 0 a | 13 b | 8 b | 2460 bcd | 3500 ab | 3130 bc | 2610 b |
LSD 0.05 | 5.29 | 3.83 | 1.73 | 1.01 | 0.00 | 0.00 | 3.30 | 2.54 | 98.58 | 91.02 | 78.69 | 88.87 |
interactions PT × PTOT | * | * | * | * | ||||||||
interactions PT and PTOT × year | NS | NS |
Treatments | Titov Veles (Vertisol Site) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tobacco Injury | Tobacco Yield (kg/ha) | |||||||||||
2020 | 2021 | |||||||||||
PT | PTOT | PT | PTOT | 2020 | 2021 | |||||||
7 DAHA | 21 DAHA | 7 DAHA | 21 DAHA | 7 DAHA | 21 DAHA | 7 DAHA | 21 DAHA | PT | PTOT | PT | PTOT | |
Weedy control | 0 a | 0 a | 0 d | 0 d | 0 a | 0 a | 0 c | 0 d | 1330 d | 1330 d | 1210 e | 1210 e |
Weed-free control | 0 a | 0 a | 0 d | 0 d | 0 a | 0 a | 0 c | 0 d | 3390 a | 3390 a | 3060 a | 3060 a |
Pendimethalin | 0 a | 0 a | 7 b | 4 b | 0 a | 0 a | 10 a | 6 a | 3180 bc | 3300 bc | 2560 cd | 2590 cd |
Metobromuron | 0 a | 0 a | 4 c | 0 d | 0 a | 0 a | 7 b | 3 bc | 3250 b | 3380 ab | 2670 b | 2710 b |
Clomazone | 0 a | 0 a | 3 c | 0 d | 0 a | 0 a | 6 b | 3 bc | 3150 c | 3270 c | 2530 d | 2550 d |
Aclonifen | 0 a | 0 a | 3 c | 0 d | 0 a | 0 a | 6 b | 2 c | 3210 bc | 3360 ab | 2600 bcd | 2690 b |
S-metolachlor | 0 a | 0 a | 9 a | 5 a | 0 a | 0 a | 12 a | 7 a | 3230 bc | 3330 abc | 2650 b | 2640 bcd |
Dimethenamid | 0 a | 0 a | 4 c | 2 c | 0 a | 0 a | 7 b | 4 b | 3190 bc | 3340 abc | 2630 bc | 2670 bc |
LSD 0.05 | 0.00 | 0.00 | 1.74 | 0.80 | 0.00 | 0.00 | 2.67 | 1.54 | 81.57 | 82.72 | 70.29 | 90.19 |
interactions PT × PTOT | * | * | NS | NS | ||||||||
interactions PT and PTOT × year | NS | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacanoski, Z.; Šikuljak, D.; Anđelković, A.; Janković, S.; Stanković, S.; Simić, D.; Nikolić, D. Efficacy of Pre- and Post-Transplant Herbicides in Tobacco (Nicotiana tabacum L.) Influenced by Precipitation and Soil Type. Agronomy 2025, 15, 1718. https://doi.org/10.3390/agronomy15071718
Pacanoski Z, Šikuljak D, Anđelković A, Janković S, Stanković S, Simić D, Nikolić D. Efficacy of Pre- and Post-Transplant Herbicides in Tobacco (Nicotiana tabacum L.) Influenced by Precipitation and Soil Type. Agronomy. 2025; 15(7):1718. https://doi.org/10.3390/agronomy15071718
Chicago/Turabian StylePacanoski, Zvonko, Danijela Šikuljak, Ana Anđelković, Snežana Janković, Slađan Stanković, Divna Simić, and Dušan Nikolić. 2025. "Efficacy of Pre- and Post-Transplant Herbicides in Tobacco (Nicotiana tabacum L.) Influenced by Precipitation and Soil Type" Agronomy 15, no. 7: 1718. https://doi.org/10.3390/agronomy15071718
APA StylePacanoski, Z., Šikuljak, D., Anđelković, A., Janković, S., Stanković, S., Simić, D., & Nikolić, D. (2025). Efficacy of Pre- and Post-Transplant Herbicides in Tobacco (Nicotiana tabacum L.) Influenced by Precipitation and Soil Type. Agronomy, 15(7), 1718. https://doi.org/10.3390/agronomy15071718