Light Down-Conversion Technology Improves Vegetative Growth, Berry Production, and Postharvest Quality in Tunnel-Cultivated Blueberry
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
- Blue film (Blue; shift of UV (300 nm–390 nm) to blue light radiation (420 nm–495 nm);
- Red film (Red; shift of green (520 nm–560 nm) to red light radiation (600 nm–700 nm);
- Pink film (Light Red; shift of UV (300 nm–390 nm) and green (520 nm–560 nm) to blue (420 nm–495 nm) and red light radiation (600 nm–700nm), respectively, but with a lesser extent than Red film).
2.2. Plant Biomass, Macro-Morphological Measurements, and Fruit Yield
2.3. Micro-Morphological Measurements of Leaf: Leaf Anatomical Observations
2.4. Gas Exchange and Pigment Analyses
2.5. Postharvest Storage: Fruit Shape, Weight, Organoleptic Properties, and Nutraceutical Quality
2.5.1. Postharvest Fruit Weight
2.5.2. Fruit Dry Matter, Soluble Solids Content, and Titratable Acidity
2.5.3. Fruit Nutraceutical Quality
Extraction of Total Phenolic Content (TPC)
TPC Assay
Total Anthocyanin Content (TAC) Assay
Antioxidant Activity
2.6. Statistical Analysis
3. Results
3.1. Plant Biomass and Morphological Measurements
3.2. Gas Exchange and Pigment Measurements
3.3. Leaf Thickness Investigation: Anatomical Observations
3.4. Flower Number, Fruit Yield, and Fruit Biometric Measurements
3.5. Postharvest Experiment
3.5.1. Fresh Blueberry Fruit Characteristics and Quality Traits at Harvest
3.5.2. Postharvest Fruit Storage: Fruit Quality Traits After Storage
3.5.3. Postharvest Fruit Storage: The Nutraceutical Quality
4. Discussion
4.1. LC® Films Influence Plant Growth Traits Like Shoot Elongation and Leaf Morphology but Have Less Effect Observed on Leaf Gas Exchange
4.2. Red Films Promoted Fruit Yield and New Shoot Numbers
4.3. Red Film Application Maintained Fruit Quality Traits and Nutraceutical Postharvest Fruit Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sater, H.; Ferrão, L.F.V.; Olmstead, J.; Munoz, P.R.; Bai, J.; Hopf, A.; Plotto, A. Exploring environmental and storage factors affecting sensory, physical and chemical attributes of six southern highbush blueberry cultivars. Sci. Hortic. 2021, 289, 110468. [Google Scholar] [CrossRef]
- Jiang, H.; Hong, W.; Zhang, Y.; Liu, S.; Jiang, H.; Xia, S.; Si, X.; Li, B. Effects of static magnetic field-prolonged supercooling preservation on blueberry quality. Food Biosci. 2024, 59, 103771. [Google Scholar] [CrossRef]
- Gorzelany, J.; Kapusta, I.; Pluta, S.; Belcar, J.; Pentoś, K.; Basara, O. Effect of gaseous ozone and storage time on polyphenolic profile and sugar content in fruits of selected Vaccinium corymbosum L. genotypes. Molecules 2023, 28, 8106. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Han, T.; Yang, H.; Lyu, L.; Li, W.; Wu, W. Known and potential health benefits and mechanisms of blueberry anthocyanins: A review. Food Biosci. 2023, 55, 103050. [Google Scholar] [CrossRef]
- Bilbao-Sainz, C.; Millé, A.; Chiou, B.S.; Takeoka, G.; Rubinsky, B.; McHugh, T. Calcium impregnation during isochoric cold storage to improve postharvest preservation of fresh blueberries. Postharvest Biol. Technol. 2024, 211, 112841. [Google Scholar] [CrossRef]
- Silva, S.; Costa, E.M.; Veiga, M.; Morais, R.M.; Calhau, C.; Pintado, M. Health promoting properties of blueberries: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 181–200. [Google Scholar] [CrossRef] [PubMed]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent research on the health benefits of blueberries and their anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Krishna, P.; Pandey, G.; Thomas, R.; Parks, S. Improving blueberry fruit nutritional quality through physiological and genetic interventions: A review of current research and future directions. Antioxidants 2023, 12, 810. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Dong, W.; Zhu, Y.; Allan, A.C.; Lin-Wang, K.; Xu, C. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach. Plant Biotechnol. J. 2020, 18, 1284–1295. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Xu, X.; Zhou, X.; Liu, Y.; Zhao, Z. Changes in phenolic profiles and antioxidant activity in rabbiteye blueberries during ripening. Int. J. Food Prop. 2019, 22, 320–329. [Google Scholar] [CrossRef]
- Pratap-Singh, A.; Shojaei, M.; Singh, A.; Ye, Y.; Mandal, R.; Yan, Y.; Pico, J.; Gerbrandt, E.M.; Castellarin, S.D. Effects of pulsed light on the postharvest quality and shelf-life of highbush blueberries (cv. Draper). Appl. Food Res. 2023, 3, 100273. [Google Scholar] [CrossRef]
- Hung, C.D.; Hong, C.H.; Kim, S.K.; Lee, K.H.; Park, J.Y.; Nam, M.W.; Choi, D.H.; Lee, H.I. LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.). Acta Physiol. Plant 2016, 38, 152. [Google Scholar] [CrossRef]
- Aung, T.; Muramatsu, Y.; Horiuchi, N.; Che, J.; Mochizuki, Y.; Ogiwara, I. Plant growth and fruit quality of blueberry in a controlled room under artificial light. J. Jap. Soci. Hortic. Sci. 2014, 83, 273–281. [Google Scholar] [CrossRef]
- Petridis, A.; van der Kaay, J.; Chrysanthou, E.; McCallum, S.; Graham, J.; Hancock, R.D. Photosynthetic limitation as a factor influencing yield in highbush blueberries (Vaccinium corymbosum) grown in a northern European environment. J. Exp. Bot. 2018, 69, 3069–3080. [Google Scholar] [CrossRef] [PubMed]
- Zoratti, L.; Sarala, M.; Carvalho, E.; Karppinen, K.; Martens, S.; Giongo, L.; Häggman, H.; Jaakola, L. Monochromatic light increases anthocyanin content during fruit development in bilberry. BMC Plant Biol. 2014, 14, 377. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Zhang, J.; Zhang, L.; Li, S.; Zhou, B.; Zhang, X. Effects of nutrition and light quality on the growth of southern highbush blueberry (Vaccinium corymbosum L.) in an advanced plant factory with artificial lighting (PFAL). Horticulturae 2023, 9, 287. [Google Scholar] [CrossRef]
- Wang, Y.W.; Acharya, T.P.; Malladi, A.; Tsai, H.J.; NeSmith, D.S.; Doyle, J.W.; Nambeesan, S.U. Atypical climacteric and functional ethylene metabolism and signaling during fruit ripening in blueberry (Vaccinium sp.). Front. Plant Sci. 2022, 13, 932642. [Google Scholar] [CrossRef] [PubMed]
- Rascio, N. Elementi di fisiologia vegetale. In Elementi di Fisiologia Vegetale; EdiSES srl: Grumo Nevano, Italy, 2017; pp. 257–300. [Google Scholar]
- Larner, V.S.; Franklin, K.A.; Whitelam, G.C. Photoreceptors and light signalling pathways in plants. In Annual Plant Reviews Online; Wiley Online Library: Hoboken, NJ, USA, 2018; pp. 107–131. [Google Scholar]
- Pierik, R.; Ballaré, C.L. Control of plant growth and defense by photoreceptors: From mechanisms to opportunities in agriculture. Mol. Plant 2021, 14, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Lauria, G.; Ceccanti, C.; Lo Piccolo, E.; El Horri, H.; Guidi, L.; Lawson, T.; Landi, M. “Metabolight”: How light spectra shape plant growth, development and metabolism. Physiol. Plant. 2024, 176, e14587. [Google Scholar] [CrossRef] [PubMed]
- Zoratti, L.; Jaakola, L.; Häggman, H.; Giongo, L. Modification of sunlight radiation through colored photo-selective nets affects anthocyanin profile in Vaccinium spp. berries. PLoS ONE 2015, 10, e0135935. [Google Scholar] [CrossRef] [PubMed]
- Willden, S.A.; Cox, K.D.; Pritts, M.P.; Loeb, G.M. A comparison of weed, pathogen and insect pests between low tunnel and open-field grown strawberries in New York. Crop Prot. 2021, 139, 105388. [Google Scholar] [CrossRef]
- El Horri, H.; Vitiello, M.; Ceccanti, C.; Lo Piccolo, E.; Lauria, G.; De Leo, M.; Braca, A.; Incrocci, L.; Guidi, L.; Massai, R.; et al. Ultraviolet-to-blue light conversion film affects both leaf photosynthetic traits and fruit bioactive compound accumulation in Fragaria × ananassa. Agronomy 2024, 14, 1491. [Google Scholar] [CrossRef]
- El Horri, H.; Vitiello, M.; Braca, A.; De Leo, M.; Guidi, L.; Landi, M.; Lauria, G.; Lo Piccolo, E.; Massai, R.; Remorini, D.; et al. Blue and red light downconversion film application enhances plant photosynthetic performance and fruit productivity of Rubus fruticosus L. var. Loch Ness. Horticulturae 2024, 10, 1046. [Google Scholar] [CrossRef]
- Lemarié, S.; Proost, K.; Quellec, A.S.; Torres, M.; Cordier, S.; Guignard, G.; Peilleron, F. The LIGHT CASCADE® sunlight photo downconversion greenhouse films increase berries production and provide a better resistance toward biotic and abiotic stresses in Mediterranean countries. In Proceedings of the XXXI International Horticultural Congress (IHC2022): International Symposium on Advances in Berry Crops, Angers, France, 14–20 August 2022; Volume 1381, pp. 299–308. [Google Scholar]
- Henschel, J.M.; de Resende, J.T.V.; Zeist, A.R.; dos Santos, R.L.; de Lima, V.A.; Giloni-Lima, P.C.; Batista, D.S. True colors shining through: How low tunnel cover colors affect fruit yield and photosynthesis in strawberry cultivars. Vegetos 2024, 1–11. [Google Scholar] [CrossRef]
- Conti, S.; Mola, I.D.; Barták, M.; Cozzolino, E.; Melchionna, G.; Mormile, P.; Ottaiano, L.; Paradiso, R.; Rippa, M.; Testa, A.; et al. Crop Performance and Photochemical Processes Under a UV-to-Red Spectral Shifting Greenhouse: A Study on Aubergine and Strawberry. Agriculture 2025, 15, 569. [Google Scholar] [CrossRef]
- Yang, J.; Shi, W.; Li, B.; Bai, Y.; Hou, Z. Preharvest and postharvest UV radiation affected flavonoid metabolism and antioxidant capacity differently in developing blueberries (Vaccinium corymbosum L.). Food Chem. 2019, 301, 125248. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yamane, H.; Tao, R. Preharvest long-term exposure to UV-B radiation promotes fruit ripening and modifies stage-specific anthocyanin metabolism in highbush blueberry. Hortic. Res. 2021, 8, 67. [Google Scholar] [CrossRef] [PubMed]
- Sakai, W.S. Simple method for differential staining of paraffin embedded plant material using toluidine blue O. Stain Technol. 1973, 48, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Prot. Food Analy. Chem. 2001, 1, F1–F2. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Appolloni, E.; Pennisi, G.; Zauli, I.; Carotti, L.; Paucek, I.; Quaini, S.; Orsini, F.; Gianquinto, G. Beyond vegetables: Effects of indoor LED light on specialized metabolite biosynthesis in medicinal and aromatic plants, edible flowers, and microgreens. J. Sci. Food Agric. 2022, 102, 472–487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liao, B.; Li, F.; Eneji, A.E.; Du, M.; Tian, X. Growth, leaf anatomy, and photosynthesis of cotton (Gossypium hirsutum L.) seedlings in response to four light-emitting diodes and high pressure sodium lamp. J. Cotton Sci. 2024, 7, 8. [Google Scholar] [CrossRef]
- Kang, J.H.; Kim, D.; Yoon, H.I.; Son, J.E. Growth, morphology, and photosynthetic activity of Chinese cabbage and lettuce grown under polyethylene and spectrum conversion films. Hortic. Sci. Technol. 2023, 64, 593–603. [Google Scholar] [CrossRef]
- Liu, Y.; Gui, Z.; Liu, J. Research progress of light wavelength conversion materials and their applications in functional agricultural films. Polymers 2022, 14, 851. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.; Zivcak, M.; Sytar, O.; Brestic, M.; Allakhverdiev, S.I. Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. Biochim. Biophys. Acta Bioenerg. 2020, 1861, 148131. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, K.; Yoshida, K.; Shimasaki, K.; Murakami, K.; Yasutake, D.; Kitano, M. Spectrum downconversion film for regulation of plant growth. J. Fac. Agric. Kyushu Univ. 2008, 53, 549–552. [Google Scholar]
- Brodersen, C.R.; Vogelmann, T.C. Do changes in light direction affect absorption profiles in leaves? Funct. Plant Biol. 2010, 37, 403–412. [Google Scholar] [CrossRef]
- Ke, X.; Yoshida, H.; Hikosaka, S.; Goto, E. Photosynthetic photon flux density affects fruit biomass radiation-use efficiency of dwarf tomatoes under LED light at the reproductive growth stage. Front. Plant Sci. 2023, 14, 1076423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, Y.; Ni, C.; Chen, J. Effect of LED light on the growth and physiological indices of blueberry. Agron. J. 2022, 114, 2105–2112. [Google Scholar] [CrossRef]
- Bastías, R.M.; Corelli-Grappadelli, L. Light quality management in fruit orchards: Physiological and technological aspects. Chil. J. Agric. Res. 2012, 72, 574–581. [Google Scholar] [CrossRef]
- Guo, X.L.; Hu, J.B.; Wang, D.L. Effect of light intensity on blueberry fruit coloration, anthocyanin synthesis pathway enzyme activity, and gene Expression. Russ. J. Plant Physiol. 2023, 70, 136. [Google Scholar] [CrossRef]
- Ge, M.; Yuan, Y.; Liu, S.; Li, J.; Yang, C.; Du, B.; Pang, Q.; Li, S.; Chen, Z. Enhancing plant photosynthesis with dual light conversion films incorporating biomass-derived carbon dots. Carbon Capture Sci. Technol. 2024, 13, 100253. [Google Scholar] [CrossRef]
- Cho, H.Y.; Kadowaki, M.; Che, J.; Takahashi, S.; Horiuchi, N.; Ogiwara, I. Influence of light quality on flowering characteristics, potential for year-round fruit production and fruit quality of blueberry in a plant factory. Fruits 2019, 74, 3–10. [Google Scholar] [CrossRef]
- Yang, J.; Song, J.; Jeong, B.R. Lighting from top and side enhances photosynthesis and plant performance by improving light usage efficiency. Int. J. Mol. Sci. 2022, 23, 2448. [Google Scholar] [CrossRef] [PubMed]
- Lobos, G.A.; Retamales, J.B.; Hancock, J.F.; Flore, J.A.; Romero-Bravo, S.; Del Pozo, A. Productivity and fruit quality of Vaccinium corymbosum cv. Elliott under photo-selective shading nets. Sci. Hortic. 2013, 153, 143–149. [Google Scholar] [CrossRef]
- Connor, A.M.; Luby, J.J.; Hancock, J.F.; Berkheimer, S.; Hanson, E.J. Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage. J. Agric. Food Chem. 2002, 50, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Xu, Z.; Li, X.; Wang, D.; Ren, X.; Kong, Q. Underlying mechanism of menthol on controlling postharvest citrus sour rot caused by Geotrichum citri-aurantii. Postharvest Biol. Technol. 2023, 196, 112160. [Google Scholar] [CrossRef]
- Pott, D.M.; Vallarino, J.G.; Osorio, S. Metabolite changes during postharvest storage: Effects on fruit quality traits. Metabolites 2020, 10, 187. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Tian, X.; Liu, Z.; Wang, L.; Kong, Q.; Wang, D.; Ren, X. Combination of LED blue light with peppermint essential oil emulsion for the postharvest storage of Shine Muscat grape to control Aspergillus carbonarius. Postharvest Biol. Technol. 2024, 218, 113175. [Google Scholar] [CrossRef]
- Zifkin, M.; Jin, A.; Ozga, J.A.; Zaharia, L.I.; Schernthaner, J.P.; Gesell, A.; Abrams, R.S.; Kennedy, A.J.; Constabel, C.P. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiol. 2012, 158, 200–224. [Google Scholar] [CrossRef] [PubMed]
- Mesa, T.; Romero, A.; Munné-Bosch, S. Blue LED light improves the antioxidant composition of Valencia oranges during postharvest: Impact on orange juice, pulp portion and peel residue. Sci. Hortic. 2024, 338, 113679. [Google Scholar] [CrossRef]
Class Number | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Fruit diameter (cm) | 2.1–2.4 | 1.7–2.0 | 1.3–1.6 | 1–1.2 |
Cnt | Red | Pink | Blue | |
---|---|---|---|---|
Plant biomass (kg plant−1) | 0.11 ± 0.03 b | 0.24 ± 0.06 a | 0.14 ± 0.02 b | 0.12 ± <0.01 b |
Shoot length (mm) | 166.20 ± 4.91 b | 199.80 ± 16.82 a | 172.00 ± 21.01 b | 187.70 ± 7.26 ab |
Shoot diameter (mm) | 1.60 ± 0.15 b | 2.04 ± 0.18 a | 1.80 ± 0.18 ab | 1.90 ± 0.22 ab |
Shoot number (n° plant−1) | 19.00 ± 4.32 b | 29.25 ± 4.92 a | 29.25 ± 5.19 a | 23.75 ± 6.29 ab |
Leaf weight (kg plant−1) | 0.05 ± 0.01 b | 0.11 ± 0.03 a | 0.10 ± 0.02 a | 0.08 ± 0.01 ab |
Leaf thickness (µm) | 314.0 ± 14.30 c | 379.0 ±18.53 a | 367.0 ± 13.37 a | 330.0 ± 17.0 b |
Leaf dry matter (%) | 39.50 ± 3.17 a | 35.04 ± 0.81 b | 41.62 ± 3.41 a | 41.42 ± 2.41 a |
Leaf area (cm2) | 70.49 ± 7.58 b | 103.60 ± 8.20 a | 77.00 ± 6.40 b | 98.12 ± 13.81 a |
Cnt | Red | Pink | Blue | |
---|---|---|---|---|
Total thickness (µm) | 177.8 ± 32.07 b | 182.2 ± 81.92 b | 276.9 ± 96.83 a | 250.3 ± 17.41 ab |
Upper epidermis (%) | 10.10 ± 1.78 a | 10.50 ± 1.10 a | 9.52 ± 1.03 a | 9.38 ± 1.38 a |
Palisade parenchyma (%) | 28.38 ± 2.41 b | 27.90 ± 2.55 b | 36.13 ± 3.48 a | 34.45 ± 7.24 a |
Spongy parenchyma (%) | 50.21 ± 2.91 a | 53.80 ± 2.88 a | 47.58 ± 3.19 a | 49.53 ± 8.11 a |
Lower epidermis (%) | 8.22 ± 0.68 a | 7.19 ± 1.05 ab | 6.01 ± 0.85 b | 6.31 ± 1.44 b |
Cnt | Red | Pink | Blue | |
---|---|---|---|---|
Flower number (n° plant−1) | 77.12 ± 16.52 bc | 103.1± 34.13 b | 57.36 ± 20.19 c | 169.10 ± 32.29 a |
Fruit number (n° plant−1) | 47.00 ± 6.78 b | 81.40 ± 29.42 a | 44.40 ± 11.33 b | 86.60 ± 18.90 a |
Fruit set rate (%) | 64.03 ± 6.77 a | 63.33 ± 5.98 a | 72.98 ± 15.87 a | 63.31 ± 6.40 a |
Total fruit yield (g plant−1) | 84.28 ± 19.16 b | 98.21 ± 28.31 b | 84.15 ± 20.27 b | 157.40 ± 8.32 a |
Single fruit weight (g plant−1) | 1.63 ± 0.11 bc | 1.80 ± 0.11 a | 1.75 ± 0.15 ab | 1.57 ± 0.11 c |
Cnt | Red | Pink | Blue | |
---|---|---|---|---|
DM (%) | 10.68 ± 0.20 b | 10.74 ± 0.34 b | 11.12 ± 0.32 b | 12.25 ± 0.74 a |
SSC (Brix°) | 11.98 ± 1.80 b | 11.40 ± 0.85 b | 11.95 ± 2.07 b | 15.40 ± 1.74 a |
TA (mg citric acid g−1 FW) | 2.86 ± 0.68 b | 2.72 ± 0.58 b | 3.24 ± 1.05 b | 8.87 ± 1.01 a |
TPC (mg GAE g−1 FW) | 3.84 ± 0.89 b | 2.25 ± 0.22 c | 5.17 ± 0.23 a | 4.53 ± 0.34 ab |
TAC (mg cyd-3-O glu. eq. g−1 FW) | 0.91 ± 0.10 a | 0.76 ± 0.23 a | 0.70 ± 0.17 ab | 0.51 ± 0.09 b |
AA (mg TE g−1 FW) | 7.00 ± 1.08 b | 7.36 ± 1.42 ab | 6.77 ± 0.88 b | 8.77 ± 0.71 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Horri, H.; Bartolini, S.; Remorini, D.; Ceccanti, C.; Florio, M.; D’Asaro, L.; Jain, G.; Massai, R.; Landi, M.; Guidi, L. Light Down-Conversion Technology Improves Vegetative Growth, Berry Production, and Postharvest Quality in Tunnel-Cultivated Blueberry. Agronomy 2025, 15, 1708. https://doi.org/10.3390/agronomy15071708
El Horri H, Bartolini S, Remorini D, Ceccanti C, Florio M, D’Asaro L, Jain G, Massai R, Landi M, Guidi L. Light Down-Conversion Technology Improves Vegetative Growth, Berry Production, and Postharvest Quality in Tunnel-Cultivated Blueberry. Agronomy. 2025; 15(7):1708. https://doi.org/10.3390/agronomy15071708
Chicago/Turabian StyleEl Horri, Hafsa, Susanna Bartolini, Damiano Remorini, Costanza Ceccanti, Marta Florio, Lorenzo D’Asaro, Gagandeep Jain, Rossano Massai, Marco Landi, and Lucia Guidi. 2025. "Light Down-Conversion Technology Improves Vegetative Growth, Berry Production, and Postharvest Quality in Tunnel-Cultivated Blueberry" Agronomy 15, no. 7: 1708. https://doi.org/10.3390/agronomy15071708
APA StyleEl Horri, H., Bartolini, S., Remorini, D., Ceccanti, C., Florio, M., D’Asaro, L., Jain, G., Massai, R., Landi, M., & Guidi, L. (2025). Light Down-Conversion Technology Improves Vegetative Growth, Berry Production, and Postharvest Quality in Tunnel-Cultivated Blueberry. Agronomy, 15(7), 1708. https://doi.org/10.3390/agronomy15071708