Water and Salt Dynamics in Cultivated, Abandoned, and Lake Systems Under Irrigation Reduction in the Hetao Irrigation District
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Experimental Setup and Data Collection
2.2.1. Groundwater and Irrigation Data
Groundwater Table
Irrigation Volume
Groundwater Electrical Conductivity
2.2.2. Soil Monitoring
2.2.3. Water Volume Measurement and Sample Collection
2.2.4. Soil Physical Properties in the Study Area
2.2.5. Meteorological Data
2.3. Water Balance Model for Farmland, Wasteland, and Lake Systems
2.3.1. Water Balance Calculation Model for Farmland During the Crop Growing Season
2.3.2. Water Balance Calculation Model for Wasteland During the Crop Growing Season
2.3.3. Soil Water Balance Model for the Lake Boundary During the Crop Growing Season
2.3.4. Water Balance Model for the Lake During the Crop Growing Season
2.4. Groundwater Flow Model for Farmland, Wasteland, and Lake Systems
2.4.1. Groundwater Migration Model for Farmland
2.4.2. Groundwater Migration Model for Wasteland
2.4.3. Groundwater Migration Model for Lake Boundary
2.5. Groundwater Migration Rate Between Farmland, Wasteland, and Lake Systems
2.5.1. Groundwater Migration Rate for Farmland
2.5.2. Groundwater Migration Rate for Wasteland
2.6. Solute Transport Calculation for Farmland, Wasteland, and Lake Systems
2.6.1. Solute Transport Model
2.6.2. Groundwater Solute Migration Rates
2.7. Study Flowchart
3. Results
3.1. Direction of Groundwater Migration During Irrigation and Non-Irrigation Periods
3.2. Groundwater Migration and Water Balance Calculation in Farmland–Wasteland–Lake System
3.2.1. Specific Yield (Sy) and Soil Unsaturated Zone and Groundwater Storage Changes (ΔS)
3.2.2. Groundwater Migration Volumes
3.2.3. Evapotranspiration in Farmland, in Wasteland, and at Lake Boundary
3.3. Calculation of Groundwater Salt Migration in Farmland–Wasteland–Lake System
3.3.1. Groundwater Salt Migration Rate in Farmland–Wasteland–Lake System
3.3.2. Groundwater Salt Migration Volume in Farmland–Wasteland–Lake System
4. Discussion
4.1. Water and Salt Migration Patterns in Different Land Types
4.2. Impact of Water and Salt Migration Processes in Different Land Types on Water-Saving and Salt Control in the Hetao Irrigation District
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xue, J.; Huo, Z.; Wang, S. A novel regional irrigation water productivity model coupling irrigation- and drainage-driven soil hydrology and salinity dynamics and shallow groundwater movement in arid regions in China. Hydrol. Earth Syst. Sci. 2020, 24, 2399–2418. [Google Scholar] [CrossRef]
- Luo, Y.; Sophocleous, M. Seasonal groundwater contribution to crop-water use assessed with lysimeter observations and model simulations. J. Hydrol. 2010, 389, 325–335. [Google Scholar] [CrossRef]
- Karimov, A.K.; Šimůnek, J.; Hanjra, M.A.; Avliyakulov, M.; Forkutsa, I. Effects of the shallow water table on water use of winter wheat and ecosystem health: Implications for unlocking the potential of groundwater in the Fergana Valley (Central Asia). Agric. Water Manag. 2014, 131, 57–69. [Google Scholar] [CrossRef]
- Ren, D.; Xu, X.; Hao, Y.; Huang, G. Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: Application to maize, sunflower and watermelon. J. Hydrol. 2016, 532, 122–139. [Google Scholar] [CrossRef]
- Wichelns, D.; Qadir, M. Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater. Agric. Water Manag. 2015, 157, 31–38. [Google Scholar] [CrossRef]
- Devkota, K.P.; Devkota, M.; Rezaei, M.; Oosterbaan, R. Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands. Agric. Syst. 2022, 198, 103390. [Google Scholar] [CrossRef]
- Zuo, Q.T.; Ding, X.Y.; Cui, G.T.; Zhang, W. Yellow River Basin management under pressure: Present state, restoration and protection II: Lessons from a special issue. Water 2024, 16, 999. [Google Scholar] [CrossRef]
- Wang, X.Z.; Gao, Q.Z.; Lu, Q. Effective use of water resources, and salinity and waterlogging control in the Hetao Irrigation Area of Inner Mongolia. J. Arid Land Res. Environ. 2005, 19, 118–123, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.D. Analysis on changes of groundwater table before and after water saving reconstruction in Hetao Irrigation District. Water Sav. Irrig. 2002, 1, 15–17, (In Chinese with English Abstract). [Google Scholar]
- Dou, X.; Shi, H.; Li, R.; Miao, Q.; Tian, F.; Yu, D.; Zhou, L.; Wang, B. Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District. Sustainability 2021, 13, 9835. [Google Scholar] [CrossRef]
- Wang, G.S.; Shi, H.B.; Li, X.Y.; Guo, J.; Wang, W.; Wu, D. Estimation of salt transport and relationship with groundwater depth in different land types in Hetao Irrigation Area. Trans. Chin. Soc. Agric. Mach. 2020, 51, 255–269, (In Chinese with English Abstract). [Google Scholar]
- Wu, J.W.; Vincent, B.; Yang, J.Z.; Bouarfa, S.; Vidal, A. Remote sensing monitoring of changes in soil salinity: A case study in Inner Mongolia, China. Sensors 2008, 8, 7035–7049. [Google Scholar] [CrossRef]
- Yue, W.; Yang, J.; Tong, J. Transfer and balance of water and salt in irrigation district of arid region. J. Hydraul. Eng. 2008, 39, 623–626. [Google Scholar]
- Wu, J.W.; Zhao, L.R.; Huang, J.S.; Yang, J.Z.; Vincent, B.; Bouarfa, S.; Vidal, A. On the effectiveness of dry drainage in soil salinity control. Sci. China Ser. E Technol. Sci. 2009, 52, 3328–3334. [Google Scholar] [CrossRef]
- Wang, C.S.; Wu, J.W.; Zeng, W.Z.; Zhu, Y.; Huang, J. Five-year experimental study on effectiveness and sustainability of a dry drainage system for controlling soil salinity. Water 2019, 11, 111. [Google Scholar] [CrossRef]
- Hao, Y.; Xu, X.; Ren, D. Distributed modeling of soil water-salt dynamics and crop yields based on HYDRUS-EPIC model in Hetao Irrigation District. Trans. Chin. Soc. Agric. Eng. 2015, 31, 110–116. [Google Scholar]
- Mao, W.; Yang, J.Z.; Zhu, Y. Loosely coupled SaltMod for simulating groundwater and salt dynamics under well-canal conjunctive irrigation in semi-arid areas. Agric. Water Manag. 2017, 192, 209–220. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J. Parameterization scheme of land water-cycle model for large irrigation districts: LWCMPSID. Earth Sci. Front. 2005, 12 (Suppl. S1), 139–145. [Google Scholar]
- Xu, X.; Huang, G.H.; Zhan, H.B.; Qu, Z.; Huang, Q. Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas. J. Hydrol. 2012, 412, 170–181. [Google Scholar] [CrossRef]
- Van Gaelen, H.; Vanuytrecht, E.; Willems, P.; Diels, J.; Raes, D. Bridging rigorous assessment of water availability from field to catchment scale with a parsimonious agro-hydrological model. Environ. Model. Softw. 2017, 94, 140–156. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, Y.; Liu, M.H.; Huang, Q.Z.; Huang, G.H. Modeling and assessing agro-hydrological processes and irrigation water saving in the middle Heihe River basin. Agric. Water Manag. 2019, 211, 152–164. [Google Scholar] [CrossRef]
- Xi, M.L.; Lu, D.; Gui, D.W.; Qi, Z.M.; Zhang, G.N. Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization. J. Hydrol. 2017, 544, 456–466. [Google Scholar] [CrossRef]
- Singh, A. Validation of SaltMod for a semi-arid part of northwest India and some options for control of waterlogging. Agric. Water Manag. 2012, 115, 194–202. [Google Scholar] [CrossRef]
- Singh, A.; Panda, S.N. Integrated salt and water balance modeling for the management of waterlogging and salinization. I: Validation of SAHYSMOD. J. Irrig. Drain. Eng. 2012, 138, 955–963. [Google Scholar] [CrossRef]
- Hosseini, P.; Bailey, R.T. Investigating the controlling factors on salinity in soil, groundwater, and river water in a semi-arid agricultural watershed using swat-salt. Sci. Total Environ. 2022, 810, 152293. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Feng, Q.; Zheng, X.; Zhu, M.; Wu, X.; Guo, Y.; Li, Y. Spatio-temporal dynamics and eco-hydrological controls of water and salt migration within and among different land uses in an oasis-desert system. Sci. Total Environ. 2021, 772, 145572. [Google Scholar] [CrossRef]
- Kanzari, S.; Ben Nouna, B.; Mariem, S.B.; Rezig, M. Hydrus-1d model calibration and validation in various field conditions for simulating water flow and salts transport in a semi-arid region of Tunisia. Sustain. Environ. Res. 2018, 28, 350–356. [Google Scholar] [CrossRef]
- Kutangila, S.M.; Kafando, M.B.; Keita, A.; Mounirou, L.A.; Yonaba, R.; Ouedraogo, M.; Koita, M. Subsurface Hydrodynamics of the Southeastern Taoudéni Basin (West Africa) through Hydrogeochemistry and Isotopy. Water 2024, 16, 1922. [Google Scholar] [CrossRef]
- Faye, M.D.; Loyara, V.Y.B.; Biaou, A.C.; Yonaba, R.; Koita, M.; Yacouba, H. Modelling groundwater pollutant transfer mineral micropollutants in a multi-layered aquifer in Burkina Faso (West African sahel). Heliyon 2024, 10, e23557. [Google Scholar] [CrossRef]
- Zha, Y. Research on Cost-Effective Algorithm for Unsaturated-Saturated Flow and Its Application. Ph.D. Dissertation, Wuhan University, Wuhan, China, 2014. [Google Scholar]
- Zhu, Y.; Shi, L.S.; Yang, J.Z.; Wu, J.; Mao, D. Coupling methology and application of a fully integrated model for contaminant reansport in the subsurface system. J. Hydrol. 2013, 501, 56–72. [Google Scholar] [CrossRef]
- Wang, G.; Shi, H.; Li, X.; Yan, J.; Guo, J.; Li, Z. Study on migration of different types water during farmland-wasteland-lake system in Hetao Irrigation District. Adv. Water Sci. 2020, 31, 832–842. [Google Scholar]
- Wen, Y.; Wan, H.; Shang, S.H.; Rahman, K.U. A monthly distributed agro-hydrological model for irrigation district in arid region with shallow groundwater table. J. Hydrol. 2022, 609, 127746. [Google Scholar] [CrossRef]
- Yu, B.; Jiang, L.; Shang, S.H. Dry drainage effect of Hetao irrigation district based on remote sensing evapotranspiration. Trans. Chin. Soc. Agric. Eng. 2016, 32, 1–8. (In Chinese) [Google Scholar]
- Van Genuchten, M.T.; Leij, F.; Yates, S.R.; Williams, J.R. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils; version 1.0, EPA Report 600/2-91/065; U.S. Salinity Laboratory, USDA, ARS: Riverside, CA, USA, 1991.
- Liu, G.; Yang, J. The relationship between soil evaporation and groundwater. Soils 2002, 3, 141–144. [Google Scholar]
- Zhang, W.; Zhang, Y. Specific yield and free porosity of soil. J. Irrig. Drain. 1983, 2, 1–16. [Google Scholar]
- Cai, M. Experimental study on water yield of sandy soil. Groundwater 1986, 10, 10–14. [Google Scholar]
- Li, L.; Shi, H.; Wang, C.; Liu, H. Simulation of water and salt transport of uncultivated land in Hetao Irrigation District in Inner Mongolia. Trans. Chin. Soc. Agric. Eng. 2010, 26, 31–35. [Google Scholar]
- Ren, D.Y.; Xu, X.; Huang, G.H. Irrigation water use in typical irrigation and drainage system of Hetao Irrigation District. Trans. Chin. Soc. Agric. Eng. 2019, 35, 98–105. [Google Scholar]
- Wen, Y.; Wan, H.; Shang, S. A monthly distributed water and salt balance model in irrigated and non-irrigated lands of arid irrigation district with shallow groundwater table. J. Hydrol. 2023, 616, 12881. [Google Scholar] [CrossRef]
Time | Irrigation Water (mg/L) | Farmland Groundwater (mg/L) | Wasteland Groundwater (mg/L) | Groundwater of Lake Boundary (mg/L) | Lake (mg/L) |
---|---|---|---|---|---|
2017 | 548 | 655 | 972 | 1259 | 2619 |
2018 | 580 | 670 | 1365 | 1403 | 2926 |
2022 | 600 | 1775 | 1663 | 1663 | 2346 |
2023 | 600 | 1899 | 1827 | 1835 | 2202 |
Sample Point | Soil Layer (cm) | Soil Physical Properties | VG Parameter | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Clay | Powder | Sand | Dry Density (g/cm3) | Saturated Hydraulic Conductivity (cm/d) | (-) | (-) | ||||
<0.02 mm | 0.02–0.5 mm | >0.5–2 mm | ||||||||
% | % | % | ||||||||
Farmland (A) | 0–300 | 3.16 | 45.28 | 51.56 | 1.66 | 19.67 | 0.0266 | 0.3091 | 0.0341 | 1.1228 |
Wasteland (B) | 0–80 | 2.18 | 42.65 | 55.17 | 1.68 | 22.15 | 0.0258 | 0.3597 | 0.0409 | 1.1228 |
80–300 | 2.49 | 7.68 | 89.83 | 1.69 | 230.82 | 0.0444 | 0.3296 | 0.0382 | 2.0541 | |
Lake boundary (C) | 0–20 | 5.612 | 14.324 | 80.064 | 1.52 | 197.72 | 0.0423 | 0.3798 | 0.0403 | 1.7865 |
20–300 | 0.42 | 5.88 | 94.12 | 1.73 | 315.15 | 0.0347 | 0.31 | 0.036 | 3.1947 |
Period | Maximum (m) | Mini Mum (m) | Water Level Difference (m) | Distance (m) | Hydraulic Gradient | Groundwater Migration Direction |
---|---|---|---|---|---|---|
Irrigation period | 1033.4 | 1032.5 | 0.9 | 200 | 0.0045 | Farmland towards the lake |
Non-irrigation period | 1032.7 | 1032.16 | 0.54 | 200 | 0.0027 | Farmland towards the lake |
Date | Groundwater Level (cm) | Groundwater Level Difference (cm) | A | B | C | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | |||||||
05/01 | 153.30 | 137.30 | 77.50 | |||||||||
05/22 | 173.20 | 144.70 | 75.10 | −19.90 | −7.40 | 2.40 | 0.06 | −1.14 | 0.23 | −1.73 | 0.25 | 0.59 |
05/28 | 88.40 | 103.20 | 49.10 | 84.80 | 41.50 | 26.00 | 0.05 | 4.39 | 0.23 | 9.44 | 0.23 | 5.99 |
06/26 | 183.60 | 163.50 | 120.80 | −95.20 | −60.30 | −71.70 | 0.05 | −5.01 | 0.23 | −13.88 | 0.25 | −18.07 |
07/05 | 127.70 | 133.10 | 101.50 | 55.90 | 30.40 | 19.30 | 0.06 | 3.13 | 0.22 | 6.78 | 0.26 | 5.06 |
07/20 | 182.60 | 159.50 | 127.40 | −54.90 | −26.40 | −25.90 | 0.06 | −3.07 | 0.22 | −5.81 | 0.26 | −6.81 |
07/24 | 146.20 | 140.10 | 112.60 | 36.40 | 19.40 | 14.80 | 0.06 | 2.08 | 0.23 | 4.52 | 0.26 | 3.91 |
08/29 | 206.20 | 184.10 | 139.40 | −60.00 | −44.00 | −26.80 | 0.06 | −3.53 | 0.24 | −10.54 | 0.27 | −7.11 |
09/02 | 177.60 | 171.20 | 128.00 | 28.60 | 12.90 | 11.40 | 0.06 | 1.74 | 0.24 | 3.16 | 0.27 | 3.04 |
09/30 | 212.50 | 193.50 | 151.70 | −34.90 | −22.30 | −23.70 | 0.06 | −2.14 | 0.25 | −5.48 | 0.27 | −6.34 |
Total | −59.20 | −56.20 | −74.20 | −3.55 | −13.53 | −19.74 |
Date | Groundwater Level (cm) | Groundwater Level Difference (cm) | A | B | C | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | |||||||
05/01 | 140.30 | 124.20 | 64.50 | |||||||||
05/23 | 166.10 | 135.80 | 65.30 | −25.80 | −11.60 | −0.80 | 0.06 | −1.43 | 0.23 | −2.71 | 0.23 | −0.19 |
05/28 | 92.00 | 97.20 | 34.80 | 74.10 | 38.60 | 30.50 | 0.05 | 3.81 | 0.23 | 8.78 | 0.21 | 6.30 |
06/20 | 165.50 | 147.10 | 91.70 | −73.50 | −49.90 | −56.90 | 0.05 | −3.78 | 0.23 | −11.48 | 0.23 | −13.21 |
06/25 | 118.40 | 129.60 | 69.70 | 47.10 | 17.50 | 22.00 | 0.05 | 2.53 | 0.22 | 3.90 | 0.25 | 5.49 |
07/02 | 154.80 | 136.30 | 83.10 | −36.40 | −6.70 | −13.40 | 0.05 | −1.92 | 0.22 | −1.47 | 0.25 | −3.30 |
07/05 | 120.10 | 120.50 | 73.10 | 34.70 | 15.80 | 10.00 | 0.05 | 1.84 | 0.23 | 3.68 | 0.25 | 2.47 |
08/30 | 196.20 | 172.70 | 126.20 | −76.10 | −52.20 | −53.10 | 0.06 | −4.28 | 0.24 | −12.50 | 0.26 | −13.74 |
09/02 | 179.20 | 156.80 | 112.70 | 17.00 | 15.90 | 13.50 | 0.06 | 1.03 | 0.24 | 3.89 | 0.26 | 3.57 |
09/30 | 199.50 | 181.70 | 138.70 | −20.30 | −24.90 | −26.00 | 0.06 | −1.23 | 0.25 | −6.12 | 0.27 | −6.90 |
Total | −59.20 | −57.50 | −74.20 | −3.44 | −14.03 | −19.51 |
Date | Groundwater Level (cm) | Groundwater Level Difference (cm) | A | B | C | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | |||||||
05/01 | 192.00 | 158.00 | 119.00 | Sy | S | Sy | S | Sy | S | |||
05/26 | 205.00 | 172.00 | 130.00 | −13.00 | −14.00 | −11.00 | 0.06 | −0.74 | 0.23 | −3.27 | 0.25 | −2.71 |
06/03 | 135.00 | 135.00 | 104.00 | 70.00 | 37.00 | 26.00 | 0.05 | 3.62 | 0.23 | 8.41 | 0.23 | 5.99 |
08/01 | 206.00 | 197.00 | 144.00 | −71.00 | −62.00 | −40.00 | 0.05 | −3.74 | 0.23 | −14.27 | 0.25 | −10.08 |
08/04 | 191.00 | 183.00 | 133.00 | 15.00 | 14.00 | 11.00 | 0.06 | 0.84 | 0.22 | 3.12 | 0.26 | 2.89 |
08/14 | 206.00 | 197.00 | 145.00 | −15.00 | −14.00 | −12.00 | 0.06 | −0.84 | 0.22 | −3.08 | 0.26 | −3.16 |
08/17 | 198.00 | 190.00 | 142.00 | 8.00 | 7.00 | 3.00 | 0.06 | 0.46 | 0.23 | 1.63 | 0.26 | 0.79 |
09/30 | 223.00 | 206.00 | 164.00 | −25.00 | −16.00 | −22.00 | 0.06 | −1.47 | 0.24 | −3.83 | 0.27 | −5.84 |
Total | −31.00 | −48.00 | −45.00 | −1.87 | −11.28 | −12.12 |
Date | Groundwater Level (cm) | Groundwater Level Difference (cm) | A | B | C | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | |||||||
05/01 | 221.00 | 199.00 | 134.00 | |||||||||
05/22 | 231.00 | 210.00 | 144.00 | −10.00 | −11.00 | −10.00 | 0.06 | −0.57 | 0.23 | −2.57 | 0.25 | −2.46 |
05/29 | 165.00 | 177.00 | 132.00 | 66.00 | 33.00 | 12.00 | 0.05 | 3.42 | 0.24 | 7.92 | 0.25 | 3.00 |
09/30 | 258.00 | 242.00 | 178.00 | −93.00 | −65.00 | −46.00 | 0.06 | −5.58 | 0.25 | −16.25 | 0.27 | −12.42 |
Total | −37.00 | −43.00 | −44.00 | −2.74 | −10.90 | −11.88 |
Years | Flooding Incident | Calculation Period | Groundwater Increment (cm) | The Amount of Groundwater Replenishing Wasteland from Farmland | Total Amount of Groundwater Supplied by Leakage from Fields and Canal Systems to Farmland | Translocation Rate | |||
---|---|---|---|---|---|---|---|---|---|
Farmland | Wasteland | Lake Boundary | Groundwater Migration Rate in Farmland (%) | Groundwater Migration Rate in Wasteland (%) | |||||
2017 | 1 | 05/22–05/28 | 4.4 | 9.48 | 5.99 | 15.47 | 19.87 | 78 | 39 |
2 | 06/29–07/03 | 3.13 | 6.81 | 5.06 | 11.87 | 15 | 79 | 43 | |
3 | 07/21–07/24 | 2.1 | 4.56 | 3.91 | 8.47 | 10.57 | 80 | 46 | |
4 | 08/30–09/02 | 1.72 | 3.13 | 3.07 | 6.2 | 7.92 | 78 | 50 | |
Average value | 78.75 | 44.3 | |||||||
2018 | 1 | 05/22–05/28 | 3.82 | 8.8 | 6.28 | 15.8 | 19.62 | 81 | 40 |
2 | 06/20–06/25 | 2.52 | 3.88 | 5.51 | 9.39 | 11.91 | 79 | 59 | |
3 | 07/01–07/05 | 1.85 | 3.7 | 2.45 | 6.15 | 8 | 77 | 40 | |
Average value | 79 | 46.3 | |||||||
2022 | 1 | 05/27–06/03 | 3.62 | 8.41 | 5.99 | 14.4 | 18.02 | 80 | 41 |
2023 | 1 | 05/23–05/29 | 3.42 | 7.92 | 3.00 | 10.92 | 14.34 | 76 | 27 |
Years | 2018 | 2017 | ||||||
---|---|---|---|---|---|---|---|---|
Sample | Rainfall (mm) | Irrigation + Canal Leakage Increment/Water Storage Increment (mm) | Change (mm) | Evapotranspiration (mm) | Rainfall (mm) | Irrigation + Canal Leakage Increment/Water Storage Increment (mm) | Change (mm) | Evapotranspiration (mm) |
A | 113.4 | 422.8 | −34.4 | 570.6 | 53.4 | 597.3 | −35.5 | 686.2 |
B | 113.4 | 163.8 | −140.3 | 417.5 | 53.4 | 239.8 | −135.3 | 428.5 |
C | 113.4 | 142.4 | −195.1 | 450.9 | 53.4 | 180.3 | −197.4 | 431.1 |
Years | 2023 | 2022 | ||||||
---|---|---|---|---|---|---|---|---|
Sample | Rainfall (mm) | Irrigation + Canal Leakage Increment/Water Storage Increment (mm) | Change (mm) | Evapotranspiration (mm) | Rainfall (mm) | Irrigation + Canal Leakage Increment/Water Storage Increment (mm) | Change (mm) | Evapotranspiration (mm) |
A | 85.4 | 296.4 | −27 | 408.8 | 137 | 303.6 | −19 | 459.6 |
B | 85.4 | 79.2 | −109 | 273.6 | 137 | 131.6 | −113 | 381.6 |
C | 85.4 | 30 | −119 | 234.4 | 137 | 96.7 | −121 | 354.7 |
Years | Rainfall (mm) | Supply (mm) | Evaporation (mm) | (mm) |
---|---|---|---|---|
2017 | 53.4 | 180.3 | 940 | −706.3 |
2018 | 113.4 | 142.4 | 887 | −631.2 |
2022 | 137 | 60 | 876 | 679 |
2023 | 85.4 | 30 | 905 | 789.6 |
Salt Increment in Groundwater (g/m2) | Translocation Rate | ||||||||
---|---|---|---|---|---|---|---|---|---|
Years | Flooding Incident | Calculation Period | Farmland | Wasteland | Lake Boundary | The Amount of Salt from Farmland Groundwater Recharging Wasteland (g/m2) | The Amount of Salt Supplied by Leakage from Fields and Canal Systems to Groundwater in Farmland (g/m2) | Migration Rate in Farmland Groundwater (%) | Migration Rate in Wasteland Groundwater (%) |
2017 | 1 | 05/22–05/28 | 34.49 | 117.28 | 74.11 | 121.26 | 155.75 | 78 | 61 |
2 | 06/29–07/03 | 23.07 | 126.87 | 94.27 | 87.47 | 110.54 | 79 | 108 | |
3 | 07/21–07/24 | 18.07 | 121.77 | 104.41 | 72.88 | 90.95 | 80 | 143 | |
4 | 08/30–09/02 | 16.67 | 77.97 | 76.47 | 60.11 | 76.78 | 78 | 127 | |
Average value | 79 | 110 | |||||||
2018 | 1 | 05/22–05/28 | 35.45 | 136.74 | 97.58 | 146.63 | 182.08 | 81 | 67 |
2 | 06/20–06/25 | 24.71 | 90.73 | 128.85 | 92.07 | 116.78 | 79 | 140 | |
3 | 07/01–07/05 | 19.75 | 78.45 | 51.95 | 65.65 | 85.39 | 77 | 79 | |
Average value | 79 | 95 | |||||||
2022 | 1 | 05/27–06/03 | 55.39 | 126.15 | 91.05 | 220.32 | 311.75 | 71 | 41 |
2023 | 1 | 05/23–05/29 | 63.95 | 133.85 | 52.50 | 204.20 | 268.16 | 76 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, L.; Wang, G.; Singh, V.P.; Liu, T. Water and Salt Dynamics in Cultivated, Abandoned, and Lake Systems Under Irrigation Reduction in the Hetao Irrigation District. Agronomy 2025, 15, 1650. https://doi.org/10.3390/agronomy15071650
Hao L, Wang G, Singh VP, Liu T. Water and Salt Dynamics in Cultivated, Abandoned, and Lake Systems Under Irrigation Reduction in the Hetao Irrigation District. Agronomy. 2025; 15(7):1650. https://doi.org/10.3390/agronomy15071650
Chicago/Turabian StyleHao, Lina, Guoshuai Wang, Vijay P. Singh, and Tingxi Liu. 2025. "Water and Salt Dynamics in Cultivated, Abandoned, and Lake Systems Under Irrigation Reduction in the Hetao Irrigation District" Agronomy 15, no. 7: 1650. https://doi.org/10.3390/agronomy15071650
APA StyleHao, L., Wang, G., Singh, V. P., & Liu, T. (2025). Water and Salt Dynamics in Cultivated, Abandoned, and Lake Systems Under Irrigation Reduction in the Hetao Irrigation District. Agronomy, 15(7), 1650. https://doi.org/10.3390/agronomy15071650