Integrated Metabolome and Transcriptome Analysis Reveals the Mechanism of Anthocyanin Biosynthesis in Pisum sativum L. with Different Pod Colors
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatments
2.2. Quantification of Anthocyanin and Proanthocyanidin Content
2.3. Anthocyanin-Targeted Metabolome Analysis
2.4. Metabolic Data Analysis
2.5. Transcriptome Analysis
2.6. Quantitative RT-PCR Analysis
2.7. Combined Transcriptome and Metabolome Analysis
2.8. BSA-Seq Analysis for Candidate Genome Region
2.9. Statistical Analysis
3. Results
3.1. Changes in Anthocyanin Content in Pea Pods of QZ, FM, and ZY Cultivars
3.2. Anthocyanin Metabolic Profiling in Pea Pods of Three Different Cultivars
3.3. Transcriptome Sequencing and Annotation
3.4. QRT-PCR Verification
3.5. KEGG Enrichment and Anthocyanin Biosynthesis Pathway Analysis
3.6. Structural Genes Involved in Anthocyanin Biosynthesis
3.7. Genetic and BSA-Seq Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ellis, T.H.; Hofer, J.M.; Timmerman-Vaughan, G.M.; Coyne, C.J.; Hellens, R.P. Mendel, 150 years on. Trends Plant Sci. 2011, 16, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 25 May 2025).
- Zhong, X.J.; Yang, M.; Zhang, X.Y.; Fan, Y.F.; Wang, X.S.; Xiang, C. Comparative analysis of transcriptome and metabolome explores the underlying mechanism of pod color variation in pea (Pisum sativum L.). J. Plant Biochem. Biotechnol. 2024, 33, 144–156. [Google Scholar] [CrossRef]
- Kumari, T.; Deka, S.C. Potential health benefits of garden pea seeds and pods: A review. Legume Sci. 2021, 3, e82. [Google Scholar] [CrossRef]
- Guo, F.; Xiong, H.; Wang, X.; Jiang, L.; Yu, N.; Hu, Z.; Tsao, R. Phenolics of green pea (Pisum sativum L.) hulls, their plasma andurinary metabolites, bioavailability, and in vivo antioxidant activitiesin a rat model. J. Agric. Food Chem. 2019, 67, 11955–11968. [Google Scholar] [CrossRef]
- Weber, H.; Borisjuk, L.; Wobus, U. Molecular physiology of legume seed development. Annu. Rev. Plant Biol. 2005, 56, 253–279. [Google Scholar] [CrossRef] [PubMed]
- Le, B.H.; Wagmaister, J.A.; Kawashima, T.; Bui, A.Q.; Harada, J.J.; Goldberg, R.B. Using genomics to study legume seed development. Plant Physiol. 2007, 144, 562–574. [Google Scholar] [CrossRef]
- Macas, J.; Neumann, P.; Navrátilová, A. Repetitive DNA in the pea (Pisum sativum L.) genome: Comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genom. 2007, 8, 427. [Google Scholar] [CrossRef]
- Kreplak, J.; Madoui, M.A.; Cápal, P.; Novák, P.; Labadie, K.; Aubert, G.; Bayer, P.E.; Gali, K.K.; Syme, R.A.; Main, D.; et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019, 51, 1411–1422. [Google Scholar] [CrossRef]
- Reid, J.B.; Ross, J.J. Mendel’s genes: Toward a full molecular characterization. Genetics 2011, 189, 3–10. [Google Scholar] [CrossRef]
- Sussmilch, F.C.; Ross, J.J.; Reid, J.B. Mendel: From genes to genome. Plant Physiol. 2022, 190, 2103–2114. [Google Scholar] [CrossRef]
- Feng, C.; Chen, B.; Hofer, J.; Shi, Y.; Jiang, M.; Song, B.; Cheng, H.; Lu, L.; Wang, L.; Howard, A.; et al. Genomic and genetic insights into Mendel’s pea genes. Nature 2025. ahead of print. [Google Scholar] [CrossRef]
- Price, D.N.; Smith, C.M.; Hedley, C. The effect of the gp gene on fruit development in Pisum sativum L. I. Structural and physical aspects. New Phytol. 1988, 110, 261–269. [Google Scholar] [CrossRef]
- Shirasawa, K.; Sasaki, K.; Hirakawa, H.; Isobe, S. Genomic region associated with pod color variation in pea (Pisum sativum). G3-Genes Genomes Genet. 2021, 11, jkab081. [Google Scholar] [CrossRef] [PubMed]
- Tuan, P.A.; Bai, S.L.; Yaegaki, H.; Tamura, T.; Hihara, S.; Moriguchi, T.; Oda, K. The crucial role of Ppmyb10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biol. 2015, 15, 280. [Google Scholar] [CrossRef]
- Yan, H.L.; Pei, X.N.; Zhang, H.; Li, X.; Zhang, X.X.; Zhao, M.H.; Chiang, V.L.; Sederoff, R.R.; Zhao, X.Y. Myb-mediated regulation of anthocyanin biosynthesis. Int. J. Mol. Sci. 2021, 22, 3103. [Google Scholar] [CrossRef]
- Fathordoobady, F.; Mirhosseini, H.; Selamat, J.; Manap, M.Y.A. Effect of solvent type and ratio on betacyanins and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction. Food Chem. 2016, 202, 70–80. [Google Scholar] [CrossRef]
- Zhou, X.H.; Liu, S.Y.; Yang, Y.; Liu, J.; Zhuang, Y. Integrated metabolome and transcriptome analysis reveals a regulatory network of fruit peel pigmentation in eggplant (Solanum melongena L.). Int. J. Mol. Sci. 2022, 23, 13475. [Google Scholar] [CrossRef] [PubMed]
- Passeri, V.; Koes, R.; Quattrocchio, F.M. New challenges for the design of high value plant products: Stabilization of anthocyanins in plant vacuoles. Front. Plant Sci. 2016, 7, 153. [Google Scholar] [CrossRef]
- Matus, J.T. Transcriptomic and metabolomic networks in the grape berry illustrate that it takes more than flavonoids to fight against ultraviolet radiation. Front. Plant Sci. 2016, 7, 1337. [Google Scholar] [CrossRef]
- Li, C.J.; Shi, L.; Li, X.; Wang, Y.A.; Bi, Y.J.; Li, W.; Ma, H.F.; Chen, B.Q.; Zhu, L.; Fu, Y. ECAP is a key negative regulator mediating different pathways to modulate salt stress-induced anthocyanin biosynthesis in Arabidopsis. New Phytol. 2022, 233, 2216–2231. [Google Scholar] [CrossRef]
- Li, P.; Li, Y.J.; Zhang, F.J.; Zhang, G.Z.; Jiang, X.Y.; Yu, H.M.; Hou, B.K. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J. 2017, 89, 85–103. [Google Scholar] [CrossRef]
- Pour, P.M.; Fakhri, S.; Asgary, S.; Farzaei, M.H.; Echeverría, J. The signaling pathways, and therapeutic targets of antiviral agents: Focusing on the antiviral approaches and clinical perspectives of anthocyanins in the management of viral diseases. Front. Pharmacol. 2019, 10, 1207. [Google Scholar]
- Tena, N.; Martín, J.; Asuero, A.G. State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef] [PubMed]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother. Res. 2016, 30, 1265–1286. [Google Scholar] [CrossRef]
- Chaves-Silva, S.; Santos, A.L.D.; Chalfun-Júnior, A.; Zhao, J.; Peres, L.E.P.; Benedito, V.A. Understanding the genetic regulation of anthocyanin biosynthesis in plants—Tools for breeding purple varieties of fruits and vegetables. Phytochemistry 2018, 153, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.M.; Jibran, R.; Zhou, Y.F.; Albert, N.W.; Brummell, D.A.; Jordan, B.R.; Bowman, J.L.; Schwinn, K.E. The evolution of flavonoid biosynthesis: A bryophyte perspective. Front. Plant Sci. 2020, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.J.; Lu, W.C.; Chiou, T.J. Phosphite-mediated suppression of anthocyanin accumulation regulated by mitochondrial ATP synthesis and sugars in Arabidopsis. Plant Cell Physiol. 2018, 59, 1158–1169. [Google Scholar] [CrossRef]
- Jiu, S.; Guan, L.; Leng, X.; Zhang, K.; Haider, M.S.; Yu, X.; Zhu, X.D.; Zheng, T.; Ge, M.; Wang, C.; et al. The role of VvMYBA2r and VvMYBA2w alleles of the MYBA2 locus in the regulation of anthocyanin biosynthesis for molecular breeding of grape (Vitis spp.) skin coloration. Plant Biotechnol. J. 2021, 19, 1216–1239. [Google Scholar] [CrossRef]
- Liu, H.M.; Liu, Z.J.; Wu, Y.; Zheng, L.M.; Zhang, G.F. Regulatory mechanisms of anthocyanin biosynthesis in apple and pear. Int. J. Mol. Sci. 2021, 22, 8441. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Putterill, J.; Dare, A.P.; Plunkett, B.J.; Cooney, J.; Peng, Y.Y.; Souleyre, E.J.F.; Albert, N.W.; Espley, R.V.; Günther, C.S. Two genes, ANS and UFGT2, from Vaccinium spp. are key steps for modulating anthocyanin production. Front. Plant Sci. 2023, 14, 1082246. [Google Scholar] [CrossRef]
- Jaakola, L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 2013, 18, 477–483. [Google Scholar] [CrossRef]
- Ma, D.W.; Constabel, C.P. MYB repressors as regulators of phenylpropanoid metabolism in plants. Trends Plant Sci. 2019, 24, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Hradilová, I.; Trněný, O.; Válková, M.; Cechová, M.; Janská, A.; Prokešová, L.; Aamir, K.; Krezdorn, N.; Rotter, B.; Winter, P.; et al. A combined comparative transcriptomic, metabolomic, and anatomical analyses of two key domestication traits: Pod dehiscence and seed dormancy in pea (Pisum sp.). Front. Plant Sci. 2017, 8, 542. [Google Scholar] [CrossRef]
- Hu, M.; Li, J.; Hou, M.; Liu, X.; Cui, S.; Yang, X.; Liu, L.; Jiang, X.; Mu, G. Transcriptomic and metabolomic joint analysis reveals distinct flavonoid biosynthesis regulation for variegated testa color development in peanut (Arachis hypogaea L.). Sci. Rep. 2021, 11, 10721. [Google Scholar] [CrossRef]
- Jiang, T.; Guo, K.; Liu, L.; Tian, W.; Xie, X.; Wen, S.; Wen, C. Integrated transcriptomic and metabolomic data reveal the flavonoid biosynthesis metabolic pathway in Perilla frutescens (L.) Leaves. Sci. Rep. 2020, 10, 16207. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yu, Q.; Li, Z.; Jin, X.; Xing, W. Metabolic and transcriptomic analysis related to flavonoid biosynthesis during the color formation of Michelia crassipes tepal. Plant Physiol. Biochem. 2020, 155, 938–951. [Google Scholar] [CrossRef] [PubMed]
- Polturak, G.; Heinig, U.; Grossman, N.; Battat, M.; Leshkowitz, D.; Malitsky, S.; Rogachev, I.; Aharoni, A. Transcriptome and metabolic profiling provides insights into betalain biosynthesis and evolution in Mirabilis jalapa. Mol. Plant 2018, 11, 189–204. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, C.P.; Zhang, Y.; Li, C.Z.Y.; Li, X.; Yu, Q.; Wang, S.; Wang, X.Y.; Chen, X.S.; Feng, S.Q. Transcriptomic and metabolomic analysis provides insights into anthocyanin and procyanidin accumulation in pear. BMC Plant Biol. 2020, 20, 129. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.L.; Liu, Z.G.; Zhao, Z.H.; Zhao, J.; Wang, Z.T.; Zhou, G.F.; Liu, P.; Liu, M.J. Transcriptome and metabolome profiling unveil the mechanisms of Ziziphus jujuba mill. peel coloration. Food Chem. 2020, 312, 125903. [Google Scholar] [CrossRef]
- Li, J.; Zhou, S.; Fang, J.; Cai, Q.; Yang, Y.; Sun, Z.; Li, L.; Li, W. Integration of transcriptomics and metabolomics provides insight into the growth-promoting functions of Solanum khasianum endophyte in Medicago sativa. Agronomy 2025, 15, 251. [Google Scholar] [CrossRef]
- Lu, Y.; Yu, Y.; Xuan, Y.; Kari, A.; Yang, C.; Wang, C.; Zhang, C.; Gu, W.; Wang, H.; Hu, Y.; et al. Integrative transcriptome and metabolome analysis reveals the mechanisms of light-induced pigmentation in purple waxy maize. Front. Plant Sci. 2023, 14, 1203284. [Google Scholar] [CrossRef]
- Mackon, E.; Mackon, G.C.J.D.E.; Yao, Y.; Guo, Y.; Ma, Y.; Dai, X.; Jandan, T.H.; Liu, P. Integrative HPLC profiling and transcriptome analysis revealed insights into anthocyanin accumulation and key genes at three developmental stages of black rice (Oryza sativa L.) caryopsis. Front. Plant Sci. 2023, 14, 1211326. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Yang, M.; Zhang, X.; Fan, Y.; Wang, X.; Xiang, C. Metabolomics and Transcriptomics Jointly Explore the Mechanism of Pod Color Variation in Purple Pod Pea. Curr. Issues Mol. Biol. 2025, 47, 94. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, H.F.; Wang, N.; Jiang, S.H.; Fang, H.C.; Zhang, Z.Y.; Yang, G.X.; Wang, Y.C.; Su, M.Y.; Xu, L.; et al. The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple. Plant Mol. Biol. 2018, 98, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and 2−ΔΔCt method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The genome analysis toolkit: A mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Takagi, H.; Abe, A.; Yoshida, K.; Kosugi, S.; Natsume, S.; Mitsuoka, C.; Uemura, A.; Utsushi, H.; Tamiru, M.; Takuno, S.; et al. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 2013, 74, 174–183. [Google Scholar] [CrossRef]
- Wang, C.S.; Tang, S.C.; Zhan, Q.L.; Hou, Q.Q.; Zhao, Y.; Zhao, Q.; Feng, Q.; Zhou, C.C.; Lyu, D.F.; Cui, L.L.; et al. Dissecting a heterotic gene through gradedpool-seq mapping informs a rice-improvement strategy. Nat. Commun. 2019, 10, 2982. [Google Scholar] [CrossRef]
- Horiuchi, R.; Nishizaki, Y.; Okawa, N.; Ogino, A.; Sasaki, N. Identification of the biosynthetic pathway for anthocyanin triglucoside, the precursor of polyacylated anthocyanin, in red cabbage. J. Agric. Food Chem. 2020, 68, 9750–9758. [Google Scholar] [CrossRef]
- Tang, B.Y.; Li, L.; Hu, Z.L.; Chen, Y.N.; Tan, T.T.; Jia, Y.H.; Xie, Q.L.; Chen, G.P. Anthocyanin accumulation and transcriptional regulation of anthocyanin biosynthesis in purple pepper. J. Agric. Food Chem. 2020, 68, 12152–12163. [Google Scholar] [CrossRef]
- Li, C.; Gao, Z.; Hu, W.; Zhu, X.; Li, Y.; Li, N.; Ma, C. Integration of comparative transcriptomics and WGCNA characterizes the regulation of anthocyanin biosynthesis in mung bean (Vigna radiata L.). Front. Plant Sci. 2023, 14, 1251464. [Google Scholar] [CrossRef]
- Kerio, L.C.; Wachira, F.N.; Wanyoko, J.K.; Rotich, M.K. Characterization of anthocyanins in kenyan teas: Extraction and identification. Food Chem. 2012, 131, 31–38. [Google Scholar] [CrossRef]
- Zeng, H.T.; Zheng, T.; Tang, Q.; Xu, H.; Chen, M.J. Integrative metabolome and transcriptome analyses reveal the coloration mechanism in Camellia oleifera petals with different color. BMC Plant Biol. 2024, 24, 19. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.J.; Zhao, L.; Zhang, B.; Huang, W.J.; Zhang, Z.R.; An, B. Integrated analysis of the metabolome and transcriptome provides insights into anthocyanin biosynthesis of cashew apple. Food Res. Int. 2024, 175, 113711. [Google Scholar] [CrossRef]
- Wang, H.; Lei, D.; Zhou, X.; Li, S.; Zhang, Y.; Lin, Y.; Chen, Q.; Luo, Y.; Tang, H.; Zhang, Y. Identification of PIF gene family and functional study of PbPIF3a/PbPIF4 in anthocyanin biosynthesis of pear. Agronomy 2025, 15, 959. [Google Scholar] [CrossRef]
Group | Index | Compounds | p-Value | Fold_Change | Type |
---|---|---|---|---|---|
Anthocyanidin_400 | Cyanidin-3-O-glucoside-5-O-galactoside | 0.022 | Inf | up | |
Anthocyanidin_27 | Delphinidin-3-O-glucoside | 0.006 | Inf | up | |
Anthocyanidin_212 | Delphinidin-3-O-(6″-O-xylosyl)glucoside | 0.003 | Inf | up | |
Anthocyanidin_396 | Pelargonidin-3,5-O-digalactoside | 0.024 | Inf | up | |
Anthocyanidin_329 | Peonidin-3-O-(6″-O-malonyl)diglucoside | 0.003 | Inf | up | |
FM vs. QZ | Anthocyanidin_109 | Procyanidin B4 | 0.027 | Inf | up |
Anthocyanidin_107 | Procyanidin B3 | 0.036 | Inf | up | |
Anthocyanidin_06 | Cyanidin-3-O-(6-O-p-coumaroyl)-glucoside | 0.009 | 5.165 | up | |
Anthocyanidin_75 | Peonidin | 0.036 | 5.034 | up | |
Anthocyanidin_399 | Delphinidin-3-O-glucoside-5-O-galactoside | 0.046 | 3.187 | up | |
Anthocyanidin_10 | Cyanidin-3-O-galactoside | 0.006 | Inf | up | |
Anthocyanidin_131 | Cyanidin-3-O-(6″-O-acetyl)glucoside-5-O-glucoside | 0.001 | Inf | up | |
Anthocyanidin_223 | Delphinidin-3-O-(2‴-O-p-coumaroyl)rutinoside | 0.002 | Inf | up | |
Anthocyanidin_215 | Delphinidin-3-O-(6″-O-galloy)glucoside | 0.002 | Inf | up | |
Anthocyanidin_403 | Pelargonidin-3-O-(xylosyl)glucoside | 0.004 | Inf | up | |
ZY vs. FM | Anthocyanidin_26 | Delphinidin-3-O-galactoside | 0.005 | Inf | up |
Anthocyanidin_277 | Pelargonidin-3-O-(6″-O-xylosyl)galactoside | 0.006 | Inf | up | |
Anthocyanidin_67 | Pelargonidin-3-O-galactoside | 0.006 | Inf | up | |
Anthocyanidin_231 | Delphinidin-3,5,7-triglucoside | 0.007 | Inf | up | |
Anthocyanidin_50 | Malvidin-3-O-galactoside | 0.008 | Inf | up | |
Anthocyanidin_131 | Cyanidin-3-O-(6″-O-acetyl)glucoside-5-O-glucoside | 0.001 | Inf | up | |
Anthocyanidin_223 | Delphinidin-3-O-(2‴-O-p-coumaroyl)rutinoside | 0.001 | Inf | up | |
Anthocyanidin_212 | Delphinidin-3-O-(6″-O-xylosyl)glucoside | 0.002 | Inf | up | |
Anthocyanidin_215 | Delphinidin-3-O-(6″-O-galloy)glucoside | 0.002 | Inf | up | |
ZY vs. QZ | Anthocyanidin_403 | Pelargonidin-3-O-(xylosyl)glucoside | 0.004 | Inf | up |
Anthocyanidin_26 | Delphinidin-3-O-galactoside | 0.005 | Inf | up | |
Anthocyanidin_277 | Pelargonidin-3-O-(6″-O-xylosyl)galactoside | 0.006 | Inf | up | |
Anthocyanidin_10 | Cyanidin-3-O-galactoside | 0.006 | Inf | up | |
Anthocyanidin_67 | Pelargonidin-3-O-galactoside | 0.006 | Inf | up | |
Anthocyanidin_231 | Delphinidin-3,5,7-triglucoside | 0.007 | Inf | up |
Sample | Raw Reads | Clean Reads | Clean Base (G) | Error Rate (%) | Q20 (%) | Q30 (%) | GC Content (%) |
---|---|---|---|---|---|---|---|
FM-1 | 68,276,454 | 64,555,088 | 9.68 | 0.01 | 98.97 | 96.72 | 42.85 |
FM-2 | 57,937,582 | 55,187,626 | 8.28 | 0.01 | 99.02 | 96.91 | 42.86 |
FM-3 | 55,651,956 | 52,669,990 | 7.9 | 0.01 | 99.03 | 96.94 | 42.92 |
ZY-1 | 63,461,278 | 58,630,268 | 8.79 | 0.01 | 98.99 | 96.79 | 42.75 |
ZY-2 | 61,287,894 | 58,063,148 | 8.71 | 0.01 | 99.03 | 96.96 | 42.73 |
ZY-3 | 59,649,068 | 56,253,684 | 8.44 | 0.01 | 99.01 | 96.83 | 42.76 |
QZ-1 | 57,436,570 | 53,905,096 | 8.09 | 0.01 | 99.02 | 96.92 | 42.75 |
QZ-2 | 62,130,038 | 58,493,888 | 8.77 | 0.01 | 98.99 | 96.78 | 42.68 |
QZ-3 | 55,796,790 | 53,095,348 | 7.96 | 0.01 | 98.96 | 96.67 | 42.63 |
Gene ID | Gene Annotation | Variant Location | SNP | Amino Acid Change | ||
---|---|---|---|---|---|---|
FM | QZ | ZY | ||||
KIW84_061556 | Cytochrome P450 94A2-like protein | - | - | |||
KIW84_061609 | PDDEXK-like family of unknown function | - | - | |||
KIW84_061692 | CIPK1-like kinase | 5th exon | A | G | A | nonsynonymous |
KIW84_061701 | Storage globulins with unclear roles in pigmentation | Exon | T | T | A | synonymous |
KIW84_061702 | Storage globulins with unclear roles in pigmentation | Exon | A | G | A | synonymous |
Exon | G | A | G | nonsynonymous | ||
Exon | G | A | G | synonymous | ||
KIW84_061697 | Transcription factor TT8-like protein with bHLH domain | Exon | C | T | T | synonymous |
Exon | G | A | G | synonymous | ||
Exon | A | G | G | synonymous | ||
Exon | C | G | C | nonsynonymous | ||
Exon | T | C | T | synonymous | ||
KIW84_061698 | BHLH transcription factor | Exon | G | G | A | nonsynonymous |
Exon | G | G | A | synonymous | ||
Exon | A | A | G | synonymous | ||
Exon | T | T | C | nonsynonymous | ||
Exon | G | G | A | synonymous | ||
Exon | A | A | T | synonymous | ||
Exon | T | T | C | synonymous | ||
Exon | G | G | A | synonymous |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, W.; Wu, Z.; Tian, D.; Zhou, B. Integrated Metabolome and Transcriptome Analysis Reveals the Mechanism of Anthocyanin Biosynthesis in Pisum sativum L. with Different Pod Colors. Agronomy 2025, 15, 1609. https://doi.org/10.3390/agronomy15071609
Ye W, Wu Z, Tian D, Zhou B. Integrated Metabolome and Transcriptome Analysis Reveals the Mechanism of Anthocyanin Biosynthesis in Pisum sativum L. with Different Pod Colors. Agronomy. 2025; 15(7):1609. https://doi.org/10.3390/agronomy15071609
Chicago/Turabian StyleYe, Weijun, Zejiang Wu, Dongfeng Tian, and Bin Zhou. 2025. "Integrated Metabolome and Transcriptome Analysis Reveals the Mechanism of Anthocyanin Biosynthesis in Pisum sativum L. with Different Pod Colors" Agronomy 15, no. 7: 1609. https://doi.org/10.3390/agronomy15071609
APA StyleYe, W., Wu, Z., Tian, D., & Zhou, B. (2025). Integrated Metabolome and Transcriptome Analysis Reveals the Mechanism of Anthocyanin Biosynthesis in Pisum sativum L. with Different Pod Colors. Agronomy, 15(7), 1609. https://doi.org/10.3390/agronomy15071609