Evaluation of the Effect of Different Soil Surface Treatments in the Vineyard Inter-Row on the CO2 Emissions
Abstract
1. Introduction
1.1. Physical Soil Properties
1.2. Chemical Soil Properties
1.3. Biological Soil Properties
2. Materials and Methods
2.1. The Hypothesis
2.2. Description of the Experimental Site
2.3. Characteristics of the Experimental Vineyard
- Var.1 (C70): Shallow cultivation to a depth of 70 mm;
- Var.2 (C150): Deep cultivation to a depth of 150 mm;
- Var.3 (C+C150): Compost application (50 t·ha−1) incorporated to a depth of 150 mm;
- Var.4 (M): Mulching of plant cover, with mulch retained on the soil surface;
- Var.5 (Co): Control treatment with no soil cultivation, fertilization, or plant cover modification; managed with herbicide application.
- Dry matter content: ~40%;
- Organic matter: ~65% (of dry matter);
- Total nitrogen: 1.2% (of dry matter);
- C/N ratio: approximately 15:1;
- pH (H2O): 7.3.
2.4. Soil Property Assessment
2.5. Physical Properties
2.6. Chemical Properties
2.7. Measurement of CO2 Emissions from Soil
- i is the first week of the growing season when the first CO2 rate was measured;
- n is the last week of the growing season when the last CO2 rate was measured;
- x is CO2 rate (g·m−2·h−1);
- N is the number of days between two consecutive CO2 rate measurements.
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rounsevell, M.D.A.; Reay, D.S. Land use and climate change in the UK. Land Use Policy 2009, 26, S160–S169. [Google Scholar] [CrossRef]
- Bolan, S.; Padhye, L.P.; Jasemizad, T.; Govarthanan, M.; Karmegam, N.; Wijesekara, H.; Amarasiri, D.; Hou, D.; Zhou, P.; Biswal, B.K.; et al. Impacts of climate change on the fate of contaminants through extreme weather events. Sci. Total Environ. 2024, 909, 168388. [Google Scholar] [CrossRef] [PubMed]
- Behnke, G.D.; Zuber, S.M.; Pittelkow, C.M.; Nafziger, E.D.; Villamil, M.B. Long-term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, USA. Agric. Ecosyst. Environ. 2018, 261, 62–70. [Google Scholar] [CrossRef]
- Feng, Q.; An, C.; Chen, Z.; Wang, Z. Can deep tillage enhance carbon sequestration in soils? A meta-analysis towards GHG mitigation and sustainable agricultural management. Renew. Sustain. Energy Rev. 2020, 133, 110293. [Google Scholar] [CrossRef]
- Ogle, S.M.; Alsaker, C.; Baldock, J.; Bernoux, M.; Breidt, F.J.; McConkey, B.; Regina, K.; Vazquez-Amabile, G.G. Climate and Soil Characteristics Determine Where No-Till Management Can Store Carbon in Soils and Mitigate Greenhouse Gas Emissions. Sci. Rep. 2019, 9, 11665. [Google Scholar] [CrossRef]
- Shakoor, A.; Pendall, E.; Arif, M.S.; Farooq, T.H.; Iqbal, S.; Shahzad, S.M. Does no-till crop management mitigate gaseous emissions and reduce yield disparities: An empirical US-China evaluation. Sci. Total Environ. 2024, 917, 170310. [Google Scholar] [CrossRef]
- Balogh, J.; Papp, M.; Pintér, K.; Fóti, S.; Posta, K.; Eugster, W.; Nagy, Z. Autotrophic component of soil respiration is repressed by drought more than the heterotrophic one in dry grasslands. Biogeosciences 2016, 13, 5171–5182. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B-Biol. Sci. 2013, 368, 13. [Google Scholar] [CrossRef]
- Eurostat. Vineyards in the EU—Statistics, Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Vineyards_in_the_EU_-_statistics#million_hectares_of_vineyards_in_the_EU (accessed on 10 May 2024).
- Visconti, F.; López, R.; Olego, M.Á. The Health of Vineyard Soils: Towards a Sustainable Viticulture. Horticulturae 2024, 10, 154. [Google Scholar] [CrossRef]
- Ghiglieno, I.; Simonetto, A.; Facciano, L.; Tonni, M.; Donna, P.; Valenti, L.; Gilioli, G. Comparing the Carbon Footprint of Conventional and Organic Vineyards in Northern Italy. Sustainability 2023, 15, 5252. [Google Scholar] [CrossRef]
- Dencso, M.; Horel, A.; Bogunovic, I.; Tóth, E. Effects of Environmental Drivers and Agricultural Management on Soil CO2 and N2O Emissions. Agronomy 2021, 11, 54. [Google Scholar] [CrossRef]
- Gelybó, G.; Barcza, Z.; Dencső, M.; Potyó, I.; Kása, I.; Horel, Á.; Pokovai, K.; Birkás, M.; Kern, A.; Hollós, R.; et al. Effect of tillage and crop type on soil respiration in a long-term field experiment on chernozem soil under temperate climate. Soil Tillage Res. 2022, 216, 105239. [Google Scholar] [CrossRef]
- Lazcano, C.; Gonzalez-Maldonado, N.; Yao, E.H.; Wong, C.T.F.; Falcone, M.; Dodson Peterson, J.; Casassa, L.F.; Malama, B.; Decock, C. Assessing the Short-Term Effects of No-Till on Crop Yield, Greenhouse Gas Emissions, and Soil C and N Pools in a Cover-Cropped, Biodynamic Mediterranean Vineyard. Aust. J. Grape Wine Res. 2022, 8100818. [Google Scholar] [CrossRef]
- Ferreira, C.S.; Veiga, A.; Caetano, A.; Gonzalez-Pelayo, O.; Karine-Boulet, A.; Abrantes, N.; Keizer, J.; Ferreira, A.J. Assessment of the Impact of Distinct Vineyard Management Practices on Soil Physico-Chemical Properties. Air Soil Water Res. 2020, 13, 1178622120944847. [Google Scholar] [CrossRef]
- Celette, F.; Gary, C. Dynamics of water and nitrogen stress along the grapevine cycle as affected by cover cropping. Eur. J. Agron. 2013, 45, 142–152. [Google Scholar] [CrossRef]
- García-Díaz, A.; Marqués, M.J.; Sastre, B.; Bienes, R. Labile and stable soil organic carbon and physical improvements using groundcovers in vineyards from central Spain. Sci. Total Environ. 2018, 621, 387–397. [Google Scholar] [CrossRef]
- Steenwerth, K.; Guerra, B. Influence of floor management technique on grapevine growth, disease pressure, and juice and wine composition: A review. Am. J. Enol. Vitic. 2012, 63, 149–164. [Google Scholar] [CrossRef]
- Buesa, I.; Mirás-Avalos, J.M.; De Paz, J.M.; Visconti, F.; Sanz, F.; Yeves, A.; Guerra, D.; Intrigliolo, D.S. Soil management in semi-arid vineyards: Combined effects of organic mulching and no-tillage under different water regimes. Eur. J. Agron. 2021, 123, 126198. [Google Scholar] [CrossRef]
- Monteiro, A.; Lopes, C.M. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal. Agric. Ecosyst. Environ. 2007, 121, 336–342. [Google Scholar] [CrossRef]
- Ball, B.C. Soil structure and greenhouse gas emissions: A synthesis of 20 years of experimentation. Eur. J. Soil Sci. 2013, 64, 357–373. [Google Scholar] [CrossRef]
- Roy, A.; McCabe, B.Y.; Saxe, S.; Posen, I.D. Review of factors affecting earthworks greenhouse gas emissions and fuel use. Renew. Sustain. Energy Rev. 2024, 194, 114290. [Google Scholar] [CrossRef]
- Mäkipää, R.; Abramoff, R.; Adamczyk, B.; Baldy, V.; Biryol, C.; Bosela, M.; Casals, P.; Curiel Yuste, J.; Dondini, M.; Filipek, S.; et al. How does management affect soil C sequestration and greenhouse gas fluxes in boreal and temperate forests?—A review. For. Ecol. Manag. 2023, 529, 120637. [Google Scholar] [CrossRef]
- Conrad, R. Methane Production in Soil Environments-Anaerobic Biogeochemistry and Microbial Life between Flooding and Desiccation. Microorganisms 2020, 8, 881. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Liu, W.; Yang, Y.; Liu, Y.; Li, M.; Liu, T.; Wu, Z.; Wang, Q. Low-Permeability Layered Clay Soil Hinders Organic Macromolecular Pollutant Migration in the Transition Zone of the Jianghan Plain–Dabie Mountain Area. Water 2024, 16, 1522. [Google Scholar] [CrossRef]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef]
- Harrison-Kirk, T.; Thomas, S.M.; Clough, T.J.; Beare, M.H.; van der Weerden, T.J.; Meenken, E.D. Compaction influences N2O and N2 emissions from 15N-labeled synthetic urine in wet soils during successive saturation/drainage cycles. Soil Biol. Biochem. 2015, 88, 178–188. [Google Scholar] [CrossRef]
- Pulido-Moncada, M.; Petersen, S.O.; Munkholm, L.J. Soil compaction raises nitrous oxide emissions in managed agroecosystems. A review. Agron. Sustain. Dev. 2022, 42, 38. [Google Scholar] [CrossRef]
- Litskas, V.; Mandoulaki, A.; Vogiatzakis, I.N.; Tzortzakis, N.; Stavrinides, M. Sustainable Viticulture: First Determination of the Environmental Footprint of Grapes. Sustainability 2020, 12, 8812. [Google Scholar] [CrossRef]
- Hao, Y.; Mao, J.; Bachmann, C.M.; Hoffman, F.M.; Koren, G.; Chen, H.; Tian, H.; Liu, J.; Tao, J.; Tang, J.; et al. Soil moisture controls over carbon sequestration and greenhouse gas emissions: A review. npj Clim. Atmos. Sci. 2025, 8, 16. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Capello, G.; Biddoccu, M.; Ferraris, S.; Cavallo, E. Effects of Tractor Passes on Hydrological and Soil Erosion Processes in Tilled and Grassed Vineyards. Water 2019, 11, 2118. [Google Scholar] [CrossRef]
- Bessou, C.; Mary, B.; Léonard, J.; Roussel, M.; Gréhan, E.; Gabrielle, B. Modelling soil compaction impacts on nitrous oxide emissions in arable fields. Eur. J. Soil Sci. 2010, 61, 348–363. [Google Scholar] [CrossRef]
- Hénault, C.; Grossel, A.; Mary, B.; Roussel, M.; Léonard, J. Nitrous Oxide Emission by Agricultural Soils: A Review of Spatial and Temporal Variability for Mitigation. Pedosphere 2012, 22, 426–433. [Google Scholar] [CrossRef]
- Della Chiesa, T.; Piñeiro, G.; Yahdjian, L. Gross, Background, and Net Anthropogenic Soil Nitrous Oxide Emissions from Soybean, Corn, and Wheat Croplands. J. Environ. Qual. 2019, 48, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, S.; Bardoux, G.; Abbadie, L.; Mariotti, A. Carbon input to soil may decrease soil carbon content. Ecol. Lett. 2004, 7, 314–320. [Google Scholar] [CrossRef]
- Karhu, K.; Alaei, S.; Li, J.; Merilä, P.; Ostonen, I.; Bengtson, P. Microbial carbon use efficiency and priming of soil organic matter mineralization by glucose additions in boreal forest soils with different C:N ratios. Soil Biol. Biochem. 2022, 167, 108615. [Google Scholar] [CrossRef]
- Han, X.; Doménech-Pascual, A.; Pere Casas-Ruiz, J.; Donhauser, J.; Jordaan, K.; Ramond, J.-B.; Priemé, A.; Romaní, A.M.; Frossard, A. Soil organic matter properties drive microbial enzyme activities and greenhouse gas fluxes along an elevational gradient. Geoderma 2024, 449, 116993. [Google Scholar] [CrossRef]
- Steenwerth, K.L.; Pierce, D.L.; Carlisle, E.A.; Spencer, R.G.M.; Smart, D.R. A Vineyard Agroecosystem: Disturbance and Precipitation Affect Soil Respiration under Mediterranean Conditions. Soil Sci. Soc. Am. J. 2010, 74, 231–239. [Google Scholar] [CrossRef]
- Garcia, L.; Krafft, G.; Enard, C.; Bouisson, Y.; Metay, A. Adapting service crop termination strategy in viticulture to increase soil ecosystem functions and limit competition with grapevine. Eur. J. Agron. 2024, 156, 127161. [Google Scholar] [CrossRef]
- Liebhard, G.; Winter, S.; Zaller, J.G.; Bauer, T.; Fantappiè, M.; Strauss, P. Effects of vineyard inter-row management on soil physical properties and organic carbon in Central European vineyards. Soil Use Manage. 2024, 40, e13101. [Google Scholar] [CrossRef]
- Lipiec, J.; Kuś, J.; Słowińska-Jurkiewicz, A.; Nosalewicz, A. Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage Res. 2006, 89, 210–220. [Google Scholar] [CrossRef]
- Abad, F.J.; Marín, D.; Imbert, B.; Virto, I.; Garbisu, C.; Santesteban, L.G. Under-vine cover crops: Impact on physical and biological soil proprieties in an irrigated Mediterranean vineyard. Sci. Hortic. 2023, 311, 111797. [Google Scholar] [CrossRef]
- Abad, J.; Marín, D.; Santesteban, L.G.; Cibriain, J.F.; Sagüés, A. Under-vine cover crops: Impact on weed development, yield and grape composition. OENO One 2020, 54, 881–889. [Google Scholar] [CrossRef]
- Kopecký, J. Soil Science. Agrophysical Part, 1st ed.; Ministry of Agriculture: Prague, Czech Republic, 1928. (In Czech) [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis; Wiley: Hoboken, NJ, USA, 1982; pp. 539–579. [Google Scholar]
- Dong, Y.S.; Zhang, S.; Qi, Y.C.; Chen, Z.Z.; Geng, Y.B. Fluxes of CO2, N2O and CH4 from a typical temperate grassland in Inner Mongolia and its daily variation. Chin. Sci. Bull. 2000, 45, 1590–1594. [Google Scholar] [CrossRef]
- Wilson, H.M.; Al-Kaisi, M.M. Crop rotation and nitrogen fertilization effect on Soil CO2 emissions in central lowa. Appl. Soil Ecol. 2008, 39, 264–270. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Kulawardhana, R.W. Remote sensing of vegetation: Principles, techniques and applications. By Hamlyn G. Jones and Robin A Vaughan. J. Veg. Sci. 2011, 22, 1151–1153. [Google Scholar] [CrossRef]
- Nair, P.K.R. The Nature and Properties of Soils, 13th ed.; Brady, N.C., Weil, R.R., Eds.; Prentice Hall: Upper Saddle River, NJ, USA, 2002; Volume 54, p. 249. [Google Scholar] [CrossRef]
- Hůla, J.; Procházková, B.; Badalíková, B.; Dryšlová, T.; Horáček, J.; Javůrek, M.; Kovaříček, P.; Kroulík, M.; Kumhála, F.; Smutný, V.; et al. The Impact of Non-Traditional Soil Cultivation Technologies on the Soil Environment: Certified Methodology Applied; The Research Institute of Agricultural Engineering: Prague, Czech Republic, 2010. (In Czech) [Google Scholar]
- Rogovska, N.; Laird, D.; Cruse, R.; Fleming, P.; Parkin, T.; Meek, D. Impact of Biochar on Manure Carbon Stabilization and Greenhouse Gas Emissions. Soil Sci. Soc. Am. J. 2011, 75, 871–879. [Google Scholar] [CrossRef]
- Sosulski, T.; Korc, M. Effects of different mineral and organic fertilization on the content of nitrogen and carbon in soil organic matter fractions. Ecol. Chem. Eng. A 2011, 18, 601–609. [Google Scholar]
- Smith, K.; Watts, D.; Way, T.; Torbert, H.; Prior, S. Impact of Tillage and Fertilizer Application Method on Gas Emissions in a Corn Cropping System. Pedosphere 2012, 22, 604–615. [Google Scholar] [CrossRef]
- Sosulski, T.; Niedzinski, T.; Jadczyszyn, T.; Szymanska, M. Influence of Reduced Tillage, Fertilizer Placement, and Soil Afforestation on CO2 Emission from Arable Sandy Soils. Agronomy 2022, 12, 3102. [Google Scholar] [CrossRef]
- Zumkeller, M.; Yu, R.Z.; Torres, N.; Marigliano, L.E.; Zaccaria, D.; Kurtural, S.K. Site characteristics determine the effectiveness of tillage and cover crops on the net ecosystem carbon balance in California vineyard agroecosystems. Front. Plant Sci. 2022, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, B.; Szulc, W.; Sosulski, T.; Skowronska, M.; Szczepaniak, J. Impact of reduced tillage on CO2 emission from soil under maize cultivation. Soil Tillage Res. 2018, 180, 21–28. [Google Scholar] [CrossRef]
Measurement Period | Phenological Stage (BBCH Scale) |
---|---|
t1—Early May | 2023: 13 (3 leaves unfolded), 2024: 17 (7 leaves unfolded) |
t2—Early June | 2023: 17 (7 leaves unfolded), 2024: 69 (end of flowering) |
t3—Early July | 2023: 71 (berry development begins), 2024: 79 (end of grape closure) |
t4—Early August | 2023 & 2024: 81 (beginning of ripening, colour change) |
t5—Early September | 2023: 85 (ripening), 2024: 89 (harvest maturity) |
Parameter | Variant | ||||
---|---|---|---|---|---|
C70 | C150 | C+C150 | M | Co | |
Year 2023 | |||||
Bulk Density (g·cm−3) | 1.63 | 1.56 | 1.60 | 1.66 | 1.68 |
Total Porosity (%) | 39.52 | 41.93 | 40.77 | 38.35 | 37.73 |
Instantaneous Content of water (vol%) | 27.84 | 27.60 | 28.27 | 27.79 | 26.29 |
Instantaneous Content of air (vol%) | 11.68 | 14.33 | 12.55 | 10.56 | 11.44 |
Year 2024 | |||||
Bulk Density (g·cm−3) | 1.45 | 1.42 | 1.38 | 1.46 | 1.48 |
Total Porosity (%) | 46.04 | 47.15 | 48.84 | 45.86 | 45.11 |
Instantaneous Content of water (vol%) | 21.66 | 17.46 | 18.39 | 15.68 | 19.16 |
Instantaneous Content of air (vol%) | 24.38 | 29.69 | 30.45 | 30.18 | 25.95 |
Parameter | Variant | ||||
---|---|---|---|---|---|
C70 | C150 | C+C150 | M | Co | |
Year 2023 | |||||
Nc total (%) | 0.11 | 0.14 | 0.15 | 0.15 | 0.13 |
P-p (mg·kg−1) | 124 | 125 | 127 | 231 | 144 |
K-p (mg·kg−1) | 251 | 632 | 359 | 687 | 257 |
Mg-p (mg·kg−1) | 632 | 326 | 307 | 314 | 342 |
Ca-p (mg·kg−1) | 2769 | 2365 | 2550 | 2238 | 2582 |
pHKCl | 6.8 | 6.9 | 7.3 | 6.8 | 6.7 |
Cox (%) | 1.22 | 1.11 | 1.02 | 1.07 | 1.02 |
Year 2024 | |||||
Nc total (%) | 0.17 | 0.18 | 0.16 | 0.14 | 0.14 |
P-p (mg·kg−1) | 166 | 188 | 213 | 242 | 210 |
K-p (mg·kg−1) | 532 | 365 | 750 | 600 | 697 |
Mg-p (mg·kg−1) | 333 | 319 | 333 | 320 | 287 |
Ca-p (mg·kg−1) | 3051 | 3107 | 3166 | 3016 | 2947 |
pHKCl | 7.3 | 7.3 | 7.2 | 7.1 | 7.0 |
Cox (%) | 0.86 | 0.85 | 0.93 | 1.02 | 0.55 |
Average Emission Value CO2 (g·m−2·h−1) | Variant | ||||
---|---|---|---|---|---|
C70 | C150 | C+C150 | M | Co | |
Year 2023 | |||||
t1 | 0.127 ± 0.01 acd | 0.162 ± 0.02 abd | 0.180 ± 0.01 ab | 0.137 ± 0.01 abcd | 0.095 ± 0.01 c |
t2 | 0.145 ± 0.02 abc | 0.175 ± 0.02 abc | 0.199 ± 0.02 ab | 0.128 ± 0.02 ac | 0.106 ± 0.01 c |
t3 | 0.126 ± 0.01 bc | 0.143 ± 0.01 abc | 0.165 ± 0.02 acd | 0.151 ± 0.02 abc | 0.093 ± 0.00 b |
t4 | 0.150 ± 0.01 ab | 0.148 ± 0.01 ab | 0.168 ± 0.01 b | 0.156 ± 0.02 ab | 0.090 ± 0.01 a |
t5 | 0.133 ± 0.01 a | 0.141 ± 0.01 a | 0.146 ± 0.01 ab | 0.126 ± 0.01 a | 0.102 ± 0.02 a |
Year 2024 | |||||
t1 | 0.159 ± 0.02 abcd | 0.186 ± 0.01 ab | 0.196 ± 0.01 b | 0.140 ± 0.01 abcd | 0.108 ± 0.02 cd |
t2 | 0.186 ± 0.01 ab | 0.206 ± 0.00 b | 0.189 ± 0.01 ab | 0.173 ± 0.02 abc | 0.160 ± 0.00 abc |
t3 | 0.200 ± 0.01 ad | 0.221 ± 0.01 d | 0.213 ± 0.01 d | 0.202 ± 0.01 ad | 0.143 ± 0.02 abc |
t4 | 0.120 ± 0.01 ab | 0.147 ± 0.01 ab | 0.153 ± 0.02 ab | 0.146 ± 0.01 ab | 0.106 ± 0.01 ab |
t5 | 0.160 ± 0.02 ab | 0.170 ± 0.01 ab | 0.222 ± 0.01 b | 0.172 ± 0.02 ab | 0.136 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burg, P.; Mašán, V.; Zabloudilová, P.; Češpiva, M.; Burgová, J.; Jeřábková, J.; Lipinski, A.; Markowski, P. Evaluation of the Effect of Different Soil Surface Treatments in the Vineyard Inter-Row on the CO2 Emissions. Agronomy 2025, 15, 1611. https://doi.org/10.3390/agronomy15071611
Burg P, Mašán V, Zabloudilová P, Češpiva M, Burgová J, Jeřábková J, Lipinski A, Markowski P. Evaluation of the Effect of Different Soil Surface Treatments in the Vineyard Inter-Row on the CO2 Emissions. Agronomy. 2025; 15(7):1611. https://doi.org/10.3390/agronomy15071611
Chicago/Turabian StyleBurg, Patrik, Vladimír Mašán, Petra Zabloudilová, Miroslav Češpiva, Jana Burgová, Jindřiška Jeřábková, Adam Lipinski, and Piotr Markowski. 2025. "Evaluation of the Effect of Different Soil Surface Treatments in the Vineyard Inter-Row on the CO2 Emissions" Agronomy 15, no. 7: 1611. https://doi.org/10.3390/agronomy15071611
APA StyleBurg, P., Mašán, V., Zabloudilová, P., Češpiva, M., Burgová, J., Jeřábková, J., Lipinski, A., & Markowski, P. (2025). Evaluation of the Effect of Different Soil Surface Treatments in the Vineyard Inter-Row on the CO2 Emissions. Agronomy, 15(7), 1611. https://doi.org/10.3390/agronomy15071611