Antifungal Efficacy of Ethanolic Extracts from Four Medicinal Plants Against Major Postharvest Fungal Pathogens of Apple Fruit
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction Mode
2.3. Fungal Pathogens Preparation
2.4. In Vitro Effect of the Studied Ethanolic Extracts on Mycelial Growth
2.5. Determination of Median Inhibitory Concentration of Mycelial Growth
2.6. In Vivo Antifungal Effect of the Studied Ethanolic Extracts
2.6.1. In Vivo Effect of the Studied Ethanolic Extracts on Apples Diseases’ Severity
2.6.2. Effect on Apple Quality Parameters
Weight Loss
Firmness
Total Soluble Solids
Maturity Index
2.7. Semi-Commercial Test Using C. australis Ethanolic Extract
2.8. Total Polyphenols Content
2.9. Phytochemical Profile Analysis of Extracts via HPLC-DAD
2.10. Molecular Docking Protocol
2.11. Data Presentation and Statistical Analysis
3. Results
3.1. In Vitro Effect of the Tested Plants Extracts on Mycelial Growth Inhibition
3.2. Determination of Median Concentration of Mycelial Growth Inhibition
3.3. In Vivo Effect of the Tested Plants Extracts
3.3.1. Effect of the Extracts on the Severity of Apple Rot
3.3.2. Effect of Plant Extracts Treatment on the Quality of Apples
3.3.3. Effectiveness of the Studied Plant Species Extracts Under Semi-Commercial Conditions
3.4. Phytochemical Analysis
3.4.1. Extracts’ Total Polyphenols Content
3.4.2. Phenolic Compounds in the Studied Extracts
3.5. Molecular Docking Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TPC | Total polyphenols content |
DC | Diameter of mycelium in control |
MGI | Mycelial growth inhibition |
HPLC | High-Performance Liquid Chromatography |
IC50 | Median inhibitory concentration |
References
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- He, L.; Liu, Y.; Mustapha, A.; Lin, M. Antifungal Activity of Zinc Oxide Nanoparticles Against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 2011, 166, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Boddy, L. Pathogens of Autotrophs. In Fungi, 3rd ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 245–292. [Google Scholar] [CrossRef]
- Luciano-Rosario, D.; Keller, N.P.; Jurick, W.M. Penicillium Expansum: Biology, Omics, and Management Tools for a Global Postharvest Pathogen Causing Blue Mould of Pome Fruit. Mol. Plant Pathol. 2020, 21, 1391–1404. [Google Scholar] [CrossRef] [PubMed]
- Tannous, J.; Keller, N.P.; Atoui, A.; El Khoury, A.; Lteif, R.; Oswald, I.P.; Puel, O. Secondary Metabolism in Penicillium expansum: Emphasis on Recent Advances in Patulin Research. Crit. Rev. Food Sci. Nutr. 2018, 58, 2082–2098. [Google Scholar] [CrossRef]
- Ülger, T.G.; Uçar, A.; Çakıroğlu, F.P.; Yilmaz, S. Genotoxic Effects of Mycotoxins. Toxicon 2020, 185, 104–113. [Google Scholar] [CrossRef]
- Cheung, N.; Tian, L.; Liu, X.; Li, X. The Destructive Fungal Pathogen Botrytis cinerea—Insights from Genes Studied with Mutant Analysis. Pathogens 2020, 9, 923. [Google Scholar] [CrossRef]
- Dalmais, B.; Schumacher, J.; Moraga, J.; Le Pêcheur, P.; Tudzynski, B.; Collado, I.G.; Viaud, M. The Botrytis cinerea Phytotoxin Botcinic Acid Requires Two Polyketide Synthases for Production and Has a Redundant Role in Virulence with Botrydial. Mol. Plant Pathol. 2011, 12, 564–579. [Google Scholar] [CrossRef] [PubMed]
- Capote, N.; Mara, A.; Aguado, A.; Snchez-Torres, P. Molecular Tools for Detection of Plant Pathogenic Fungi and Fungicide Resistance. Plant Pathol. 2012, 7, 151–202. [Google Scholar] [CrossRef]
- Wahab, S.; Muzammil, K.; Nasir, N.; Khan, M.S.; Ahmad, M.F.; Khalid, M.; Ahmad, W.; Dawria, A.; Reddy, L.K.V.; Busayli, A.M. Advancement and New Trends in Analysis of Pesticide Residues in Food: A Comprehensive Review. Plants 2022, 11, 1106. [Google Scholar] [CrossRef]
- Castelo Branco Melo, N.F.; de MendonçaSoares, B.L.; Marques Diniz, K.; Ferreira Leal, C.; Canto, D.; Flores, M.A.P.; Henrique da Costa Tavares-Filho, J.; Galembeck, A.; Montenegro Stamford, T.L.; Montenegro Stamford-Arnaud, T.; et al. Effects of Fungal Chitosan Nanoparticles as Eco-Friendly Edible Coatings on the Quality of Postharvest Table Grapes. Postharvest Biol. Technol. 2018, 139, 56–66. [Google Scholar] [CrossRef]
- Millan, A.F.S.; Gamir, J.; Farran, I.; Larraya, L.; Veramendi, J. Identification of New Antifungal Metabolites Produced by the Yeast Metschnikowia pulcherrima Involved in the Biocontrol of Postharvest Plant Pathogenic Fungi. Postharvest Biol. Technol. 2022, 192, 111995. [Google Scholar] [CrossRef]
- Zhang, X.; Yue, Q.; Xin, Y.; Ngea, G.L.N.; Dhanasekaran, S.; Luo, R.; Li, J.; Zhao, L.; Zhang, H. The Biocontrol Potentiality of Bacillus amyloliquefaciens Against Postharvest Soft Rot of Tomatoes and Insights into the Underlying Mechanisms. Postharvest Biol. Technol. 2024, 214, 112983. [Google Scholar] [CrossRef]
- Ahmadu, T.; Ahmad, K.; Ismail, S.I.; Rashed, O.; Asib, N.; Omar, D. Antifungal Efficacy of Moringa Oleifera Leaf and Seed Extracts Against Botrytis cinerea Causing Gray Mold Disease of Tomato (Solanum lycopersicum L.). Braz. J. Biol. 2020, 81, 1007–1022. [Google Scholar] [CrossRef] [PubMed]
- Boiteux, J.; Espino, M.; de Los Ángeles Fernández, M.; Pizzuolo, P.; Silva, M.F. Eco-Friendly Postharvest Protection: Larrea cuneifolia-Nades Extract Against Botrytis cinerea. Rev. Fac. Ciencias Agrar. 2019, 51, 427–437. [Google Scholar]
- Daniel, C.K.; Lennox, C.L.; Vries, F.A. In-Vitro Effects of Garlic Extracts on Pathogenic Fungi Botrytis Cinerea, Penicillium Expansum and Neofabraea Alba. S. Afr. J. Sci. 2015, 111, 8. [Google Scholar] [CrossRef] [PubMed]
- Parveen, S.; Wani, A.H.; Ganie, A.A.; Pala, S.A.; Mir, R.A. Antifungal Activity of Some Plant Extracts on Some Pathogenic Fungi. Arch. Phytopathol. Plant Prot. 2014, 47, 279–284. [Google Scholar] [CrossRef]
- Fanelli, V.; Mascio, I.; Falek, W.; Miazzi, M.M.; Montemurro, C. Current status of biodiversity assessment and conservation of wild olive (Olea europaea L. subsp. europaea var. sylvestris). Plants 2022, 11, 480. [Google Scholar] [CrossRef]
- Khan, M.P.; Ahmad, M.; Zafar, M.; Sultana, S.; Ali, M.I.; Sun, H. Ethnomedicinal uses of edible wild fruits (EWFs) in Swat Valley, Northern Pakistan. J. Ethnopharmacol. 2015, 173, 191–203. [Google Scholar] [CrossRef]
- Pretty, J. Intensification for Redesigned and Sustainable Agricultural Systems. Science 2018, 362, eaav0294. [Google Scholar] [CrossRef]
- Fennane, M.; Ibn Tattou, M.; Mathez, J.; Ouyahya, A.; El Oualidi, J. Flore Pratique Du Maroc: Manuel de Détermination Des Plantes Vasculaires; Institut scientifique, Université Mohammed V—Agdal, Ed.; Institut Scientifique: Rabat, Morocco, 1999; Volume 3, ISBN 9954-0-1456-X. [Google Scholar]
- Fennane, M.; IbnTattou, M.; Mathez, J.; El Oualidi, J. Flore Pratique Du Maroc: Manuel De Détermination Des Plantes Vasculaires Volume 3, Dicotyledones (p.p.), Monocotyledones; Institut Scientifique: Rabat, Morocco, 2014; p. 793. [Google Scholar]
- El Moussaoui, A.; Jawhari, F.Z.; Almehdi, A.M.; Elmsellem, H.; Fikri Benbrahim, K.; Bousta, D.; Bari, A. Antibacterial, Antifungal and Antioxidant Activity of Total Polyphenols of Withania Frutescens. L. Bioorganic Chem. 2019, 93, 103337. [Google Scholar] [CrossRef]
- Liu, Q.; Li, L.; Yang, Z.; Xiong, X.; Song, Q.; Li, B.; Zou, H.; Zhang, L.; Liu, T. Antifungal Effect of Oregano Essential Oil Against Penicillium expansum on Pyrus sinkiangensis. J. Fungi 2024, 10, 752. [Google Scholar] [CrossRef]
- Cherrate, M.; Echchgadda, G.; Amiri, S.; Ezrari, S.; Radouane, N.; Oulad El Majdoub, Y.; El Hamss, H.; Maissour, A.; Makroum, K.; Cacciola, F.; et al. Biological Control of Major Postharvest Fungal Diseases of Apple Using Two Lamiaceae Extracts. Arch. Phytopathol. Plant Prot. 2022, 55, 2356–2381. [Google Scholar] [CrossRef]
- Ambaw, A.; Dekeyser, D.; Vanwalleghem, T.; Van Hemelrijck, W.; Nuyttens, D.; Delele, M.A.; Ramon, H.; Nicolai, B.; Bylemans, D.; Opara, U.L.; et al. Experimental and numerical analysis of the spray application on apple fruit in a bin for postharvest treatments. J. Food Eng. 2017, 202, 34–45. [Google Scholar] [CrossRef]
- Holmes, G.; Cunningham, S.J.; Dela Rue, B.T.; Bollen, A.F. Predicting apple bruising using machine learning. Acta Hortic. 1998, 476, 289–296. [Google Scholar] [CrossRef]
- Ngugi, H.K.; Esker, P.D.; Scherm, H. Meta-analysis to determine the effects of plant disease management measures: Review and case studies on soybean and apple. Phytopathology 2011, 101, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.C.; de Almeida, F.A.; André, C.; Vanetti, M.C.D.; Pinto, U.M.; Hassimotto, N.M.A.; Vieira, É.N.R.; de Andrade, N.J. Phenolic Extract of Eugenia uniflora L. and Furanone Reduce Biofilm Formation by Serratia liquefaciens and Increase Its Susceptibility to Antimicrobials. Biofouling 2020, 36, 1031–1048. [Google Scholar] [CrossRef]
- Lyousfi, N.; Lahlali, R.; Letrib, C.; Belabess, Z.; Ouaabou, R.; Ennahli, S.; Blenzar, A.; Barka, E.A. Improving the Biocontrol Potential of Bacterial Antagonists with Salicylic Acid Against Brown Rot Disease and Impact on Nectarine Fruits Quality. Agronomy 2021, 11, 209. [Google Scholar] [CrossRef]
- Hassani, A.; Fathi, Z.; Ghosta, Y.; Abdollahi, A.; Meshkatalsadat, M.H.; Marandi, R.J. Evaluation of Plant Essential Oils for Control of Postharvest Brown and Gray Mold Rots on Apricot. J. Food Saf. 2012, 32, 94–101. [Google Scholar] [CrossRef]
- Hamss, H.E.; Kajad, N.; Belabess, Z.; Lahlali, R. Enhancing Bioefficacy of Bacillus amyloliquefaciens SF14 with Salicylic Acid for the Control of the Postharvest Citrus Green Mould. Plant Stress 2023, 7, 100144. [Google Scholar] [CrossRef]
- El Khetabi, A.; Ezrari, S.; El Ghadraoui, L.; Tahiri, A.; Haddou, L.A.; Belabess, Z.; Merah, O.; Lahlali, R. In Vitro and In Vivo Antifungal Activities of Nine Commercial Essential Oils Against Brown Rot in Apples. Horticulturae 2021, 7, 545. [Google Scholar] [CrossRef]
- Talibi, I.; Askarne, L.; Boubaker, H.; Boudyach, E.H.; Msanda, F.; Saadi, B.; Ait Ben Aoumar, A. Antifungal Activity of Moroccan Medicinal Plants Against Citrus Sour Rot Agent Geotrichum candidum. Lett. Appl. Microbiol. 2012, 55, 155–161. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Slam, T.; Danishuddin; Tamanna, N.T.; Matin, M.N.; Barai, H.R.; Haque, M.A. Resistance Mechanisms of Plant Pathogenic Fungi to Fungicide, Environmental Impacts of Fungicides, and Sustainable Solutions. Plants 2024, 13, 2737. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Iqbal, N. Post-Harvest Pathogens and Disease Management of Horticultural Crop: A Brief Review. Plant Arch. 2020, 20, 2054–2058. [Google Scholar]
- Bukhari, S. Synthetic Approaches and Pharmacological Attributes of Benzosuberone Skeleton. Mini-Rev. Med. Chem. 2023, 23, 3–23. [Google Scholar] [CrossRef]
- Matrose, N.A.; Obikeze, K.; Belay, Z.A.; Caleb, O.J. Plant Extracts and Other Natural Compounds as Alternatives for Post-Harvest Management of Fruit Fungal Pathogens: A Review. Food Biosci. 2021, 41, 100840. [Google Scholar] [CrossRef]
- Behiry, S.I.; Al-Askar, A.A.; Soliman, S.A.; Alotibi, F.O.; Basile, A.; Abdelkhalek, A.; Elsharkawy, M.M.; Salem, M.Z.M.; Hafez, E.E.; Heflish, A.A. Plantago lagopus Extract as a Green Fungicide Induces Systemic Resistance Against Rhizoctonia Root Rot Disease in Tomato Plants. Front. Plant Sci. 2022, 13, 966929. [Google Scholar] [CrossRef]
- Plaskova, A.; Mlcek, J. New Insights of the Application of Water or Ethanol-Water Plant Extract Rich in Active Compounds in Food. Front. Nutr. 2023, 10, 1118761. [Google Scholar] [CrossRef]
- Gatto, M.A.; Ippolito, A.; Linsalata, V.; Cascarano, N.A.; Nigro, F.; Vanadia, S.; Di Venere, D. Activity of Extracts from Wild Edible Herbs Against Postharvest Fungal Diseases of Fruit and Vegetables. Postharvest Biol. Technol. 2011, 61, 72–82. [Google Scholar] [CrossRef]
- Soleimani, M.; Rezaie, S.; Nabizadeh Nodehi, R.; Jahed Khaniki, G.; Alimohammadi, M.; Alikord, M.; Noorbakhsh, F.; Molaee-Aghaee, E.; Ghanbari, R. Eco-Friendly Control of Licorice Aqueous Extract to Increase Quality and Resistance to Postharvest Decay in Apple and Tangerine Fruits. J. Environ. Health Sci. Eng. 2021, 19, 1107–1116. [Google Scholar] [CrossRef]
- Zatla, A.T.; Mami, I.; Dib, M.E.A.; Sifi, M.E.A. Efficacy of Essential Oil and Hydrosol Extract of Marrubium vulgare on Fungi Responsible for Apples Rot. Anti-Infect. Agents 2019, 18, 285–293. [Google Scholar] [CrossRef]
- Nabila, V.K.; Putra, I.B. The Effect of Aloe Vera Ethanol Extract on the Growth Inhibition of Candida albicans. Med. Glas. 2024, 17, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.U.; Arshad, M.; Mukhtar, K.; Nabi, B.G.; Goksen, G.; Starowicz, M.; Nawaz, A.; Ahmad, I.; Walayat, N.; Manzoor, M.F.; et al. Natural Plant Extracts: An Update About Novel Spraying as an Alternative of Chemical Pesticides to Extend the Postharvest Shelf Life of Fruits and Vegetables. Molecules 2022, 27, 5152. [Google Scholar] [CrossRef] [PubMed]
- Gholamnezhad, J. Effect of Plant Extracts on Activity of Some Defense Enzymes of Apple Fruit in Interaction with Botrytis cinerea. J. Integr. Agric. 2019, 18, 115–123. [Google Scholar] [CrossRef]
- Gholamnezhad, J.; Sanjarian, F.; Mohammadi Goltapeh, E.; Safaie, N.; Razavi, K. Study of Defense Genes Expression Profile Pattern of Wheat in Response to Infection by Mycosphaerella graminicola. Iran. J. Plant Biol. 2016, 8, 43–54. [Google Scholar]
- Li Destri Nicosia, M.G.; Pangallo, S.; Raphael, G.; Romeo, F.V.; Strano, M.C.; Rapisarda, P.; Droby, S.; Schena, L. Control of Postharvest Fungal Rots on Citrus Fruit and Sweet Cherries Using a Pomegranate Peel Extract. Postharvest Biol. Technol. 2016, 114, 54–61. [Google Scholar] [CrossRef]
- Goussous, S.J.; Abu el-Samen, F.M.; Tahhan, R.A. Antifungal Activity of Several Medicinal Plants Extracts Against the Early Blight Pathogen (Alternaria solani). Arch. Phytopathol. Plant Prot. 2010, 43, 1745–1757. [Google Scholar] [CrossRef]
- Ikegbunam, M.; Ukamaka, M.; Emmanuel, O.; Ikegbunam, M.; Ukamaka, M.; Emmanuel, O. Evaluation of the Antifungal Activity of Aqueous and Alcoholic Extracts of Six Spices. Am. J. Plant Sci. 2016, 7, 118–125. [Google Scholar] [CrossRef]
- Awolola, G.V.; Koorbanally, N.A.; Chenia, H.; Shode, F.O.; Baijnath, H. Antibacterial and Anti-Biofilm Activity of Flavonoids and Triterpenes Isolated from the Extracts of Ficus sansibarica Warb. subsp. sansibarica (Moraceae) Extracts. African J. Tradit. Complement. Altern. Med. 2014, 11, 124–131. [Google Scholar] [CrossRef]
- Martínez, G.; Regente, M.; Jacobi, S.; Del Rio, M.; Pinedo, M.; de la Canal, L. Chlorogenic Acid is a Fungicide Active Against Phytopathogenic Fungi. Pestic. Biochem. Physiol. 2017, 140, 30–35. [Google Scholar] [CrossRef]
- Rocha, M.F.G.; Sales, J.A.; da Rocha, M.G.; Galdino, L.M.; de Aguiar, L.; Pereira-Neto, W.D.A.; de Aguiar Cordeiro, R.; Castelo-Branco, D.D.S.C.M.; Sidrim, J.J.C.; Brilhante, R.S.N. Antifungal Effects of the Flavonoids Kaempferol and Quercetin: A Possible Alternative for the Control of Fungal Biofilms. Biofouling 2019, 35, 320–328. [Google Scholar] [CrossRef]
- Zorić, N.; Kopjar, N.; Bobnjarić, I.; Horvat, I.; Tomić, S.; Kosalec, I. Antifungal Activity of Oleuropein Against Candida albicans-the In Vitro Study. Molecules 2016, 21, 1631. [Google Scholar] [CrossRef] [PubMed]
Treatments | P. expansum Disease Severity |
---|---|
Negative control | 0.00 ± 0.00 a |
Untreated control | 100.00 ± 0.00 g |
Difenoconazole | 0.00 ± 0.00 ab |
C. australis | 38.55 ±2.02 c |
O.oleaster | 70.08 ± 3.93 d |
C. humilis | 74.91 ± 1.68 e |
A. albus | 87.12 ± 1.19 f |
Treatments | B. cinerea Disease Severity (%) |
---|---|
Negative control | 0.00 ± 0.00 a |
Untreated control | 100.00 ± 0.00 g |
Difenoconazole | 0.00 ± 0.00 ab |
C. australis | 49.46 ± 5.43 c |
O. oleaster | 72.59 ± 2.11 d |
A. albus | 79.78 ± 2.33 e |
C. humilis | 87.8 ± 0.21 f |
Treatments | Weight Loss (%) | Firmness (N) | Total Soluble Solids (%) | Titratable Acidity (%) | Maturity Index |
---|---|---|---|---|---|
Negative control | 0.09 ± 0.02 a | 6.52 ± 0.08 a | 12.5 ± 0.50 a | 0.14 ± 0.00 a | 87.74 ± 8.20 a |
Untreated control | 0.76 ± 0.02 g | 4.00 ± 0.12 g | 10.16 ± 0.28 g | 0.25 ± 0.01 g | 39.80 ± 4.30 g |
Difenoconazole | 0.15 ± 0.07 ab | 6.40 ± 0.09 ab | 12.33 ± 0.57 ab | 0.16 ± 0.03 ab | 76.88 ± 4.92 ab |
C. australis extract | 0.37 ± 0.02 c | 5.68 ± 0.27 c | 11.66 ± 0.28 c | 0.16 ± 0.00 c | 71.60 ± 2.98 c |
O. oleaster extract | 0.44 ± 0.04 d | 5.49 ± 0.36 d | 11.00 ± 0.00 d | 0.17 ± 0.02 d | 62.93 ± 7.23 d |
C. humilis extract | 0.51 ± 0.25 e | 5.21 ± 0.38 e | 10.83 ± 0.28 e | 0.21 ± 0.02 e | 51.50 ± 6.26 e |
A. albus extract | 0.54 ± 0.05 f | 4.14 ± 0.06 f | 10.66 ± 0.28 f | 0.33 ± 4.00 f | 32.32 ± 4.00 f |
Treatments | Weight Loss (%) | Firmness (N) | Total Soluble Solids (%) | Titratable Acidity (%) | Maturity Index |
---|---|---|---|---|---|
Negative control | 0.11 ± 0.01 a | 7.17 ± 0.13 a | 13.00 ± 0.00 a | 0.14 ± 0.01 a | 90.54 ± 11.20 a |
Untreated control | 1.08 ± 0.17 g | 3.35 ± 0.09 g | 10.66 ± 0.57 g | 0.29 ± 0.01 g | 38.55 ± 2.30 g |
Difenoconazole | 0.13 ± 0.08 ab | 7.13 ± 014 ab | 12.83 ± 0.28 ab | 0.14 ± 0.01 ab | 86.36 ± 7.99 ab |
C. australis extract | 0.38 ± 0.02 c | 6.75 ± 0.15 c | 12.66 ± 0.28 c | 0.23 ± 0.03 c | 54.75 ± 7.79 c |
O. oleaster extract | 0.40 ± 0.06 d | 6.05 ± 0.16 d | 11.66± 0.57 d | 0.25 ± 0.01 d | 45.66 ± 5.12 d |
A. albus extract | 0.45 ± 0.03 e | 5.09 ± 0.04 e | 11.33 ± 0.57 e | 0.26 ± 0.00 e | 42.28 ± 2.15 e |
C. humilis extract | 0.73 ± 0.12 f | 4.00 ± 0.07 f | 11.16 ± 0.28 f | 0.27 ± 0.01 f | 40.07 ± 1.67 f |
Plants Extracts | Polyphenols Content (g GAE kg−1 Ext) |
---|---|
C. australis | 86.46 ± 9.08 |
O. oleaster | 120.78 ± 0.11 |
C. humilis | 137.02 ± 0.45 |
A. albus | 71.81 ± 0.34 |
Plants Extracts | Order | Compounds | Retention Time (min) | Concentration (g kg−1) |
---|---|---|---|---|
C. australis | 1 | Caffeic acid | 7.51 | 0.42 ± 5.03 |
2 | Gallic acid | 9.88 | 0.097 ± 3.16 | |
3 | Ferulic acid | 11.24 | 0.3 ± 4.5 | |
4 | Vanillic acid | 17.9 | 0.7 ± 8.19 | |
5 | P-coumaric acid | 19.06 | 0.2 ± 9.66 | |
6 | Sinapic acid | 20 | 0.098 ± 2.07 | |
7 | Isovitexin | 20.41 | 0.96 ± 47.3 | |
8 | Rosmarique | 21.2 | 0.57 ± 4.22 | |
9 | Cenamic acid | 24.03 | 0.31 ± 4.41 | |
10 | Resviratrole | 36.4 | 6 ± 0.878 | |
C. humilis | 1 | Gallic acid | 9.1 | 0.15 ± 19.72 |
2 | Ferulic acid | 10.39 | 0.09 ± 26.10 | |
3 | Ellagic acid | 13.98 | 0.4 ± 12.19 | |
4 | Apigenin | 19.91 | 0.01 ± 8.044 | |
5 | Luteolin | 22.8 | 0 ± 4.12 | |
6 | Chlorogenic acid | 25.11 | 0.17 ± 39.6 | |
7 | Kaempferol | 30.7 | 0 ± 15.55 | |
8 | Quercetin | 32.19 | ||
9 | Rutin | 37.00 | 0.044 ± 8.82 | |
O. oleaster | 1 | Caffeic acid | 9.2 | 0.11 ± 19.3 |
2 | Hydroxytyrosol | 11.7 | 0.42 ± 27.88 | |
3 | Oleuropein | 19.8 | 1.31 ± 96.71 | |
4 | Quercetin | 31.9 | 0.062 ± 7.9 | |
5 | Rutin | 34.3 | 0.471 ± 8.2 | |
6 | Verbascoside | 39.7 | 6.6 ± 0.5 | |
A. albus | 1 | Caffeic acid | 7.15 | 3.92 ± 0.2 |
2 | Ferulic acid | 10.23 | 0.96 ± 0.75 | |
3 | Protocatechuic acid | 16.82 | 0.2 ± 4.08 | |
4 | Vanillic acid | 17.9 | 11.21 ± 0.57 | |
5 | Syringic acid | 23.88 | 10.04 ± 0.18 | |
6 | Chlorogenic acid | 24.7 | 8.5 ± 0.41 | |
7 | Resveratrol | 27.3 | 4.01 ± 0.1 | |
8 | Kaempferol | 29.9 | 18.19 ± 1.52 | |
9 | Quercetin | 32.4 | 2.11 ± 0.84 | |
10 | Rutin | 34.2 | 4.012 ± 0.9 | |
11 | Hyperoside/Quercetin 3-galactoside | 42.16 | 8.9 ± 0.14 | |
12 | Nicotiflorin/Kaempferol-3-O-rutinoside | 43.5 | 12.06 ± 0.99 | |
13 | Narcissin/Isorhamnetin 3-rutinoside | 43.71 | 6.11 ± 0.4 |
No. | Analytes | R2 | RSD% | LOD (ug/mL) | LOQ (ug/mL) | Recovery (%) |
---|---|---|---|---|---|---|
1 | Caffeic acid | 0.9877 | 0.0517 | 20.1 | 67.1 | 100.7 |
2 | Ferulic acid | 0.9999 | 0.1619 | 17.3 | 57.7 | 98.9 |
3 | Protocatechuic acid | 0.9999 | 0.5211 | 14.0 | 46.7 | 100.2 |
4 | Vanillic acid | 0.9999 | 0.6312 | 4.3 | 14.3 | 99.7 |
5 | Syringic acid | 0.9999 | 0.2509 | 6.6 | 21.9 | 97.2 |
6 | Chlorogenic acid | 0.997 | 0.7944 | 23.2 | 77.3 | 97.7 |
7 | Resveratrol | 0.9799 | 1.2100 | 9.2 | 30.8 | 95.4 |
8 | Kaempferol | 0.9899 | 1.3440 | 4.0 | 13.2 | 96.1 |
9 | Quercetin | 0.9999 | 0.5459 | 9.1 | 30.3 | 96.7 |
10 | Rutin | 0.9999 | 1.5144 | 13.7 | 45.7 | 95.9 |
11 | Hyperoside/Quercetin 3-galactoside | 0.995 | 0.6960 | 9.4 | 31.3 | 99.2 |
12 | Nicotiflorin/Kaempferol-3-O-rutinoside | 0.9996 | 1.0861 | 15.3 | 50.9 | 99.6 |
13 | Narcissin/Isorhamnetin 3-rutinoside | 0.974 | 0.1817 | 19.4 | 64.7 | 97.7 |
14 | Ellagic acid | 0.9999 | 0.2847 | 11.2 | 37.3 | 96.0 |
15 | Apigenin | 0.9999 | 1.8684 | 2.7 | 9.0 | 103.5 |
16 | Luteolin | 0.9999 | 0.8825 | 3.6 | 12.0 | 103.5 |
17 | Protocatechuic acid | 0.9994 | 3.7663 | 8.9 | 29.6 | 103.4 |
18 | p-Coumaric acid | 0.992 | 3.2349 | 9.6 | 32.0 | 94.5 |
19 | Sinapic acid | 0.9899 | 0.5604 | 8.2 | 27.4 | 101.8 |
20 | Isovitexin | 0.984 | 5.7532 | 1.8 | 6.1 | 96.4 |
21 | Hydroxytyrosol | 0.9999 | 2.6933 | 2.3 | 7.9 | 94.6 |
22 | Verbascoside | 0.998 | 1.3552 | 3.0 | 9.9 | 99.8 |
23 | Oleuropein | 0.998 | 5.2649 | 5.2 | 17.5 | 102.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benamar, K.; Lahlali, R.; Ezzouggari, R.; El Ouassete, M.; Dehbi, I.; Khadiri, M.; Radi, M.; Ait Haddou, L.; Ibnsouda Koraichi, S.; Benamar, S.; et al. Antifungal Efficacy of Ethanolic Extracts from Four Medicinal Plants Against Major Postharvest Fungal Pathogens of Apple Fruit. Agronomy 2025, 15, 1577. https://doi.org/10.3390/agronomy15071577
Benamar K, Lahlali R, Ezzouggari R, El Ouassete M, Dehbi I, Khadiri M, Radi M, Ait Haddou L, Ibnsouda Koraichi S, Benamar S, et al. Antifungal Efficacy of Ethanolic Extracts from Four Medicinal Plants Against Major Postharvest Fungal Pathogens of Apple Fruit. Agronomy. 2025; 15(7):1577. https://doi.org/10.3390/agronomy15071577
Chicago/Turabian StyleBenamar, Khadija, Rachid Lahlali, Rachid Ezzouggari, Mohammed El Ouassete, Ilham Dehbi, Mohammed Khadiri, Mohammed Radi, Lhoussain Ait Haddou, Saad Ibnsouda Koraichi, Saad Benamar, and et al. 2025. "Antifungal Efficacy of Ethanolic Extracts from Four Medicinal Plants Against Major Postharvest Fungal Pathogens of Apple Fruit" Agronomy 15, no. 7: 1577. https://doi.org/10.3390/agronomy15071577
APA StyleBenamar, K., Lahlali, R., Ezzouggari, R., El Ouassete, M., Dehbi, I., Khadiri, M., Radi, M., Ait Haddou, L., Ibnsouda Koraichi, S., Benamar, S., Boukir, A., Ait Barka, E., & Fikri-Benbrahim, K. (2025). Antifungal Efficacy of Ethanolic Extracts from Four Medicinal Plants Against Major Postharvest Fungal Pathogens of Apple Fruit. Agronomy, 15(7), 1577. https://doi.org/10.3390/agronomy15071577