Effects of Dissolved Organic Carbon Leaching and Soil Carbon Fractions Under Intercropping Dactylis glomerata L.–Medicago sativa L. in Response to Extreme Rainfall
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Plant Sources
2.2. Leaching Device
2.3. Cropping and Rainfall Patterns
2.4. Sample Collection
2.5. Indicator Determination
2.6. Statistical Analysis
3. Results
3.1. Effect of Vegetation Pattern and Rainfall Intensity on Leaching DOC Content and Flux Characteristics
3.2. Effects of Cropping Patterns and Rainfall Intensity on Soil Carbon Fractions and Soil Properties
3.3. Effect of Vegetation Pattern and Rainfall Intensity on Plant Growth and Root Morphology
4. Discussion
4.1. Vegetation Pattern and Rainfall Intensity Effects on DOC Loss
4.2. Vegetation Pattern and Rainfall Intensity Effects on Soil Organic Fractions
4.3. Relationship Between Soil Carbon Fractions and Carbon Loss Fluxes in Extreme Rainfall Processes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Battin, T.J.; Luyssaert, S.; Kaplan, L.A.; Aufdenkampe, A.K.; Richer, A.; Tranvik, L.J. The boundless carbon cycle. Nat. Geosci. 2009, 2, 598–600. [Google Scholar] [CrossRef]
- Haham, H.; Oren, A.; Chefetz, B. Insight into the Role of Dissolved Organic Matter in Sorption of Sulfapyridine by Semiarid Soils. Environ. Sci. Technol. 2012, 46, 11870–11877. [Google Scholar] [CrossRef]
- Chaplot, V.; Mutema, M. Sources and main controls of dissolved organic and inorganic carbon in river basins: A worldwide meta-analysis. J. Hydrol. 2021, 603, 126941. [Google Scholar] [CrossRef]
- Aitkenhead-Peterson, J.A.; McDowell, W.H.; Neff, J.C. 2-sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters. Aquat. Ecosyst. 2003, 25–70. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Q.W.; Li, X.; Yi, Y.B.; Wang, Q.L.; Gao, L.; Wang, J.; He, D.; Li, M. Surface microrelief induced by tillage management alters the pathway and composition of dissolved organic matter exports from soils to runoff during rainfall. Water Res. 2023, 245, 120554. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Li, Z.W.; Huang, J.Q.; Nie, X.D.; Huang, B.; Hu, Y.B.; Zhang, X. Dinamics of soil mirobial population and organic carbon under water erosion. Acta Pedlogiga Sin. 2015, 52, 423–433. [Google Scholar]
- Eckard, R.S.; Pellerin, B.A.; Bergamaschi, B.A.; Bachand, P.A.M.; Bachand, S.M.; Spencer, R.G.M.; Hernes, P.J. Dissolved Organic Matter Compositional Change and Biolability During Two Storm Runoff Events in a Small Agricultural Watershed Dissolved organic matter compositional change and biolability during two storm runoff events in a small agricultural watershed. J. Geophys. Res. Biogeosci. 2017, 122, 2634–2650. [Google Scholar] [CrossRef]
- Li, S.A. Fruit production in the world and the suggestions for increasing competition of Chinese fruit products in international markets. J. China Agric. Univ. 2003, 8, 7–13. [Google Scholar]
- Nie, X.D.; Li, Z.W.; Huang, J.Q.; Huang, B.; Xiao, H.B.; Zeng, G.M. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion. Environ. Manag. 2017, 59, 816–825. [Google Scholar] [CrossRef]
- Lin, G.Z. Study on the soil conservation & soil improvement effects by planting the paspalum notatum in the slope orchard. Subtrop. Soil Water Conserv. 2013, 34, 10–13. [Google Scholar]
- Wang, Y.X.; Wang, F.; Weng, B.Q.; Huang, Y.B.; Wang, C.J.; Ye, Q. Effect of sod cultivation on mineralization of soil organic carbon in nectarine orchards. Acta Pratacult. Sin. 2013, 22, 86–92. [Google Scholar]
- Vicente-Vicente, J.L.; Gómez-Muoz, B.; Hinojosa-Centeno, M.B.; Smith, P.; Garcia-Ruiz, R. Carbon saturation and assessment of soil organic carbon fractions in Mediterranean rainfed olive orchards under plant cover management. Agric. Ecosyst. Environ. 2017, 245, 135–146. [Google Scholar] [CrossRef]
- Xiang, Y.Z.; Chang, S.X.; Shen, Y.Y.; Chen, G.; Liu, Y.; Yao, B.; Xue, J.M.; Li, Y. Grass cover increases soil microbial abundance and diversity and extracellular enzyme activities in orchards: A synthesis across China. Appl. Soil Ecol. 2023, 182, 104720. [Google Scholar] [CrossRef]
- Aoki, S.; Fuse, Y.; Yamada, E. Determinations of humic substances and other dissolved organic matter and their effects on the increase of COD in Lake Biwa. Anal. Sci. 2004, 20, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Yang, F.; Li, Y.; Wang, S.G. New insights into the source of decadal increase in chemical oxygen demand associated with dissolved organic carbon in Dianchi Lake. Sci. Total Environ. 2017, 603, 699–708. [Google Scholar] [CrossRef]
- Niu, Q.Q.; Zhang, L.; Chen, Y.F.; Hu, C.X.; Wu, Y.P. Effects of eco-cultivation on soil erosion and nutrient loss in orchards: A meta-analysis. Chin. J. Ecol. 2021, 40, 3175–3183. [Google Scholar]
- Pu, H.L.; Ren, X.W.; Lu, J.Q.; Chen, Z.Y.; Liu, X.W.; Wang, G.; Li, L.S. Nitrogen Loss on Red Soil in South China under Artificial Rainfall Conditions. Environ. Sci. Technol. 2016, 39, 27–34. [Google Scholar]
- Carpenter, S.R.; Caraco, D.L.; Correll, N.F.; Correll, D.L.; Howarth, A.N.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Xu, J.Y.; Sui, S.J.; Zhang, X.; Chen, Y.; Zhou, X.; Gong, L.; Niu, S.W. Characteristics of Nitrogen Leaching in the Maize Farmland of Meadow Soil in Rain-fed Area of Northeastern China. Environ. Sci. Technol. 2021, 44, 72–78. [Google Scholar]
- Zhou, X.M.; Liu, J.; Han, Q.L. Analysis of the temporal and spatial distribution of rainstorm in honghe prefecture. Yunnan Geogr. Environ. Res. 2018, 30, 73–78. [Google Scholar]
- Wu, G.J.; Tang, B.C.; Li, H.Y.; Li, M.; Duan, C.Q.; Liu, C.E. Spatiotemporal variations of total nitrogen and total phosphorus in lake inflow rivers of Lake Yilong. J. Ecol. Rural Environ. 2025. [Google Scholar] [CrossRef]
- Pei, Z.Q.; Lu, S.C.; Wang, X.; Hou, K.; Ya, Z.J.; Zhang, Y.; Wang, D.F.; Li, X.W. Study on greenhouse soil nitrogen absorption and soil layer transport of different summer catch crops with different planting density in North China. E3S Web Conf. 2020, 143, 02023. [Google Scholar]
- GB/T28592-2012; Grade of Precipitation. China Standard Press: Beijing, China, 2012.
- HJ 501-2009; Water Quality-Determination of Total Organic Carbon-Combustion Oxidation Nondispersive Infrared Absorption Method. China Environmental Science Press: Beijing, China, 2009.
- Bao, S.D. Agricultural Soil Analysis, 3rd ed.; China Agricuture Press: Beijing, China, 2000. [Google Scholar]
- Marriott, E.E.; Wander, M.M. Total and labile soil organic matter in organic and conve entional farming systems. Soil Sci. Soc. Am. J. 2006, 70, 950–959. [Google Scholar] [CrossRef]
- Geißler, C.; Kühn, P.; Bönke, M.; Bruelheide, H.; Shi, X.; Scholten, T. Splash erosion potential under tree canopies in subtropical SE China. Catena 2012, 91, 85–93. [Google Scholar] [CrossRef]
- Du, J.; Niu, J.Z.; Gao, Z.L.; Chen, X.W.; Zhang, L.; Li, X.; Niu, J.Z.; Gao, Z.L.; van Doorn, N.S.; Luo, Z.T.; et al. Effects of rainfall intensity and slope on interception andprecipitation partitioning by forest litter layer. Catena 2019, 172, 711–718. [Google Scholar] [CrossRef]
- Song, X.; Fang, C.; Yuan, Z.Q.; Li, F.M.; Sardans, J.; Penuelas, J. Long-term alfalfa (Medicago sativa L.) establishment could alleviate phosphorus limitation induced by nitrogen deposition in the carbonate soil. J. Environ. Manag. 2022, 324, 116346. [Google Scholar] [CrossRef]
- Zhao, X.P.; Hao, C.K.; Jiao, N.Y.; Tian, J.; Lambers, H.; Liang, C.; Cong, W.F.; Zhang, F.S. Intercropping increases soil macroaggregate carbon through root traits induced microbial necromass accumulation. Soil Biol. Biochem. 2023, 185, 109146. [Google Scholar] [CrossRef]
- Schmidt, M.; Torn, M.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.; Kleber, M.; Kagel-Knabner, I.; Lehmann, J.; Manning, D.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
- Poirier, V.; Roumet, C.; Munson, A.D. The root of the matter: Linking root traits and soil organic matter stabilization processes. Soil Biol. Biochem. 2018, 120, 246–259. [Google Scholar] [CrossRef]
- Rossi, L.M.W.; Zhun, M.; Merino-Martín, L.; Roumet, C.; Fort, F.; Taugourdeau, O.; Boukcim, H.; Fourtier, S.; Del Rey-Granado, M.; Chevallier, T.; et al. Pathways to persistence: Plant root traits alter carbon accumulation in different soil carbon pools. Plant Soil 2020, 452, 457–478. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A.; Schneider, F. Roots are key to increasing the mean residence time of organic carbon entering temperate agricultural soils. Glob. Change Biol. 2021, 27, 4921–4934. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Hill, J.; Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 2006, 314, 1598–1600. [Google Scholar] [CrossRef] [PubMed]
- Chaplot, V.; Darboux, F.; Alexis, M.; Cottenot, L.; Gaillard, H.; Quenea, K.; Mutema, M. Soil tillage impact on the relative contribution of dissolved, particulate and gaseous (CO2) carbon losses during rainstorms. Soil Tillage Res. 2019, 187, 31–40. [Google Scholar] [CrossRef]
- Wang, H.; Wu, J.; Li, G.; Yan, L.; Liu, S. Effects of extreme rainfall frequency on soil organic carbon fractions and carbon pool in a wet meadow on the Qinghai-Tibet Plateau. Ecol. Indic. 2023, 146, 109853. [Google Scholar] [CrossRef]
- Romanyà, J.; Blanco-Moreno, J.M.; Sans, F.X. Phosphorus mobilization in low-P arable soils may involve soil organic C depletion. Soil Biol. Biochem. 2017, 113, 250–259. [Google Scholar] [CrossRef]
- Tran, C.T.K.; Watts-Williams, S.J.; Smernik, R.J.; Cavagnaro, T.R. Effects of plant roots and arbuscular mycorrhizas on soil phosphorus leaching. Sci. Total Environ. 2020, 722, 137847. [Google Scholar] [CrossRef] [PubMed]
- Spohn, M. Increasing the organic carbon stocks in mineral soils sequesters large amounts of phosphorus. Glob. Change Biol. 2020, 26, 4169–4177. [Google Scholar] [CrossRef]
- Ma, L.; Li, Y.; Wei, J.L.; Li, Z.S.; Zhou, X.L.; Zhen, F.L.; Wu, X.B.; Wang, L.; Liu, Z.H.; Tan, D.S. Effects of Long-term Straw Returning on Fungal Community, Enzyme Activity and Wheat Yield in Fluvo-aquic Soil. Environ. Sci. 2022, 43, 4755–4764. [Google Scholar]
- Wu, Y.H.; Luo, C.Y.; Wang, Z.G.; Zhu, H.; Zhou, J.; Bing, H.J. Synergistic effects of soil-plant-microbe funcational diversity on phosphorus cycling in the glacier retreat area of Gongga Mountain, China. J. Earth Sci. Environ. 2023, 45, 696–705. [Google Scholar]
- Peng, J.Y.; Peng, H.Y.; Han, W.X. The comparison of nitrogen-and phosphous -use efficiency between legume and non-titrogen-fixing plant. J. China Agruicultral Univ. 2017, 22, 48–55. [Google Scholar]
- Yang, B.; Lin, H.; Bartlett, S.L.; Houghton, E.M.; Robertson, D.M.; Guo, L.D. Partitioning and transformation of organic and inorganic phosphorus among dissolved, colloidal and particulate phases in a hypereutrophic freshwater estuary. Water Res. 2021, 196, 117025. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhou, Y.Q.; Zhou, L.; Zhang, Y.L.; Xu, H.; Jang, K.Y.; Kothawala, D.N.; Spencer, R.G.M.; Jeppesen, E.; Brookes, J.D.; et al. Changes in Water Chemistry Associated with Rainstorm Events Increase Carbon Emissions from the Inflowing River Mouth of a Major Drinking Water Reservoir. Environ. Sci. Technol. 2022, 56, 16494–16505. [Google Scholar] [CrossRef] [PubMed]
- Sanderman, J.; Amundson, R.A. Comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soils. Biogeochemistry 2008, 89, 309–327. [Google Scholar] [CrossRef]
- Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Change Biol. 2020, 26, 261–273. [Google Scholar] [CrossRef] [PubMed]
Soil Depth (cm) | pH | CEC (c mol/kg) | Soc (g/kg) | Total N (g/kg) | Total P (g/kg) | AN (mg/kg) | AP (mg/kg) | Bulk Density (g/cm) | Soil Moisture (%) |
---|---|---|---|---|---|---|---|---|---|
0–20 | 5.37 | 4.27 | 25.59 | 1.42 | 0.29 | 109.67 | 37.25 | 1.12 | 34.07 |
20–40 | 4.51 | 4.70 | 20.65 | 1.29 | 0.18 | 88.67 | 28.13 | 1.26 | 35.52 |
40–60 | 4.35 | 1.15 | 7.41 | 1.00 | 0.13 | 74.67 | 22.12 | 1.46 | 25.01 |
Source of Variation | SOC g/kg | DOC g/kg | ROC g/kg | POC g/kg | MOC g/kg | |||||
---|---|---|---|---|---|---|---|---|---|---|
F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | |
Soil depth | 20.932 | 0.000 | 177.845 | 0.000 | 535.623 | 0.000 | 19.404 | 0.000 | 28.426 | 0.000 |
Vegetation pattern | 116.32 | 0.000 | 13.607 | 0.000 | 1811.459 | 0.000 | 134.097 | 0.000 | 74.277 | 0.000 |
Rainfall intensity | 41.884 | 0.000 | 0.033 | 0.858 | 1330.777 | 0.000 | 70.452 | 0.000 | 0.533 | 0.470 |
Cropping pattern × Soil depth | 3.843 | 0.000 | 3.407 | 0.018 | 577.099 | 0.000 | 33.056 | 0.000 | 15.173 | 0.000 |
Rainfall intensity × Soil depth | 67.164 | 0.000 | 12.766 | 0.000 | 492.331 | 0.000 | 70.477 | 0.000 | 1.943 | 0.038 |
Cropping pattern × Rainfall intensity | 55.625 | 0.000 | 9.648 | 0.000 | 5328.886 | 0.000 | 44.960 | 0.000 | 7.561 | 0.002 |
Soil depth × Cropping pattern × Rainfall intensity | 4.648 | 0.004 | 13.586 | 0.000 | 757.489 | 0.000 | 19.924 | 0.000 | 6.732 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Zhang, P.; Chen, L.; Wang, W.; Yang, X.; Liu, Z.; Mi, Y. Effects of Dissolved Organic Carbon Leaching and Soil Carbon Fractions Under Intercropping Dactylis glomerata L.–Medicago sativa L. in Response to Extreme Rainfall. Agronomy 2025, 15, 1485. https://doi.org/10.3390/agronomy15061485
Xu C, Zhang P, Chen L, Wang W, Yang X, Liu Z, Mi Y. Effects of Dissolved Organic Carbon Leaching and Soil Carbon Fractions Under Intercropping Dactylis glomerata L.–Medicago sativa L. in Response to Extreme Rainfall. Agronomy. 2025; 15(6):1485. https://doi.org/10.3390/agronomy15061485
Chicago/Turabian StyleXu, Cui, Peng Zhang, Lu Chen, Wenzhi Wang, Xukun Yang, Zhenhuan Liu, and Yanhua Mi. 2025. "Effects of Dissolved Organic Carbon Leaching and Soil Carbon Fractions Under Intercropping Dactylis glomerata L.–Medicago sativa L. in Response to Extreme Rainfall" Agronomy 15, no. 6: 1485. https://doi.org/10.3390/agronomy15061485
APA StyleXu, C., Zhang, P., Chen, L., Wang, W., Yang, X., Liu, Z., & Mi, Y. (2025). Effects of Dissolved Organic Carbon Leaching and Soil Carbon Fractions Under Intercropping Dactylis glomerata L.–Medicago sativa L. in Response to Extreme Rainfall. Agronomy, 15(6), 1485. https://doi.org/10.3390/agronomy15061485