Genome-Wide Association Analysis Identifies Loci for Powdery Mildew Resistance in Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Field Evaluation of Pm
2.3. DNA Extraction and Genotyping
2.4. Population Structure and Linkage Disequilibrium
2.5. Genome-Wide Association Analysis
2.6. Haplotype Analysis
3. Results
3.1. Phenotypic Analysis of Pm Resistance
3.2. Assessment of Population Structure
3.3. Genome-Wide Association Analysis of Pm Resistance
3.4. Allelic Variation Effects
3.5. Identification of Pm-Resistance Candidate Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Genqiao, L.; Xiangyang, X.; Chengcheng, T.; Brett, F.C.; Guihua, B.; Xuewen, W.; Bonman, J.M.; Yanqi, W.; Robert, H.; Christina, C. Identification of powdery mildew resistance loci in wheat by integrating genome-wide association study (GWAS) and linkage mapping. Crop J. 2019, 7, 294–306. [Google Scholar]
- Van Esse, H.P.; Reuber, T.L.; van der Does, D. Genetic modification to improve disease resistance in crops. New Phytol. 2020, 225, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Meng, T.; Xiao, B.; Yu, T.; Yue, T.; Jin, Y.; Ma, P. Fighting wheat powdery mildew: From genes to fields. Theor. Appl. Genet. 2023, 136, 196. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Liu, B.; Yao, Y.; Guo, Z.; Jia, H.; Kong, L.; Zhang, A.; Ma, W.; Ni, Z.; Xu, S.; et al. Wheat genomic study for genetic improvement of traits in China. Sci. China Life Sci. 2022, 65, 1718–1775. [Google Scholar] [CrossRef]
- Chao, S.; Dubcovsky, J.; Dvorak, J.; Luo, M.C.; Baenziger, S.P.; Matnyazov, R.; Clark, D.R.; Talbert, L.E.; Anderson, J.A.; Dreisigacker, S.; et al. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genom. 2010, 11, 727. [Google Scholar] [CrossRef]
- Zhao, Z.; Huang, J.; Lu, M.; Wang, X.; Wu, L.; Wu, X.; Zhao, X.; Hongjie, L. Virulence and Genetic Diversity of Blumeria graminis f. sp. tritici Collected from Shandong and Hebei Provinces. Acta Agron. Sin. 2013, 39, 1377–1385. [Google Scholar]
- Bourras, S.; Kunz, L.; Xue, M.; Praz, C.R.; Müller, M.C.; Kälin, C.; Schläfli, M.; Ackermann, P.; Flückiger, S.; Parlange, F.; et al. The AvrPm3-Pm3 effector-NLR interactions control both race-specific resistance and host-specificity of cereal mildews on wheat. Nat. Commun. 2019, 10, 2292. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, C.; Gong, S.; Chen, Z.; Chen, R.; Liu, T.; Liu, R.; Du, H.; Guo, R.; Li, G.; et al. Orthologous genes Pm12 and Pm21 from two wild relatives of wheat show evolutionary conservation but divergent powdery mildew resistance. Plant Commun. 2023, 4, 100472. [Google Scholar] [CrossRef]
- Li, G.; Fang, T.; Zhang, H.; Xie, C.; Li, H.; Yang, T.; Nevo, E.; Fahima, T.; Sun, Q.; Liu, Z. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor. Appl. Genet. 2009, 119, 531–539. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, J.; Lu, X.; Guo, Y.; Li, Y.; Liu, Y.; Zhang, R.; Xing, L.; Cao, A. Identification and transfer of a new Pm21 haplotype with high genetic diversity and a special molecular resistance mechanism. Theor. Appl. Genet. 2023, 136, 10. [Google Scholar] [CrossRef]
- Zou, S.; Shi, W.; Ji, J.; Wang, H.; Tang, Y.; Yu, D.; Tang, D. Diversity and similarity of wheat powdery mildew resistance among three allelic functional genes at the Pm60 locus. Plant J. 2022, 110, 1781–1790. [Google Scholar] [PubMed]
- Zia, M.A.B.; Yousaf, M.F.; Asim, A.; Naeem, M. An overview of genome-wide association mapping studies in Poaceae species (model crops: Wheat and rice). Mol. Biol. Rep. 2022, 49, 12077–12090. [Google Scholar] [PubMed]
- Nakano, Y.; Kobayashi, Y. Genome-wide Association Studies of Agronomic Traits Consisting of Field- and Molecular-based Phenotypes. Rev. Agric. Sci. 2020, 8, 28–45. [Google Scholar]
- Mei, F.; Chen, B.; Du, L.; Li, S.; Zhu, D.; Chen, N.; Zhang, Y.; Li, F.; Wang, Z.; Cheng, X.; et al. A gain-of-function allele of a DREB transcription factor gene ameliorates drought tolerance in wheat. Plant Cell 2022, 34, 4472–4494. [Google Scholar]
- Tekeu, H.; Ngonkeu, E.L.M.; Bélanger, S.; Djocgoué, P.F.; Abed, A.; Torkamaneh, D.; Boyle, B.; Tsimi, P.M.; Tadesse, W.; Jean, M.; et al. GWAS identifies an ortholog of the rice D11 gene as a candidate gene for grain size in an international collection of hexaploid wheat. Sci. Rep. 2021, 11, 19483. [Google Scholar]
- Zhao, L.; Zheng, Y.; Wang, Y.; Wang, S.; Wang, T.; Wang, C.; Chen, Y.; Zhang, K.; Zhang, N.; Dong, Z.; et al. A HST1-like gene controls tiller angle through regulating endogenous auxin in common wheat. Plant Biotechnol. J. 2023, 21, 122–135. [Google Scholar]
- Torp, J.; Jensen, H.P.; Jørgensen, J.H. Powdery mildew resist ance genes in 106 Northwest European spring barley varieties. Kongelige Veterinaer- og Landbohoejskole. Aarskrift 1978, 75–102. [Google Scholar]
- Saghai-Maroof, M.A.; Soliman, K.M.; Jorgensen, R.A.; Allard, R.W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 1984, 81, 8014–8018. [Google Scholar]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar]
- Ruiqi, Z.; Chuanxi, X.; Huanqing, M.; Ruonan, Y.; Xiangru, M.; Lingna, K.; Liping, X.; Jizhong, W.; Yigao, F.; Aizhong, C. Pm67, a new powdery mildew resistance gene transferred from Dasypyrum villosum chromosome 1V to common wheat (Triticum aestivum L.). Crop J. 2021, 9, 882–888. [Google Scholar]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [PubMed]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2004, 21, 263–265. [Google Scholar] [PubMed]
- Alemu, A.; Brazauskas, G.; Gaikpa, D.S.; Henriksson, T.; Islamov, B.; Jørgensen, L.N.; Koppel, M.; Koppel, R.; Liatukas, Ž.; Svensson, J.T.; et al. Genome-Wide Association Analysis and Genomic Prediction for Adult-Plant Resistance to Septoria Tritici Blotch and Powdery Mildew in Winter Wheat. Front. Genet. 2021, 12, 661742. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Barry, K.; Cao, F.; Zhou, M. Genome-wide association mapping for adult resistance to powdery mildew in common wheat. Mol. Biol. Rep. 2020, 47, 1241–1256. [Google Scholar]
- Liu, N.; Bai, G.; Lin, M.; Xu, X.; Zheng, W. Genome-wide Association Analysis of Powdery Mildew Resistance in U.S. Winter Wheat. Sci. Rep. 2017, 7, 11743. [Google Scholar]
- Maekawa, T.; Kufer, T.A.; Schulze-Lefert, P. NLR functions in plant and animal immune systems: So far and yet so close. Nat. Immunol. 2011, 12, 817–826. [Google Scholar]
- Wang, J.; Yao, W.; Wang, L.; Ma, F.; Tong, W.; Wang, C.; Bao, R.; Jiang, C.; Yang, Y.; Zhang, J.; et al. Overexpression of VpEIFP1, a novel F-box/Kelch-repeat protein from wild Chinese Vitis pseudoreticulata, confers higher tolerance to powdery mildew by inducing thioredoxin z proteolysis. Plant Sci. 2017, 263, 142–155. [Google Scholar]
- Xie, C.; Sun, Q.; Ni, Z.; Yang, T.; Nevo, E.; Fahima, T. Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers. Theor. Appl. Genet. 2003, 106, 341–345. [Google Scholar]
- Chantret, N.; Mingeot, D.; Sourdille, P.; Bernard, M.; Jacquemin, J.M.; Doussinault, G. A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat. Theor. Appl. Genet. 2001, 103, 962–971. [Google Scholar]
- Muranty, H.; Pavoine, M.T.; Jaudeau, B.; Radek, W.; Doussinault, G.; Barloy, D. Two stable QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 are expressed at different times along the growing season. Mol. Breed. 2009, 23, 445–461. [Google Scholar]
- Leonova, I.N. Genome-Wide Association Study of Powdery Mildew Resistance in Russian Spring Wheat (T. aestivum L.) Varieties. Russ. J. Genet. 2019, 55, 1360–1374. [Google Scholar]
- Kang, Y.; Zhou, M.; Merry, A.; Barry, K. Mechanisms of powdery mildew resistance of wheat–a review of molecular breeding. Plant Pathol. J. 2020, 69, 601–617. [Google Scholar]
- Keller, M.; Keller, B.; Schachermayr, G.; Winzeler, M.; Schmid, J.E.; Stamp, P.; Messmer, M.M. Quantitative trait loci for resistance against powdery mildew in a segregating wheat × spelt population. Theor. Appl. Genet. 1999, 98, 903–912. [Google Scholar]
- Lillemo, M.; Bjørnstad, Å.; Skinnes, H. Molecular mapping of partial resistance to powdery mildew in winter wheat cultivar Folke. Euphytica 2012, 185, 47–59. [Google Scholar]
- Liang, S.; Suenaga, K.; He, Z.H.; Wang, Z.L.; Liu, H.Y.; Wang, D.S.; Singh, R.P.; Sourdille, P.; Xia, X.J.P. Quantitative trait Loci mapping for adult-plant resistance to powdery mildew in bread wheat. Phytopath 2006, 96, 784–789. [Google Scholar]
- Xu, X.; Zhu, Z.; Jia, A.; Wang, F.; Wang, J.; Zhang, Y.; Fu, C.; Fu, L.; Bai, G.; Xia, X.; et al. Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica 2019, 216, 3. [Google Scholar]
- Marone, D.; Russo, M.A.; Laidò, G.; De Vita, P.; Papa, R.; Blanco, A.; Gadaleta, A.; Rubiales, D.; Mastrangelo, A.M. Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: From consensus regions to candidate genes. BMC Genom. 2013, 14, 562. [Google Scholar]
SNP | CHROM | POS | REF | ALT | MAF | Effect | SE | p-Value | TIMES | Postulated or Linked Genes | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
AX-109467642 | 6A | 2231605 | C | T | 0.103 | −0.763 | 0.122 | 2.37 × 10−9 | 2020, 2022, 2023, BLUP | ||
AX-108900944 | 6A | 88858489 | G | A | 0.044 | −0.881 | 0.178 | 1.50 × 10−6 | 2020, 2022, 2023, BLUP | ||
AX-111473786 | 6A | 105872215 | C | T | 0.044 | −0.881 | 0.178 | 1.50 × 10−6 | 2020, 2022, 2023, BLUP | ||
AX-108847853 | 6A | 135239623 | G | A | 0.044 | −0.881 | 0.178 | 1.50 × 10−6 | 2020, 2022, 2023, BLUP | ||
AX-111803516 | 6A | 143062689 | A | G | 0.069 | −0.863 | 0.149 | 2.90 × 10−8 | 2020, 2022, 2023, BLUP | ||
AX-109507227 | 6A | 180313894 | G | C | 0.044 | −0.881 | 0.178 | 1.50 × 10−6 | 2020, 2022, 2023, BLUP | ||
AX-111004426 | 6A | 184741540 | G | C | 0.083 | −0.712 | 0.137 | 5.06 × 10−7 | 2020, 2022, 2023, BLUP | ||
AX-94610479 | 6B | 121528643 | G | A | 0.044 | −0.881 | 0.178 | 1.50 × 10−6 | 2020, 2022, 2023, BLUP | wsnp_Ex_c12618_20079758 | [23] |
AX-109931771 | 6B | 577237879 | G | T | 0.172 | −0.509 | 0.116 | 1.84 × 10−5 | 2020, 2022, 2023, BLUP | ||
AX-89322751 | 6B | 578302251 | G | A | 0.181 | −0.439 | 0.118 | 2.67 × 10−4 | 2020, 2022, 2023, BLUP | ||
AX-95654681 | 6B | 715751184 | G | A | 0.064 | −0.486 | 0.144 | 8.66 × 10−4 | 2020, 2022, 2023, BLUP | IWB60950 | [24] |
AX-95102080 | 6D | 29091465 | T | C | 0.054 | −1.025 | 0.17 | 8.37 × 10−9 | 2020, 2022, 2023, BLUP | MTA64 | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wang, H.; Fang, K.; Ding, G.; Dong, N.; Dong, N.; Zhang, M.; Zang, Y.; Ru, Z. Genome-Wide Association Analysis Identifies Loci for Powdery Mildew Resistance in Wheat. Agronomy 2025, 15, 1439. https://doi.org/10.3390/agronomy15061439
Chen X, Wang H, Fang K, Ding G, Dong N, Dong N, Zhang M, Zang Y, Ru Z. Genome-Wide Association Analysis Identifies Loci for Powdery Mildew Resistance in Wheat. Agronomy. 2025; 15(6):1439. https://doi.org/10.3390/agronomy15061439
Chicago/Turabian StyleChen, Xiangdong, Haobo Wang, Kaiqiang Fang, Guohui Ding, Nannan Dong, Na Dong, Man Zhang, Yihao Zang, and Zhengang Ru. 2025. "Genome-Wide Association Analysis Identifies Loci for Powdery Mildew Resistance in Wheat" Agronomy 15, no. 6: 1439. https://doi.org/10.3390/agronomy15061439
APA StyleChen, X., Wang, H., Fang, K., Ding, G., Dong, N., Dong, N., Zhang, M., Zang, Y., & Ru, Z. (2025). Genome-Wide Association Analysis Identifies Loci for Powdery Mildew Resistance in Wheat. Agronomy, 15(6), 1439. https://doi.org/10.3390/agronomy15061439