Glomalin-Related Soil Proteins as Indicator of Soil Quality in Pig-Fertigated and Rainfed Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Site Selection and Sampling Collection
2.3. Soil Physical and Chemical Characterization
2.4. Determination of Soil Enzyme Activity
2.5. Determination of Soil Spores and GRSPs
2.6. Soil Microbial Community Analysis
2.7. Statistical Analysis
3. Results
3.1. Soil Chemical Properties
3.2. Correlation Matrix and Glomalin Fractions
3.3. Enzymatic Activity
3.4. Relationships Between GRSP and Soil Quality Index (SQIFERTBio)
3.5. Soil Protein Related to Glomalin and Its Contribution to Total Soil Carbon
3.6. Microbial Diversity and Community Composition
3.7. Influence of Irrigated and Rainfed Management Systems on Soil Microbial Community Structure
3.7.1. Bacterial Community Structure
3.7.2. Fungal Community Structure and Absence of AMF
3.8. Principal Component Analysis
4. Discussion
4.1. Irrigation Effects on Soil Physical Properties and Enzyme Activity
4.2. Microbial Community and Glomalin Responses to Water and Nutrient Availability
4.3. Glomalin Fractions and Their Relationship with Soil Quality Indicators
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doran, J.W.; Parkin, T.B. Defining and Assessing Soil Quality. In Defining Soil Quality for a Sustainable Environment; Wiley: Minneapolis, MN, USA, 1994; pp. 3–21. Available online: https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaspecpub35.c1 (accessed on 19 May 2025).
- Karlen, D.L.; Veum, K.S.; Sudduth, K.A.; Obrycki, J.F.; Nunes, M.R. Soil Health Assessment: Past Accomplishments, Current Activities, and Future Opportunities. Soil Tillage Res. 2019, 195, 104365. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Freeman, C.; Ostle, N.J. Microbial contributions to climate change through carbon cycle feedbacks. ISME J. 2008, 2, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Curtright, A.J.; Tiemann, L.K. Meta-analysis dataset of soil extracellular enzyme activities in intercropping systems. Data Brief 2021, 38, 107284. [Google Scholar] [CrossRef]
- Nkongolo, K.K.; Narendrula-Kotha, R. Advances in monitoring soil microbial community dynamic and function. J. Appl. Genet. 2020, 61, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, J.; Apothéloz-Perret-Gentil, L.; Altermatt, F. Environmental DNA: What’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Mol. Ecol. 2020, 29, 4258–4264. [Google Scholar] [CrossRef]
- Wright, S.F.; Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 1996, 161, 575–586. Available online: https://journals.lww.com/soilsci/fulltext/1996/09000/extraction_of_an_abundant_and_unusual_protein_from.3.aspx (accessed on 29 May 2022). [CrossRef]
- Zhu, R.; Zheng, Z.; Li, T.; He, S.; Zhang, X.; Wang, Y.; Liu, T. Effect of tea plantation age on the distribution of glomalin-related soil protein in soil water-stable aggregates in southwestern China. Environ. Sci. Pollut. Res. 2019, 26, 1973–1982. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhong, Z.; Wang, Q.; Wang, H.; Fu, Y.; He, X. Glomalin contributed more to carbon, nutrients in deeper soils, and differently associated with climates and soil properties in vertical profiles. Sci. Rep. 2017, 7, 13003. [Google Scholar] [CrossRef]
- Singh, A.K.; Chen, C.; Zhu, X.; Yang, B.; Khan, M.N.; Zakari, S.; Jiang, X.J.; del Mar Alguacil, M.; Liu, W. Unraveling the impact of global change on glomalin and implications for soil carbon storage in terrestrial ecosystems. Resour. Environ. Sustain. 2024, 18, 100174. [Google Scholar] [CrossRef]
- Purin, S.; Rillig, M.C. The arbuscular mycorrhizal fungal protein glomalin: Limitations, progress, and a new hypothesis for its function. Pedobiologia 2007, 51, 123–130. [Google Scholar] [CrossRef]
- Fokom, R.; Teugwa Mofor, C.; Nana Wakam, L.; Ngonkeu Megapche, E.L.; Tchameni, S.; Nwaga, D.; Rillig, C.M.; Amvam Zollo, P.H. Glomalin, carbon, nitrogen and soil aggregate stability as affected by land use changes in the humid forest zone in South Cameroon. Appl. Ecol. Environ. Res. 2013, 11, 581–592. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.T.; Dos Anjos, L.H.C.; De Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; De Almeida, J.A.; de Araujo Filho, J.C.; De Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Embrapa: Brasília, Brazil, 2018; Available online: https://www.agroapi.cnptia.embrapa.br/portal/assets/docs/SiBCS-2018-ISBN-9788570358004.pdf (accessed on 19 May 2025)ISBN -9788570358004.
- Lathuilliere, M.J.; Dalmagro, H.J.; Black, T.A.; de Arruda, P.H.Z.; Hawthorne, I.; Couto, E.G.; Johnson, M.S. Rain-fed and irrigated cropland-atmosphere water fluxes and their implications for agricultural production in Southern Amazonia. Agric. For. Meteorol. 2018, 256, 407–419. [Google Scholar] [CrossRef]
- Salton, J.C.; Silva, W.M.; Tomazi, M.; Hernani, L.C. Determinação da Agregação do Solo-Metodologia em uso na Embrapa Agropecuária Oeste. 2012. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/952808/1/COT2012184.p (accessed on 19 May 2025).
- Kemper, W.D.; Rosenau, R.C. Aggregate Stability and Size Dlstributlon. In Methods 339 Soil Analysis Part 1 Physical and Mineralogical Methods; United States Department of Agriculture: Washington, DC, USA, 1986; Volume 340. Available online: https://eprints.nwisrl.ars.usda.gov/id/eprint/732 (accessed on 27 May 2025).
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo; Embrapa: Brasília, Brazil, 2017; p. 574. [Google Scholar]
- Mendes, I.C.; Martinhão Gomes Sousa, D.; Dario Dantas, O.; Alves Castro Lopes, A.; Bueno Reis Junior, F.; Ines Oliveira, M.; Montandon Chaer, G. Soil quality and grain yield: A win–win combination in clayey tropical oxisols. Geoderma 2021, 388, 114880. [Google Scholar] [CrossRef]
- Sousa, D.M.G.; Lobato, E. Cerrado: Correção do Solo e Adubação; Embrapa Informação Tecnológica: Brasília, Brazil, 2004; Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/555355/1/Cerrado-Correcao-solo-adubacao-ed-02-8a-impressao-2017.pdf (accessed on 29 May 2022).
- Silveira, A.P.D.; Abreu, M.F.; Cantarella, H.; Zambrosi, F.C.B. Determinação da Atividade de Enzimas em Solos. Available online: http://lab.iac.sp.gov.br/Publicacao/ProtocoloIACEnzimasSolosAbril2022.pdf (accessed on 29 May 2022).
- Reyna, D.L.; Wall, L.G. Revision of two colorimetric methods to quantify glomalin-related compounds in soils subjected to different managements. Biol. Fertil. Soils 2014, 50, 395–400. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Gerdemann, J.; Nicolson, T. Spores of mycorrhizal Endogone species extracted from soil by wet sieving & decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef]
- Parada, A.E.; Needham, D.M.; Fuhrman, J.A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 2016, 18, 1403–1414. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- Smith, D.P.; Peay, K.G. Sequence Depth, Not PCR Replication, Improves Ecological Inference from Next Generation DNA Sequencing. PLoS ONE 2014, 9, e90234. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ramsey, P.W.; Morris, S.; Paul, E.A. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 2003, 253, 293–299. [Google Scholar] [CrossRef]
- Yang, H.; Wang, G.; Wang, J.; Xiao, Q.; Li, Z.; De Clerck, C.; Meersmans, J.; Colinet, G.; Zhang, W. No-tillage facilitates soil organic carbon sequestration by enhancing arbuscular mycorrhizal fungi-related soil proteins accumulation and aggregation. Catena 2024, 245, 108323. [Google Scholar] [CrossRef]
- Silva, T.P.; de Sousa Morais, I.; Dos Santos, G.L.; Zonta, E.; da Silva Rodrigues Pinto, L.A.; de Souza Fagundes, H.; Pereira, M.G. Biogenic and physicogenic aggregates as indicators of quality in soils with sandy texture in areas of organic agriculture. Rev. Bras. De Cienc. Do Solo 2023, 47, e0230007. [Google Scholar] [CrossRef]
- Melo, T.R.D.; Pereira, M.G.; Cesare Barbosa, G.M.D.; Silva Neto, E.C.D.; Andrello, A.C.; Filho, J.T. Biogenic aggregation intensifies soil improvement caused by manures. Soil Tillage Res. 2019, 190, 186–193. [Google Scholar] [CrossRef]
- Pinto, L.A.D.S.R.; Torres, J.L.R.; Morais, I.S.; Ferreira, R.; da Silva Júnior, W.F.; Lima, S.S.; Beutler, S.J.; Pereira, M.G. Physicogenic and biogenic aggregates under different management systems in the cerrado region, Brazil. Rev. Bras. De Cienc. Do Solo 2021, 45, e0200114. [Google Scholar] [CrossRef]
- Loss, A.; Ventura, B.S.; Júnior, V.M.; Gonzatto, R.; Battisti, L.F.Z.; Lintemani, M.G.; da Costa Erthal, M.E.; Vidal, R.F.; Scopel, G.; Lourenzi, C.R.; et al. Carbon, nitrogen, and aggregation index in Ultisol with 11 years of application of animal manures and mineral fertilizer. J. Soil Water Conserv. 2021, 76, 547–557. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Lewu, F.B.; Mulidzi, R.; Ncube, B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant Nutr. 2017, 17, 794–807. [Google Scholar] [CrossRef]
- Jiang, Y.; Kuang, D.; Li, W.; Han, C.; Deng, H.; Liu, K.; Huang, S.; Zhong, W. Predominant effects of soil organic carbon quality on phosphatase activity in upland Ultisols under long-term fertilizations. Geoderma 2025, 454, 117186. [Google Scholar] [CrossRef]
- Nannipieri, P.; Trasar-Cepeda, C.; Dick, R.P. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 2017, 54, 11–19. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, Q.; Huang, Y.; Cai, Z.; Li, D.; Wu, L.; Meersmans, J.; Colinet, G.; Zhang, W. Long-term manuring facilitates glomalin-related soil proteins accumulation by chemical composition shifts and macro-aggregation formation. Soil Tillage Res. 2024, 235, 105904. [Google Scholar] [CrossRef]
- Frenk, S.; Hadar, Y.; Minz, D. Resilience of soil bacterial community to irrigation with water of different qualities under Mediterranean climate. Environ. Microbiol. 2014, 16, 559–569. [Google Scholar] [CrossRef]
- Juan-Ovejero, R.; Briones, M.J.I.; Öpik, M. Fungal diversity in peatlands and its contribution to carbon cycling. Appl. Soil Ecol. 2020, 146, 103393. [Google Scholar] [CrossRef]
- Procópio, L.; Barreto, C. The soil microbiomes of the Brazilian Cerrado. J. Soils Sediments 2021, 21, 2327–2342. [Google Scholar] [CrossRef]
- Xu, J.; Liu, S.; Song, S.; Guo, H.; Tang, J.; Yong, J.W.H.; Ma, Y.; Chen, X. Arbuscular mycorrhizal fungi influence decomposition and the associated soil microbial community under different soil phosphorus availability. Soil Biol. Biochem. 2018, 120, 181–190. [Google Scholar] [CrossRef]
- Aliasgharzad, N.; Malekzadeh, E. Glomalin and Carbon Sequestration in Terrestrial Ecosystems. In Arbuscular Mycorrhizal Fungi and Higher Plants: Fundamentals and Applications; Ahammed, G.J., Hajiboland, R., Eds.; Springer Nature: Singapore, 2024; pp. 239–258. [Google Scholar] [CrossRef]
- Cissé, G.; van Oort, F.; Chenu, C.; Essi, M.; Staunton, S. Is the operationally defined fraction of soil organic matter, “GRSP” (glomalin-related soil protein), stable in soils? Evidence from trends in long-term bare fallow soil. Eur. J. Soil Sci. 2021, 72, 1101–1112. [Google Scholar] [CrossRef]
- Yang, H.; Cai, Z.; De Clerck, C.; Meersmans, J.; Colinet, G.; Zhang, W. Long-Term Manuring Enhanced Compositional Stability of Glomalin-Related Soil Proteins through Arbuscular Mycorrhizal Fungi Regulation. Agriculture 2024, 14, 1510. [Google Scholar] [CrossRef]
- Kryukov, A.A.; Gorbunova, A.O.; Machs, E.M.; Mikhaylova, Y.V.; Rodionov, A.V.; Zhurbenko, P.M.; Yurkov, A.P. Perspectives of using Illumina MiSeq for identification of arbuscular mycorrhizal fungi. Vavilovskii Zhurnal Genet. I Sel. 2020, 24, 158–167. [Google Scholar] [CrossRef]
- Cruz-Paredes, C.; Diera, T.; Davey, M.; Rieckmann, M.M.; Christensen, P.; Dela Cruz, M.; Laursen, K.H.; Joner, E.J.; Christensen, J.H.; Nybroe, O.; et al. Disentangling the abiotic and biotic components of AMF suppressive soils. Soil Biol. Biochem. 2021, 159, 108305. [Google Scholar] [CrossRef]
- Hamaoui, G.S.; Rodrigues, J.L.M.; Bohannan, B.J.M.; Tiedje, J.M.; Nüsslein, K. Land-use change drives abundance and community structure alterations of thaumarchaeal ammonia oxidizers in tropical rainforest soils in Rondônia, Brazil. Appl. Soil Ecol. 2016, 107, 48–56. [Google Scholar] [CrossRef]
- Jia, J.; de Goede, R.; Li, Y.; Zhang, J.; Wang, G.; Zhang, J.; Creamer, R. Unlocking soil health: Are microbial functional genes effective indicators? Soil Biol. Biochem. 2025, 204, 109768. [Google Scholar] [CrossRef]
- Moura, J.B.; Ramos, M.L.G.; Freitas Konrad, M.L.; Saggin Júnior, O.J.; Santos Lucas, L.; Ribeiro Junior, W.Q. Effects of direct and conventional planting systems on mycorrhizal activity in wheat grown in the Cerrado. Sci. Rep. 2024, 14, 24793. [Google Scholar] [CrossRef]
- Chi, G.-G.; Kumar, S.A.; and Wu, Q.-S. Exogenous easily extractable glomalin-related soil protein improves drought tolerance of trifoliate orange. Arch. Agron. Soil Sci. 2018, 64, 1341–1350. [Google Scholar] [CrossRef]
- Li, X.; Feng, G.; Tewolde, H.; Adeli, A.; Jenkins, J.N. Critical soil organic carbon for improving available water content of silt loam soils. Soil Use Manag. 2024, 40, e13144. [Google Scholar] [CrossRef]
- Singh, A.K.; Zhu, X.; Chen, C.; Wu, J.; Yang, B.; Zakari, S.; Jiang, X.J.; Singh, N.; Liu, W. The role of glomalin in mitigation of multiple soil degradation problems. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1604–1638. [Google Scholar] [CrossRef]
- Akter, S.; Mahmud, U.; Shoumik, B.A.A.; Khan, M.Z. Although invisible, fungi are recognized as the engines of a microbial powerhouse that drives soil ecosystem services. Arch. Microbiol. 2025, 207, 79. [Google Scholar] [CrossRef]
- Seeliger, M.; Hilton, S.; Muscatt, G.; Walker, C.; Bass, D.; Albornoz, F.; Standish, R.J.; Gray, N.D.; Mercy, L.; Rempelos, L.; et al. New fungal primers reveal the diversity of Mucoromycotinian arbuscular mycorrhizal fungi and their response to nitrogen application. Env. Microbiome 2024, 19, 71. [Google Scholar] [CrossRef]
System/Depth | pH | MO | P | K | Ca | Mg | CTC | SatAl | Clay |
---|---|---|---|---|---|---|---|---|---|
Irrigated-0–10 cm | 6.18 ± 0.23 a | 6.07 ± 0.6 a | 67.0 ± 22.9 a | 48.4 ± 11.0 a | 4.09 ± 0.75 a | 0.97 ± 0.23 a | 8.77 ± 0.59 a | 0.0 ± 0.0 a | 744 ± 32.0 a |
Irrigated-10–20 cm | 5.99 ± 0.11 b | 3.83 ± 0.3 b | 17.2 ± 7.42 b | 25.3 ± 9.69 b | 1.08 ± 0.34 b | 0.25 ± 0.08 b | 6.56 ± 0.55 b | 6.12 ± 2.46 b | 707 ± 25.5 b |
Irrigated-20–30 cm | 6.03 ± 0.13 ab | 3.2 ± 0.2 c | 4.59 ± 1.52 c | 25.9 ± 10.0 b | 0.64 ± 0.2 ab | 0.18 ± 0.09 ab | 5.15 ± 0.36 c | 5.93 ± 3.73 b | 773 ± 28.5 ab |
Rainfed-0–10 cm | 5.81 ± 0.10 a | 5.35 ± 0.86 a | 42.2 ± 20.1 a | 78.3 ± 32.2 a | 3.91 ± 1.22 a | 0.99 ± 0.32 a | 8.13 ± 0.69 a | 0.0 ± 0.0 a | 729 ± 25.4 a |
Rainfed-10–20 cm | 6.4 ± 0.27 b | 3.59 ± 0.32 b | 10.7 ± 7.36 b | 38.8 ± 7.16 b | 1.27 ± 0.35 b | 0.25 ± 0.09 b | 5.73 ± 0.45 b | 2.66 ± 2.7 b | 785 ± 35.8 b |
Rainfed-20–30 cm | 6.21 ± 0.12 ab | 2.92 ± 0.23 c | 2.64 ± 0.93 c | 35.5 ± 7.14 b | 0.7 ± 0.21 ab | 0.15 ± 0.08 ab | 4.36 ± 0.35 c | 2.68 ± 2.59 b | 746 ± 35.8 ab |
Irrigated-Overall | 6.07 ± 0.16 a | 4.37 ± 0.36 a | 29.6 ± 10.61 a | 33.2 ± 10.23 a | 1.94 ± 0.43 a | 0.47 ± 0.13 a | 6.83 ± 0.5 a | 4.02 ± 2.06 a | 741.33 ± 28.67 a |
Rainfed– Overall | 6.14 ± 0.16 a | 3.95 ± 0.47 a | 18.51 ± 9.46 b | 50.87 ± 15.5 b | 1.96 ± 0.59 a | 0.46 ± 0.17 a | 6.07 ± 0.5 b | 1.78 ± 1.76 b | 753.33 ± 32.33 a |
Variable | Irrigated β | Irrigated t | Irrigated p | Rainfed β | Rainfed t | Rainfed p |
---|---|---|---|---|---|---|
Acid phosphatase | 0.000 * | 3.331 | 0.002 * | 0.000 * | 1.334 | 0.190 |
BS | 0.039 * | 0.169 | 0.867 | −0.370 | −1.830 | 0.075 |
EEGRSP | 0.177 | 3.409 | 0.002 * | 0.501 | 5.046 | 0.000 * |
GMD | 0.013 * | 0.169 | 0.867 | 0.013 | 0.281 | 0.780 |
Intercept | −0.396 | −1.407 | 0.168 | 0.369 | 1.315 | 0.196 |
Spore | 0.001 * | 2.076 | 0.045 | 0.002 * | 1.778 | 0.083 |
TGRSP | 0.239 | 3.906 | 0.000 * | 0.162 | 5.550 | 0.000 * |
Variables | Management Practices | Depths (cm) | Means |
---|---|---|---|
T-GRSP (mg g−1) | Irrigated | 0–10 | 2.07 ± 0.16 a |
10–20 | 1.64 ± 0.14 b | ||
20–30 | 1.64 ± 0.14 b | ||
Mean * | 1.78 ± 0.25 A | ||
Rainfed | 0–10 | 1.60 ± 0.13 a | |
10–20 | 1.18 ± 0.18 b | ||
20–30 | 0.44 ± 0.06 c | ||
Mean | 1.07 ± 0.50 B | ||
C_T-GRSP (mg g−1) | Irrigated | 0–10 | 0.89 ± 0.07 a |
10–20 | 0.71 ± 0.06 b | ||
20–30 | 0.71 ± 0.06 b | ||
Mean | 0.77 ± 0.11 A | ||
Rainfed | 0–10 | 0.69 ± 0.06 a | |
10–20 | 0.51 ± 0.08 b | ||
20–30 | 0.19 ± 0.03 c | ||
Mean | 0.46 ± 0.22 B | ||
C_T-GRSP/CS (%) | Irrigated | 0–10 | 2.56 ± 0.32 c |
10–20 | 3.19 ± 0.25 b | ||
20–30 | 3.82 ± 0.39 a | ||
Mean | 3.19 ± 0.61 A | ||
Rainfed | 0–10 | 2.27 ± 0.40 b | |
10–20 | 2.46 ± 0.44 a | ||
20–30 | 1.12 ± 0.17 c | ||
Mean | 1.95 ± 0.69 B | ||
EE-GRSP (mg g−1) | Irrigated | 0–10 | 1.17 ± 0.23 a |
10–20 | 0.60 ± 0.14 b | ||
20–30 | 0.42 ± 0.07 c | ||
Mean | 0.73 ± 0.36 A | ||
Rainfed | 0–10 | 1.12 ± 0.23 a | |
10–20 | 0.72 ± 0.14 b | ||
20–30 | 0.45 ± 0.07 c | ||
Mean | 0.76 ± 0.32 A | ||
C_EE-GRSP (mg g−1) | Irrigated | 0–10 | 0.50 ± 0.10 a |
10–20 | 0.26 ± 0.06 b | ||
20–30 | 0.18 ± 0.03 c | ||
Mean | 0.31 ± 0.15 A | ||
Rainfed | 0–10 | 0.48 ± 0.10 a | |
10–20 | 0.31 ± 0.06 a | ||
20–30 | 0.19 ± 0.03 b | ||
Mean | 0.33 ± 0.14 A | ||
C_EE-GRSP/CS (%) | Irrigated | 0–10 | 1.44 ± 0.31 a |
10–20 | 1.17 ± 0.30 ab | ||
20–30 | 0.97 ± 0.18 b | ||
Mean | 1.19 ± 0.33 B | ||
Rainfed | 0–10 | 1.59 ± 0.40 a | |
10–20 | 1.50 ± 0.36 a | ||
20–30 | 1.15 ± 0.15 b | ||
Mean | 1.41 ± 0.37 A |
Bacterial Community | Fungal Community | |||||
---|---|---|---|---|---|---|
Protected Area | Rainfed | Irrigated | Protected Area | Rainfed | Irrigated | |
Taxa_S | 51 | 45 | 61 | 277 | 201 | 317 |
Individuals | 10,208 | 5060 | 3841 | 72,800 | 68,119 | 102,151 |
Dominance_D | 0.09573 | 0.1142 | 0.05446 | 0.397 | 0.2955 | 0.2208 |
Simpson_1-D | 0.9043 | 0.8858 | 0.9455 | 0.603 | 0.7045 | 0.7792 |
Shannon_H’ | 2.84 | 2.89 | 3.44 | 2.11 | 2.46 | 2.80 |
Evenness_e^H/S | 0.3357 | 0.3984 | 0.5113 | 0.02971 | 0.05842 | 0.0518 |
System | Depth (cm) | PC1 Mean ± SD | PC2 Mean ± SD |
---|---|---|---|
Irrigated | 0–10 | 1.62 ± 0.34 | −0.03 ± 0.89 |
10–20 | −0.38 ± 0.28 | 0.21 ± 0.69 | |
20–30 | −0.53 ± 0.29 | −0.74 ± 0.86 | |
Rainfed | 0–10 | 0.86 ± 0.44 | 0.74 ± 0.85 |
10–20 | −0.47 ± 0.33 | 0.28 ± 0.71 | |
20–30 | −1.09 ± 0.44 | −0.45 ± 1.26 | |
Pivô | Overall | 0.24 ± 1.02 a | −0.19 ± 0.90 a |
Sequeiro | Overall | −0.24 ± 0.91 b | 0.19 ± 1.07 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, J.G.; Couto, E.G.; Weber, O.L.S.; Torres, G.N.; Moura, J.M.; Tanaka, R.T.; Soares, M.A. Glomalin-Related Soil Proteins as Indicator of Soil Quality in Pig-Fertigated and Rainfed Systems. Agronomy 2025, 15, 1332. https://doi.org/10.3390/agronomy15061332
Miranda JG, Couto EG, Weber OLS, Torres GN, Moura JM, Tanaka RT, Soares MA. Glomalin-Related Soil Proteins as Indicator of Soil Quality in Pig-Fertigated and Rainfed Systems. Agronomy. 2025; 15(6):1332. https://doi.org/10.3390/agronomy15061332
Chicago/Turabian StyleMiranda, Josiquele G., Eduardo G. Couto, Oscarlina L. S. Weber, Gilmar N. Torres, James M. Moura, Ricardo T. Tanaka, and Marcos A. Soares. 2025. "Glomalin-Related Soil Proteins as Indicator of Soil Quality in Pig-Fertigated and Rainfed Systems" Agronomy 15, no. 6: 1332. https://doi.org/10.3390/agronomy15061332
APA StyleMiranda, J. G., Couto, E. G., Weber, O. L. S., Torres, G. N., Moura, J. M., Tanaka, R. T., & Soares, M. A. (2025). Glomalin-Related Soil Proteins as Indicator of Soil Quality in Pig-Fertigated and Rainfed Systems. Agronomy, 15(6), 1332. https://doi.org/10.3390/agronomy15061332