Effect of Farming System and Irrigation on Nutrient Content and Health-Promoting Properties of Carrot Roots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design and Field Management
- I.
- Farming system
- A.
- organic—without chemical plant protection agents and NPK fertilization
- B.
- conventional—with the use of chemical plant protection agents and NPK fertilization in the available assortment and in full 100% recommended doses for a given plant species.
- C.
- integrated—with the sustainable use of chemical plant protection agents and NPK fertilization, where doses are reduced by 50%.
- II.
- Crop irrigation
- 1.
- no irrigation as the control.
- 2.
- double irrigation (at the beginning of crop vegetation, namely at the 2–3-leaf stage and at the stage of critical demand for water, which are the early stages of storage root development).
- 3.
- multiple irrigations (occasional) resulting from monitoring the drought condition in the field *.
2.2. Plant Sampling, Measurement, and Chemical Analyses of Carrot Root Grain
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. The Effect of the Farming System on the Productivity and Nutritional Value of Carrot Roots
4.2. The Effect of Irrigation on the Productivity and Nutritional Value of Carrot Roots
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, K.D.; Karki, S.; Thakur, N.S.; Attri, S. Chemical composition, functional properties and processing of carrot—A review. J. Food Sci. Technol. 2012, 49, 22–32. [Google Scholar] [CrossRef]
- Harling, H. Exploring the Nutritional Value of Carrots and Determining Attributes That Are Favored by Consumers. Master’s Thesis, University of Maine, Orono, ME, USA, August 2017. Available online: https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=1457&context=honors (accessed on 20 April 2025).
- Ikram, A.; Rasheed, A.; Ahmad Khan, A.; Khan, R.; Ahmad, M.; Bashir, R.; Hassan Mohamed, M. Exploring the health benefits and utility of carrots and carrot pomace: A systematic review. Int. J. Food Prop. 2024, 27, 180–193. [Google Scholar] [CrossRef]
- Kibblewhite, M.G.; Ritz, K.; Swift, M.J. Soil health in agricultural systems. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Majkowska-Gadomska, B.; Wierzbicka, B. The yield and nutritive value of selected carrot cultivars with orange- and purple-colored storage roots. Acta Sci. Pol. Hortorum Cultus 2010, 9, 75–84. [Google Scholar]
- Yang, J.; Lei, K.; Khu, S.; Meng, W. Assessment of water resources carrying capacity for sustainable development based on a system dynamics model: A case study of Tieling City, China. Water Resour. Manag. 2015, 29, 885–899. [Google Scholar] [CrossRef]
- Kowalczyk, Z.; Kuboń, M. Assessing the impact of water use in conventional and organic carrot production in Poland. Sci. Rep. 2022, 12, 3522. [Google Scholar] [CrossRef]
- Wayne, P.H. Implications of atmospheric and climate change for crop yield and water use efficiency. Crop Sci. 2002, 42, 131–139. [Google Scholar] [CrossRef]
- Aerts, J.C.J.H.; Droogers, P. (Eds.) Climate Change in Contrasting River Basins: Adaptation Strategies for Water, Food and Environment; CAB International: Wallingford, UK, 2004; ISBN 0851990762/9780851990767. [Google Scholar]
- Döll, P. Impact of climate change and variability on irrigation requirements: A global perspective. Clim. Change 2002, 54, 269–293. [Google Scholar] [CrossRef]
- Quezada, C.; Fischer, S.; Campos, J.; Ardiles, D. Water requirements and water use efficiency of carrot under drip irrigation in haploxerand soil. Soil Sci. Plant Nutr. 2006, 11, 16–28. [Google Scholar] [CrossRef]
- Gavrilescu, M. Water, Soil, and Plants Interactions in a Threatened Environment. Water 2021, 13, 2746. [Google Scholar] [CrossRef]
- DeCarvalho, D.F.; Gomes, D.P.; DeOliveira, D.H.; Guerra, J.G.M.; Rouws, J.R.C.; DeOliveira, F.L. Carrot yield and water-use efficiency under different mulching, organic fertilization and irrigation levels. Agric. Environ. Eng. 2018, 22, 445–450. [Google Scholar] [CrossRef]
- Gaspar, P.; Mesias, F.J.; Escribano, M.; Rodriguez de Ledesma, A.; Pulido, F. Economic and management characterization of dehesa farms: Implications for their sustainability. Agrofor. Syst. 2007, 71, 151–162. [Google Scholar] [CrossRef]
- Hallmann, E. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactivecompounds in selected tomato types. J. Sci. Food Agric. 2012, 92, 2840–2848. [Google Scholar] [CrossRef]
- Boschiero, M.; De Laurentiis, V.; Caldeira, C.; Sala, S. Comparison of organic and conventional cropping systems: A systematicreview of life cycle assessment studies. Environ. Impact Assess. Rev. 2023, 102, 107187. [Google Scholar] [CrossRef]
- Kwasek, M.; Prandecki, K.; Zegar, J.S. From the Research on Socially-Sustainable Agriculture; Zegar, J.S., Ed.; IERiGZ-PIB: Warsaw, Poland, 2015; Volume 34, Available online: https://open.icm.edu.pl/server/api/core/bitstreams/33c6641d-47f2-4461-b7b4-ba14c72ef135/content (accessed on 20 April 2025).
- Cristache, S.-E.; Vuta, M.; Marin, E.; Cioacă, S.-I.; Vută, M. Organic versus Conventional Farming—A Paradigm for the Sustainable Development of the European Countries. Sustainability 2018, 10, 4279. [Google Scholar] [CrossRef]
- Bowler, I. Sustainable agriculture as an alternative path of farm business development. In Contemporary Rural Systems in Transitions; Bowler, I., Bryant, C.R., Nellis, M.D., Eds.; Redwood Press: Melksham, UK, 1992; pp. 237–253. ISBN 978-0851988139. [Google Scholar]
- Regulation (EU) 2018/848 of The European Parliament and of the Council of 30 May 2018 on Organic Production and La-Belling of Organic Products and Repealing Council Regulation (EC) No 834/2007; (OJ L 150 14.6.2018, p. 1). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02018R0848-20220101 (accessed on 14 April 2025).
- Eyhorn, F.; Muller, A.; Reganold, J.P.; Frison, E.; Herren, H.R.; Luttikholt, L.; Mueller, A.; Sanders, J.; Scialabba, N.E.H.; Seufert, V.; et al. Sustainability in global agriculture driven by organic farming. Nat. Sustain. 2019, 2, 253–255. [Google Scholar] [CrossRef]
- Ponti, T.; Rijk, B.; van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Wood, S.A.; Baudron, R. Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agric. Ecosyst. Environ. 2018, 266, 100–108. [Google Scholar] [CrossRef]
- Tejada, M.; Benítez, C. Effects of different organic wastes on soil biochemical properties and yield in an olive grove. Appl. Soil Ecol. 2020, 146, 103371. [Google Scholar] [CrossRef]
- Guo, J.X.; Hu, X.Y.; Gao, L.M.; Xie, K.L.; Ling, N.; Shen, Q.R.; Hu, S.J.; Guo, S.W. The rice production practices of high yield and high nitrogen use efficiency in Jiangsu, China. Sci. Rep. 2017, 7, 2101. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Gupta, R.K.; Verma, V.; Kaur, M.; Behera, S.K.; Singh, P. Residual effect of organic and inorganic fertilizers on growth, yield and nutrient uptake in wheat under a basmati rice–wheat cropping system in north-western India. Agriculture 2023, 13, 556. [Google Scholar] [CrossRef]
- Giampieri, F.; Mazzoni, L.; Cianciosi, D.; Alvarez-Suarez, J.M.; Regolo, L.; Sánchez-González, C.; Capocasa, F.; Xiao, J.; Mezzetti, B.; Battino, M. Organic vs conventional plant-based foods: A review. Food Chem. 2022, 383, 132352. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC) No. 730/1999 Laying Down the Marketing Standard for Carrots. Official Journal L 93, 8 April 1999, pp. 14–19. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC036521/ (accessed on 14 April 2025).
- PN-90/A-75101/03; Fruit and Vegetable Products. Sample Preparation and Physicochemical Test Methods. Determination of Dry Mass Content by Weight. Regulation of the Minister of Agriculture and Food Economy of 18 March 1994 on the Obligation to Apply Polish Standards. (Dz. U. Nr 40, poz. 152). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU19940400152/O/D19940152.pdf (accessed on 18 April 2025).
- PN-90/A-75101/11; Fruit and Vegetable Products. Sample Preparation and Physicochemical Testing Methods. Determination of Vitamin C Content. Regulation of the Minister of Agriculture and Food Economy of 18 March 1994 on the Obligation to Apply Polish Standards. (Dz. U. Nr 40, poz. 152). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU19940400152/O/D19940152.pdf (accessed on 16 April 2025).
- ISO 6557-2:1984; Fruits, Vegetables and Derived Products—Determination of Ascorbic Acid Content–Part 2: Routine Methods. International Organization for Standardization: Geneva, Switzerland, 1984. Available online: https://cdn.standards.iteh.ai/samples/12957/caba9f31d48b4ddaa9797bc12e810940/ISO-6557-2-1984.pdf (accessed on 16 April 2025).
- PN-90/A-75101/07; Fruit and Vegetable Products. Sample Preparation and Physicochemical Test Methods, Determination of Sugar Content and Sugar-Free Extract. Regulation of the Minister of Agriculture and Food Economy of 18 March 1994 on the Obligation to Apply Polish Standards. (Dz. U. Nr 40, poz. 152). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU19940400152/O/D19940152.pdf (accessed on 16 April 2025).
- ICUMSA—International Commission for Uniform Methods of Sugar Analysis. The Determination of Reducing Sugars in Cane Raw Sugar by the Luff Schoorl Procedure-Official; Verlag Bartens Editor: Berlin, Germany, 2009; Available online: https://www.bartens.com/books/icumsa-su-2009e.pdf (accessed on 16 April 2025).
- Hegedusova, A.; Šlosar, M.; Mezeyová, I.; Hegedus, O.; Andrejiová, A.; Szarka, K. Methods for Estimation of Selected Biologically Active Substances; Slovak University of Agriculture: Nitra, Slovakia, 2018; p. 95. [Google Scholar]
- Biehler, E.; Mayer, F.; Hoffmann, L.; Krause, E.; Bohn, T. Comparison of 3 spectrophotometric methods for carotenoid determination in frequently consumed fruits and vegetables. J. Food Sci. 2010, 75, C55–C61. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- AOAC. Total dietary fiber in foods enzymatic–gravimetric–liquid chromatographic method. Official Method 2009.01 (45.4.17). In AOAC Official Methods of Analysis; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2012; Available online: https://prod-media.megazyme.com/media/pdf/8b/34/e0/37b-insoluble-soluble-and-total-dietary-fiber-in-foods.pdf (accessed on 16 April 2025).
- PN-EN 15111; Foodstuffs—Determination of Trace Elements—Determination of Iodine by ICP-MS (Inductively Coupled Plasma Mass Spectrometry). Comite Europeen de Normalisation: Warszawa, Poland, 2007. Available online: https://www.intertekinform.com/preview/98696756201.pdf?sku=863009_saig_nsai_nsai_2052938&srsltid=AfmBOopmgWX4H19D89AuXDJOG3Wy-2Ur398uILZxvBxyYH1SsdY5l9YA (accessed on 16 April 2025).
- Emmons, C.L.; Peterson, D.M. Antioxidant activity and phenolic contents of oat groats and hulls. Cereal Chem. 1999, 76, 902–906. [Google Scholar] [CrossRef]
- Emmons, C.L.; Peterson, D.M.; Paul, G.L. Antioxidants capacity of oats (Avena sativa L.) extracts. 2. In vitro antioxidant activityand content of phenolic and tocol antioxidants. J. Agric. Food Chem. 1999, 47, 4894–4898. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Cortesi, M.L.; Vollano, L.; Peruzy, M.F.; Marrone, R.; Mercogliano, R. Determination of nitrate and nitrite levels in infant foods marketed in Southern Italy. CyTA J. Food. 2015, 13, 629–634. [Google Scholar] [CrossRef]
- Cwalina-Ambroziak, B. Effects of different farming systems and crop protection strategies on the health status and yield of carrots Daucus carota L. ssp. sativus. Acta Sci. Pol. Hortorum Cultus 2022, 21, 3–17. [Google Scholar] [CrossRef]
- Prabhakar, M.; Srinivas, K.; Hedge, D.M. Effect of irrigation regimes and nitrogen fertilization on growth, yield, N uptake, and water use of carrot (Daucus carota L.). Gartenbauwissenschaft 1991, 56, 206–209. [Google Scholar]
- Bender, I.; Ess, M.; Matt, D.; Moor, U.; Tõnutare, T.; Luik, A. Quality of organic and conventional carrots. Agron. Res. 2009, 7, 572–577. [Google Scholar]
- Bender, I.; Moor, U.; Luik, A. The effect of growing systems on the quality of carrots. Res. Rural Dev. 2015, 1, 118–123. [Google Scholar]
- Krejčová, A.; Návesník, J.; Jičínská, J.; Černohorský, T. An elemental analysis of conventionally, organically and self-grown carrots. Food Chem. 2016, 192, 242–249. [Google Scholar] [CrossRef]
- Bender, I.; Ingver, A. The influence of production methods on yield and quality of carrots and swedes. Acta Hortic. 2012, 960, 293–298. [Google Scholar] [CrossRef]
- Wierzbowska, J.; Cwalina-Ambroziak, B.; Zalewska, M.; Światły, A. Cultivation system versus the content of minerals in carrot (Daucus carota L.) roots. Acta Sci. Pol. Hortorum Cultus 2017, 16, 111–123. [Google Scholar] [CrossRef]
- Warman, P.R.; Havard, K.A. Yield, vitamin and mineral contents of organically and convencionally grown carrots and cabbage. Agric. Ecosyst. Environ. 1997, 61, 155–162. [Google Scholar] [CrossRef]
- Turatbekova, A.; Abdukadirova, M.; Shamuratov, S.; Latipov, B.; Saporboyev, M.; Shamshiyev, J.; Makhmudov, Y. Investigation of the effect of fertilizers on the biochemical and physical characteristics of carrots (Daucus carota L.). In Proceedings of the E3S Web Conferences (ICESTE 2024), Beijing, China, 14–15 October 2024; Volume 563, p. 03074. [Google Scholar] [CrossRef]
- Szopińska, A.; Gawęda, M. Comparison of carrot quality cultivated using conventional, integrated and organic method. Ecol. Chem. Eng. A 2011, 18, 1. [Google Scholar]
- Masamba, K.G.; Nguyen, M.H. Determination and comparison of vitamin C, calcium and potassium in four selected conventionally and organically grown fruits and vegetables. Afr. J. Biotechnol. 2008, 7, 2915–2919. [Google Scholar]
- Šink, N.; Mikulič Petkovšek, M.; Kacjan-Maršić, N. The effect of farming system and cultivars on the yield, morphometric characteristics and chemical composition of carrot (Daucus carota L.). In Proceedings of the VII South-Eastern Europe Symposium on Vegetables and Potatoes, Maribor, Slovenia, 20–23 June 2017; ISHS Acta Horticulturae: Leuven, Belgium, 2021; Volume 1326. [Google Scholar] [CrossRef]
- Søltoft, M.; Bysted, A.; Madsen, K.H.; Mark, A.B.; Bügel, S.G.; Nielsen, J.; Knuthsen, P. Effects of organic and conventional growth systems on the content of carotenoids in carrot roots, and on intake and plasma status of carotenoids in humans. J. Sci. Food Agric. 2011, 91, 767–775. [Google Scholar] [CrossRef]
- Liu, W.Z.; Hunsaker, D.J.; Li, Y.S.; Xie, X.Q.; Wall, G.W. Interrelations of yield, evapotranspiration, and water use efficiency form marginal analysis of water production functions. Agric. Water Manag. 2002, 56, 142–151. [Google Scholar] [CrossRef]
- Reid, J.B.; Gillespie, R.N. Yield and quality responses of carrots (Daucus carota L.) to water deficits. N. Zeal. J. Crop Hortic. Sci. 2017, 45, 299–312. [Google Scholar] [CrossRef]
- Gutezeit, B. Yield and quality of carrots as affected by soil moisture and N-fertilization. Hortic. Sci. Biotechnol. 2001, 76, 732–738. [Google Scholar] [CrossRef]
- Pietola, L.; Salo, T. Response of P, K, Mg and NO3-N contents of carrots to irrigation, soil compaction, and nitrogen fertilization. Agric. Food Sci. 2000, 9, 319–331. [Google Scholar] [CrossRef]
- Yang, P.; Wu, L.; Cheng, M.; Fan, J.; Li, S.; Wang, H.; Qian, L. Review on Drip Irrigation: Impact on Crop Yield, Quality, and Water Productivity in China. Water 2023, 15, 1733. [Google Scholar] [CrossRef]
- Bajpai, A.; Kaushal, A. Soil moisture distribution under trickle irrigation: A review. Water Supply 2020, 20, 761–772. [Google Scholar] [CrossRef]
- Bansal, G.; Mahajan, A.; Verma, A.; Singh, D.B. A review on materialistic approach to drip irrigation system. Mater. Today Proc. 2021, 46, 10712–10717. [Google Scholar] [CrossRef]
- Sun, K.; Niu, J.; Wang, C.; Fu, Q.; Yang, G.; Liang, F.; Wang, Y. Effects of Different Irrigation Modes on the Growth, Physiology, Farmland Microclimate Characteristics, and Yield of Cotton in an Oasis. Water 2022, 14, 1579. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhang, S.Q.; Guo, W.Z.; Zheng, W.G.; Zhao, Q.; Yu, W.Y.; Li, J.S. Effects of irrigation scheduling on the yield and irrigation water productivity of cucumber in coconut coir culture. Sci. Rep. 2024, 14, 2944. [Google Scholar] [CrossRef]
- Brendel, O. The relationship between plant growth and water consumption: A history from the classical four elements to modern stable isotopes. Ann. For. Sci. 2021, 78, 47. [Google Scholar] [CrossRef]
- Ciza, A.; Silungwe, F.R.; Kihupi, N.I. Carrot Productivity under Various Levels of Irrigation and Fertilization. Asian Res. J. Agric. 2022, 15, 56–68. [Google Scholar] [CrossRef]
- Tlig, W.; El Mokh, F.; Autovino, D.; Iovino, M.; Nagaz, K. Carrot productivity and its physiological response to irrigation methods and regimes in arid regions. Water Supply 2023, 23, 5093–5105. [Google Scholar] [CrossRef]
- Sarkar, M.D.; Akter, S.; Bakhashwain, A.A.; Mousa, M.A.A.; Ibrahim, O. Influence of Effective Irrigation Water Usage on Carrot Root Productivity and Quality Properties in Soilless Culture. J. Soil Sci. Plant Nutr. 2024, 24, 1042–1058. [Google Scholar] [CrossRef]
Specification | 2019 | 2020 | 2021 | (HSD p ≥ 0.05) |
---|---|---|---|---|
Organic C (%) | 0.85 | 0.87 | 0.86 | n.s. |
Total N (%) | 0.10 | 0.09 | 0.09 | n.s. |
P (mg kg−1) | 128.2 | 127.3 | 127.9 | n.s. |
K (mg kg−1) | 216.8 | 217.2 | 218.1 | n.s. |
Mg (mg kg−1) | 68.3 | 67.5 | 67.8 | n.s. |
Se (µg kg−1) | 0.382 | 0.379 | 0.385 | n.s. |
Soil pH (1M KCl) | 6.5 | 6.5 | 6.5 | n.s. |
Specification | The Amount of Irrigation in Each Year of the Study (L Water ha−1) | ||
---|---|---|---|
2020 | 2021 | 2022 | |
Double irrigation | 300,000 | 280,000 | 310,000 |
250,000 | 260,000 | 300,000 | |
Irrigation in total | 550,000 | 540,000 | 610,000 |
Multiple irrigation | 300,000 | 280,000 | 310,000 |
150,000 | 160,000 | 140,000 | |
250,000 | 260,000 | 250,000 | |
250,000 | 240,000 | 260,000 | |
200,000 | 180,000 | 210,000 | |
150,000 | 160,000 | 140,000 | |
Irrigation in total | 1,300,000 | 1,280,000 | 1,310,000 |
Farming System | Mineral Fertilization in kg ha−1 | ||
---|---|---|---|
N | P | K | |
Organic * | - | - | - |
Integrated | 45 | 30 | 75 |
Conventional | 90 | 60 | 150 |
Specification | Marketable Yield of Carrot Roots (t ha−1) * | Dry Matter Content (%) | Total Dietary Fiber Content (%) | Carotenoid Content (mg 100 g−1) | Total Sugar Content (mg 100 g−1) | Selenium Content (µg kg−1) | |
---|---|---|---|---|---|---|---|
Farming system (FS) | |||||||
Organic | 39.02 (±0.09) b | 12.42 (±0.08) b | 7.53 (±0.05) c | 16.36 (±0.09) b | 4.94 (±0.05) c | 17.43 (±0.10) c | |
Integrated | 51.29 (±0.10) a | 13.76 (±0.10) a | 11.26 (±0.09) a | 18.14 (±0.12) a | 6.10 (±0.07) a | 20.73 (±0.12) a | |
Conventional | 53.93 (±0.11) a | 13.74 (±0.09) a | 9.07 (±0.06) b | 16.64 (±0.08) b | 5.72 (±0.07) b | 19.37 (±0.11) b | |
Carrot irrigation (CI) | |||||||
NI | 45.07 (±0.12) b | 12.40 (±0.07) b | 8.29 (±0.07) b | 16.57 (±0.07) a | 5.29 (±0.06) b | 16.93 (±0.09) c | |
2I | 47.83 (±0.13) b | 13.40 (±0.08) a | 9.23 (±0.07) a | 17.09 (±0.09) a | 5.57 (±0.04) a | 18.63 (±0.11) b | |
MI | 51.36 (±0.10) b | 13.79 (±0.09) a | 9.32 (±0.08) a | 17.30 (±0.10) a | 5.80 (±0.05) a | 21. 97 (±0.10) a | |
Factor interaction | |||||||
FS | ** | ** | ** | ** | ** | ** | |
CI | ** | ** | ** | n.s. | ** | ** | |
FS × CI | ** | n.s. | ** | ** | ** | ** | |
Effect of the farming system and carrot irrigation interaction on the yield and content of nutrients | |||||||
OS | NI | 37.02 (±0.09) f | 12.07 (±0.05) a | 7.03 (±0.03) a | 15.37 (±0.05) a | 4.66 (±0.03) e | 15.50 (±0.07) a |
2I | 38.97 (±0.10) e | 12.36 (±0.06) a | 7.50 (±0.04) b | 16.56 (±0.06) b | 4.93 (±0.04) d | 16.70 (±0.08) b | |
MI | 41.12 (±0.12) d | 12.44 (±0.07) a | 7.55 (±0.05) b | 16.75 (±0.06) b | 5.13 (±0.04) c | 20.10 (±0.08) e | |
IS | NI | 48.11 (±0.11) c | 13.88 (±0.08) a | 9.95 (±0.06) e | 17.90 (±0.07) c | 5.89 (±0.03) b | 17.80 (±0.06) c |
2I | 51.55 (±0.13) bc | 13.81 (±0.07) a | 11.27 (±0.05) f | 18.15 (±0.08) d | 6.02 (±0.04) b | 19.80 (±0.05) d | |
MI | 54.23 (±0.12) b | 14.02 (±0.09) a | 11.25 (±0.05) f | 18.26 (±0.08) d | 6.35 (±0.05) a | 24.60 (±0.10) g | |
CS | NI | 50.08 (±0.10) c | 13.96 (±0.08) a | 7.88 (±0.03) b | 16.45 (±0.05) b | 5.33 (±0.03) c | 17.50 (±0.06) c |
2I | 52.98 (±0.13) b | 14.01 (±0.09) a | 8.93 (±0.05) c | 16.56 (±0.06) b | 5.77 (±0.04) bc | 19.40 (±0.08) d | |
MI | 58.74 (±0.14) a | 14.36 (±0.10) a | 9.16 (±0.06) d | 16.88 (±0.07) bc | 5.93 (±0.05) b | 21.20 (±0.09) f |
Specification | Antioxidative Activity (%) in the β-Carotene/Linoleic Acid System | O-Dihydroxyphenol Content (g 100 g−1) | L-Ascorbic Acid Content (mg 100 g−1) | Nitrate Content (mg NO3 kg−1) | |
---|---|---|---|---|---|
Farming system (FS) | |||||
Organic | 51.53 (±0.13) b | 18.37 (±0.08) b | 7.06 (±0.02) b | 65.72 (±0.14) c | |
Integrated | 60.25 (±0.15) a | 24.28 (±0.07) a | 7.97 (±0.04) a | 117.78 (±0.17) b | |
Conventional | 59.10 (±0.14) a | 23.48 (±0.06) a | 7.70 (±0.03) a | 170.68 (±0.16) a | |
Carrot irrigation (CI) | |||||
NI | 54.56 (±0.12) b | 18.39 (±0.08) c | 7.16 (±0.02) b | 131.17 (±0.18) a | |
2I | 59.37 (±0.10) a | 25.70 (±0.10) a | 7.58 (±0.03) a | 120.51 (±0.17) b | |
MI | 57.72 (±0.10) ab | 23.12 (±0.11) b | 7.81 (±0.04) a | 106.10 (±0.15) c | |
Factor interaction | |||||
FS | ** | ** | ** | ** | |
CI | ** | ** | ** | ** | |
FS × CI | ** | ** | ** | ** | |
Effect of the farming system and carrot irrigation interaction on the content of nutrients | |||||
OS | NI | 48.70 (±0.09) f | 16.30 (±0.06) g | 6.73 (±0.03) a | 75.77 (±0.15) e |
2I | 54.37 (±0.12) e | 20.43 (±0.06) d | 7.02 (±0.03) b | 66.43 (±0.14) f | |
MI | 52.73 (±0.11) c | 18.90 (±0.05) f | 7.32 (±0.02) b | 58.07 (±0.14) g | |
IS | NI | 58.20 (±0.12) d | 19.30 (±0.04) e | 7.30 (±0.02) b | 135.83 (±0.18) cd |
2I | 62.30 (±0.13) a | 29.27 (±0.06) a | 8.00 (±0.03) d | 120.57 (±0.17) c | |
MI | 60.40 (±0.12) b | 25.40 (±0.06) c | 8.26 (±0.05) d | 102.10 (±0.15) d | |
CS | NI | 56.77 (±0.10) cd | 19.57 (±0.08) e | 7.44 (±0.03) bc | 181.90 (±0.19) a |
2I | 61.43 (±0.13) a | 27.40 (±0.07) b | 7.70 (±0.03) c | 174.53 (±0.18) a | |
MI | 60.03 (±0.12) b | 25.07 (±0.06) c | 7.86 (±0.05) c | 158.13 (±0.16) b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harasim, E.; Kwiatkowski, C.A.; Buczek, J. Effect of Farming System and Irrigation on Nutrient Content and Health-Promoting Properties of Carrot Roots. Agronomy 2025, 15, 1289. https://doi.org/10.3390/agronomy15061289
Harasim E, Kwiatkowski CA, Buczek J. Effect of Farming System and Irrigation on Nutrient Content and Health-Promoting Properties of Carrot Roots. Agronomy. 2025; 15(6):1289. https://doi.org/10.3390/agronomy15061289
Chicago/Turabian StyleHarasim, Elżbieta, Cezary A. Kwiatkowski, and Jan Buczek. 2025. "Effect of Farming System and Irrigation on Nutrient Content and Health-Promoting Properties of Carrot Roots" Agronomy 15, no. 6: 1289. https://doi.org/10.3390/agronomy15061289
APA StyleHarasim, E., Kwiatkowski, C. A., & Buczek, J. (2025). Effect of Farming System and Irrigation on Nutrient Content and Health-Promoting Properties of Carrot Roots. Agronomy, 15(6), 1289. https://doi.org/10.3390/agronomy15061289