Effectiveness of Biochar on Cd Migration and Bioaccumulation in a Multi-Species Alkaline Fluvo-Aquic Soil System
Abstract
1. Introduction
2. Materials and Methods
2.1. Soils, Earthworms, and Wheat Seeds
2.2. Experimental Design
2.3. Sample Pretreatment and Analyses
2.4. Statistical Analyses
3. Results
3.1. Soil pH and Water Content
3.2. Total and CaCl2-Extractable Cd in the Soil Columns
3.3. Wheat Growth and Cd Uptake
3.4. Earthworm Distribution and Cd Concentration
3.5. Structural Equation Modeling Analysis
3.6. The Fate of Cd in the MS·3 Soil Systems
4. Discussion
5. Conclusions
6. Environmental Significance
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, F.; Zhang, Y.; Wu, T.; Wu, L.; Shi, G.; An, Y. The high-dimensional geographic dataset revealed significant differences in the migration ability of cadmium from various sources in paddy fields. Sci. Rep. 2023, 13, 1589. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.-Y.; Yu, X.-F.; Liu, Y.-J.; Zeng, X.-X.; Luo, F.-W.; Wang, X.-T.; Yang, X.; Wang, X.-Y.; Xue, X.; Yang, L.-J.; et al. Methyl jasmonate regulation of pectin polysaccharides in Cosmos bipinnatus roots: A mechanistic insight into alleviating cadmium toxicity. Environ. Pollut. 2024, 345, 123503. [Google Scholar] [CrossRef] [PubMed]
- Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 2017, 12, 064008. [Google Scholar] [CrossRef]
- Wang, W.; Lu, T.; Liu, L.; Yang, X.; Sun, X.; Qiu, G.; Hua, D.; Zhou, D. Zeolite-supported manganese oxides decrease the Cd uptake of wheat plants in Cd-contaminated weakly alkaline arable soils. J. Hazard. Mater. 2021, 419, 126464. [Google Scholar] [CrossRef]
- Wu, X.; Cai, Q.; Xu, Q.; Zhou, Z.; Shi, J. Wheat (Triticum aestivum L.) grains uptake of lead (Pb), transfer factors and prediction models for various types of soils from China. Ecotoxicol. Environ. Saf. 2020, 206, 111387. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef]
- GB 2762-2017; National Food Safety Standard—Limits of Contaminants in Foods. National Health and Family Planning Commission of the People’s Republic of China and the China Food and Drug Administration: Beijing, China, 2017.
- Wang, X.; Lv, P.; Zhang, F.; Wang, W.; Liu, X.; Zhang, Q.; Mu, J.; Huang, X.; Bai, L.; Dai, J. Heavy Metal Accumulation in Maize and Wheat in Acidic Soil: A Comparative Study. Sustainability 2025, 17, 2084. [Google Scholar] [CrossRef]
- Han, S.; Li, H.; Rengel, Z.; Du, Z.; Hu, N.; Wang, Y.; Zhang, A. Biochar application promotes crops yield through regulating root development and the community structure of root endophytic fungi in wheat-maize rotation. Soil Tillage Res. 2023, 234, 105827. [Google Scholar] [CrossRef]
- Li, A.; Ye, C.; Jiang, Y.; Deng, D. Enhanced removal performance of magnesium-modified biochar for cadmium in wastewaters: Role of active functional groups, processes, and mechanisms. Bioresour. Technol. 2023, 386, 129515. [Google Scholar] [CrossRef]
- Yu, B.Z.; Li, D.Q.; Zhang, R.; He, H.Z.; Li, H.S.; Chen, G.K. Effects of heavy metals (Cd, Pb, Cu, Zn, and Ni) on Ipomoea aquatica Forsk. growth in a soil with containing metal-biochar application. Pol. J. Environ. Stud. 2020, 29, 2513–2524. [Google Scholar] [CrossRef]
- Li, D.Q.; Lai, C.H.; Li, Y.T.; Li, H.S.; Chen, G.K.; Lu, Q. Biochar improves Cd-contaminated soil and lowers Cd accumulation in Chinese flowering cabbage (Brassica parachinensis L.). Soil Tillage Res. 2021, 213, 105085. [Google Scholar] [CrossRef]
- He, M.J.; Xu, Z.B.; Hou, D.Y.; Gao, B.; Cao, X.D.; Ok, Y.S.; Rinklebe, J.; Bolan, N.S.; Tsang, D.C.W. Waste-derived biochar for water pollution control and sustainable development. Nat. Rev. Earth Environ. 2022, 3, 444–460. [Google Scholar] [CrossRef]
- Arwenyo, B.; Varco, J.J.; Dygert, A.; Brown, S.; Pittman, C.U.; Mlsna, T.M. Contribution of modified P-enriched biochar on pH buffering capacity of acidic soil. J. Environ. Manag. 2023, 339, 117863. [Google Scholar] [CrossRef]
- Deng, J.; Li, X.; Wei, X.; Liu, Y.; Liang, J.; Shao, Y.; Huang, W.; Cheng, X. Different adsorption behaviors and mechanisms of a novel amino-functionalized hydrothermal biochar for hexavalent chromium and pentavalent antimony. Bioresour. Technol. 2020, 310, 123438. [Google Scholar] [CrossRef]
- Tang, J.; Ma, Y.; Deng, Z.; Li, P.; Qi, X.; Zhang, Z. One-pot preparation of layered double oxides-engineered biochar for the sustained removal of tetracycline in water. Bioresour. Technol. 2023, 381, 129119. [Google Scholar] [CrossRef]
- Wei, B.; Peng, Y.; Jeyakumar, P.; Lin, L.; Zhang, D.; Yang, M.; Zhu, J.; Lin, C.S.K.; Wang, H.; Wang, Z.; et al. Soil pH restricts the ability of biochar to passivate cadmium: A meta-analysis. Environ. Res. 2023, 219, 115110. [Google Scholar] [CrossRef]
- Liu, M.; Almatrafi, E.; Zhang, Y.; Xu, P.; Song, B.; Zhou, C.; Zeng, G.; Zhu, Y. A critical review of biochar-based materials for the remediation of heavy metal contaminated environment: Applications and practical evaluations. Sci. Total Environ. 2022, 806, 150531. [Google Scholar] [CrossRef]
- Lai, C.H.; Li, D.Q.; Qin, J.H.; Li, J.; Yan, Z.G.; Chen, G.K. The migration of cadmium and lead in soil columns and their bioaccumulation in a multi-species soil system. Chemosphere 2021, 262, 127718. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, K.H.; Jiang, J.X.; Gao, X.; Xu, Y.M.; Wang, Y.L.; Xu, C.H.; Li, L.P.; Liang, X.F.; Shi, G.L. Enhancing the immobilization efficiency of mercapto-palygorskite on soil Cd through earthworm addition: Cd fractions, soil aggregates, and bacterial community. Appl. Soil Ecol. 2025, 209, 106024. [Google Scholar] [CrossRef]
- Zhang, C.M.; Liu, H.L.; Zhou, F.W.; Long, X.Z.; Liu, S.Q.; Wu, Y. Enhancing remediation efficiency of hyperaccumulators through earthworm addition: Evidence from a pot study on cadmium-contaminated soil. Sci. Total Environ. 2024, 934, 173169. [Google Scholar] [CrossRef]
- Wang, K.; Qiao, Y.; Zhang, H.; Yue, S.; Li, H.; Ji, X.; Liu, L. Bioaccumulation of heavy metals in earthworms from field contaminated soil in a subtropical area of China. Ecotoxicol. Environ. Saf. 2018, 148, 876–883. [Google Scholar] [CrossRef]
- Tong, F.; Xu, L.; Zhang, Y.; Wu, D.; Hu, F. Earthworm mucus contributes significantly to the accumulation of soil cadmium in tomato seedlings. Sci. Total Environ. 2024, 953, 176169. [Google Scholar] [CrossRef] [PubMed]
- Yuvaraj, A.; Thangaraj, R.; Ravindran, B.; Ravindran, B.; Chang, S.W.; Karmegam, N. Centrality of cattle solid wastes in vermicomposting technology: A cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability. Environ. Pollut. 2021, 268, 115688. [Google Scholar] [CrossRef]
- Hussain, N.; Chatterjee, S.K.; Maiti, T.K.; Goswami, L.; Das, S.; Deb, U.; Bhattacharya, S.S. Metal induced non-metallothionein protein in earthworm: A new pathway for cadmium detoxification in chloragogenous tissue. J. Hazard. Mater. 2021, 401, 123357. [Google Scholar] [CrossRef]
- Dedeke, G.A.; Owagboriaye, F.O.; Adebambo, A.O.; Ademolu, K.O. Earthworm metallothionein production as biomarker of heavy metal pollution in abattoir soil. Appl. Soil Ecol. 2016, 104, 42–47. [Google Scholar] [CrossRef]
- Schnug, L.; Jensen, J.; Scott-Fordsmand, J.J.; Leinaas, H.P. Toxicity of three biocides to springtails and earthworms in a soil multi-species (SMS) test system. Soil Biol. Biochem. 2014, 74, 115–126. [Google Scholar] [CrossRef]
- Fernández, C.; Alonso, C.; Babín, M.M.; Pro, J.; Carbonell, G.; Tarazona, J.V. Ecotoxicological assessment of doxycycline in aged pig manure using multispecies soil systems (MS-3). Sci. Total Environ. 2004, 323, 63–69. [Google Scholar] [CrossRef]
- Boleas, S.; Alonso, C.; Pro, J.; Babín, M.M.; Fernández, C.; Carbonell, G.; Tarazona, J.V. Effects of sulfachlorpyridazine in MS-3-arable land: A multispecies soil system for assessing the environmental fate and effects of veterinary medicines. Environ. Toxicol. Chem. 2005, 24, 811–819. [Google Scholar] [CrossRef]
- Boleas, S.; Alonso, C.; Pro, J.; Fernández, C.; Carbonell, G.; Tarazona, J.V. Toxicity of the antimicrobial oxytetracycline to soil organisms in a multispecies-soil system (MS-3) and influence of manure co-addition. J. Hazard. Mater. 2005, 122, 233–241. [Google Scholar] [CrossRef]
- Tarazona, J.V. Terrestrial Microcosms and Multispecies Soil Systems. Encycl. Toxicol. 2024, 8, 965–969. [Google Scholar]
- Fernández, M.D.; Cagigal, E.; Vega, M.M.; Urzelai, A.; Babín, M.; Pro, J.; Tarazona, J.V. Ecological risk assessment of contaminated soils through direct toxicity assessment. Ecotoxicol. Environ. Saf. 2005, 62, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.D.; Vega, M.M.; Tarazona, J.V. Risk-based ecological soil quality criteria for the characterization of contaminated soils. Combination of chemical and biological tools. Sci. Total Environ. 2006, 366, 466–484. [Google Scholar] [CrossRef]
- Carraturo, F.; Siciliano, A.; Giordano, A.; Di Capua, F.; Barone, F.; Casaletta, E.; Cicotti, F.; Guida, M.; Adani, F. Ecotoxicological assessment of waste-derived organic fertilizers and long-term monitoring of fertilized soils using a multi-matrix and multi-species approach. Sci. Total Environ. 2024, 912, 169341. [Google Scholar] [CrossRef]
- Fernández, M.D.; Alonso-Blázquez, M.N.; García-Gómez, C.; Babin, M. Evaluation of zinc oxide nanoparticle toxicity in sludge products applied to agricultural soil using multispecies soil systems. Sci. Total Environ. 2014, 497–498, 688–696. [Google Scholar] [CrossRef]
- Alonso, E.; Fernández, C.; Najera, I.; Pro, J.; Tarazona, J.V.; Carbonell, G. Assessing the influence of biota on metal mobility in a multi-species soil system (MS-3). Soil Sediment Contam. 2006, 15, 327–337. [Google Scholar] [CrossRef]
- Alonso, E.; González-Núñez, M.; Carbonell, G.; Fernández, C.; Tarazona, J.V. Bio-accumulation assessment via an adapted multi-species soil system (MS-3) and its application using cadmium. Ecotoxicol. Environ. Saf. 2009, 72, 1038–1044. [Google Scholar] [CrossRef]
- GB 15618-2018; Soil Environmental Quality—Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment and the State Administration for Market Regulation: Beijing, China, 2018.
- Leveque, T.; Capowiez, Y.; Schreck, E.; Xiong, T.; Foucault, Y.; Dumat, C. Earthworm bioturbation influences the phytoavailability of metals released by particles in cultivated soils. Environ. Pollut. 2014, 191, 199–206. [Google Scholar] [CrossRef]
- Chen, L.; Liu, L.; Qin, S.; Yang, G.; Fang, K.; Zhu, B.; Kuzyakov, Y.; Chen, P.; Xu, Y.; Yang, Y. Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nat. Commun. 2019, 10, 5112. [Google Scholar] [CrossRef]
- Yang, K.; Wang, X.; Cheng, H.; Tao, S. Effect of aging on stabilization of Cd and Ni by biochars and enzyme activities in a historically contaminated alkaline agricultural soil simulated with wet–dry and freeze–thaw cycling. Environ. Pollut. 2021, 268 Pt A, 115846. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, G.; Li, X.; Zhang, X.; Hang, W.; Tang, M.; Gao, Y. Effects of biochar on the transformation of cadmium fractions in alkaline soil. Heliyon 2023, 9, e12949. [Google Scholar] [CrossRef]
- Lu, Y.X.; Qiao, Z.Y. Physical properties of alkaline soil and their effects on wheat seedling growth. Inn. Mong. Agric. Sci. Technol. 2006, 5, 38–39. (In Chinese) [Google Scholar]
- Martín-Franco, C.; Sánchez, J.T.; Alvarenga, P.; Peña, D.; Fernández-Rodríguez, F.; Vicente, L.A.; Albarrán, Á.; López-Piñeiro, A. Effects of fresh and field-aged holm-oak biochar on As, Cd and Pb bioaccumulation in different rice growing environments. Sci. Total Environ. 2023, 887, 164012. [Google Scholar] [CrossRef]
- Huang, C.Y.; Xu, J.M. Soil Science, 3rd ed.; China Agriculture Press: Beijing, China, 2010; pp. 170–188. [Google Scholar]
- Brtnicky, M.; Datta, R.; Holatko, J.; Bielska, L.; Gusiatin, Z.M.; Kucerik, J.; Hammerschmiedt, T.; Danish, S.; Radziemska, M.; Mravcova, L.; et al. A critical review of the possible adverse effects of biochar in the soil environment. Sci. Total Environ. 2021, 796, 148756. [Google Scholar] [CrossRef]
- Ibrahim, E.A.; El-Sherbini, M.A.A.; Selim, E.M.M. Effects of biochar on soil properties, heavy metal availability and uptake, and growth of summer squash grown in metal-contaminated soil. Sci. Hortic. 2022, 301, 111097. [Google Scholar] [CrossRef]
- Anyanwu, I.N.; Alo, M.N.; Onyekwere, A.M.; Crosse, J.D.; Nworie, O.; Chamba, E.B. Influence of biochar aaged in acidic soil on ecosystem engineers and two tropical agricultural plants. Ecotoxicol. Environ. Saf. 2018, 153, 116–126. [Google Scholar] [CrossRef]
- Elliston, T.; Oliver, I.W. Ecotoxicological assessments of biochar additions to soil employing earthworm species Eisenia fetida and lumbricus terrestris. Environ. Sci. Pollut. Res. 2020, 27, 33410–33418. [Google Scholar] [CrossRef]
- Gruss, I.; Twardowski, J.P.; Latawiec, A.; Medyńska-Juraszek, A.; Królczyk, J. Risk assessment of low-temperature biochar used as soil amendment on soil mesofauna. Environ. Sci. Pollut. Res. 2019, 26, 18230–18239. [Google Scholar] [CrossRef]
- Jia, H.; Zhao, Y.; Deng, H.; Yu, H.; Feng, D.; Zhang, Y.; Ge, C.; Li, J. Significant contributions of biochar-derived dissolved matters to ecotoxicity to earthworms (Eisenia fetida) in soil with biochar amendment. Environ. Technol. Innov. 2023, 29, 102988. [Google Scholar] [CrossRef]
- Zhang, R.; Zimmerman, A.R.; Zhang, R.; Li, P.; Zheng, Y.; Gao, B. Persistent free radicals generated from a range of biochars and their physiological effects on wheat seedlings. Sci. Total Environ. 2024, 908, 168260. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Xu, M.; Liang, S.; Feng, Z.; Zhao, J. Mechanism of persulfate activation by biochar for the catalytic degradation of antibiotics: Synergistic effects of environmentally persistent free radicals and the defective structure of biochar. Sci. Total Environ. 2021, 794, 148707. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, J.; Zhou, J.; Wu, X.; Yang, K.; Ni, Z.; Liu, Z.; Jia, H. The overlooked toxicity of environmentally persistent free radicals (EPFRs) induced by anthracene transformation to earthworms (Eisenia fetida). Sci. Total Environ. 2022, 853, 158571. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shi, L.; Liu, J.; Deng, J.; Zou, J.; Zhang, X.; Shen, Z.; Chen, Y. Earthworm-mediated nitrification and gut digestive processes facilitate the remobilization of biochar-immobilized heavy metals. Environ. Pollut. 2023, 322, 121219. [Google Scholar] [CrossRef]
- Xu, P.; Sun, C.X.; Ye, X.Z.; Xiao, W.D.; Zhang, Q.; Wang, Q. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicol. Environ. Saf. 2016, 132, 94–100. [Google Scholar] [CrossRef]
Treatment | Wheat | Earthworms | Soil Layer | |
---|---|---|---|---|
0–20 cm | 20–50 cm | |||
CK | 64.10% | 35.90% | ||
W | 0.02% | 63.28% | 36.70% | |
E | 0.05% | 67.15% | 32.80% | |
W + E | 0.02% | 0.05% | 60.29% | 39.64% |
B + W + E | 0.02% | 0.08% | 64.39% | 35.51% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Lai, C.; He, H.; Wen, D.; Cao, Y.; Wu, Z.; Li, F.; Shi, H.; Wang, X.; Chen, G. Effectiveness of Biochar on Cd Migration and Bioaccumulation in a Multi-Species Alkaline Fluvo-Aquic Soil System. Agronomy 2025, 15, 1276. https://doi.org/10.3390/agronomy15061276
Li D, Lai C, He H, Wen D, Cao Y, Wu Z, Li F, Shi H, Wang X, Chen G. Effectiveness of Biochar on Cd Migration and Bioaccumulation in a Multi-Species Alkaline Fluvo-Aquic Soil System. Agronomy. 2025; 15(6):1276. https://doi.org/10.3390/agronomy15061276
Chicago/Turabian StyleLi, Dongqin, Changhong Lai, Hongzhi He, Dian Wen, Yiran Cao, Zhichao Wu, Furong Li, Hanzhi Shi, Xu Wang, and Guikui Chen. 2025. "Effectiveness of Biochar on Cd Migration and Bioaccumulation in a Multi-Species Alkaline Fluvo-Aquic Soil System" Agronomy 15, no. 6: 1276. https://doi.org/10.3390/agronomy15061276
APA StyleLi, D., Lai, C., He, H., Wen, D., Cao, Y., Wu, Z., Li, F., Shi, H., Wang, X., & Chen, G. (2025). Effectiveness of Biochar on Cd Migration and Bioaccumulation in a Multi-Species Alkaline Fluvo-Aquic Soil System. Agronomy, 15(6), 1276. https://doi.org/10.3390/agronomy15061276