The Effect of Increasing Doses of Heavy Metals on Seed Germination of Selected Ornamental Plant Species
Abstract
:1. Introduction
2. Materials and Methods
- − Zn (control, 1; 5; 10 mg dm−3),
- − Cd (control, 1.5; 2; 2.5 mg dm−3).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, D.; Jia, X.; Wang, L.; McGrath, S.P.; Zhu, Y.G.; Hu, Q.; Zhao, F.Z.; Bank, M.S.; O’Connor, D.; Nriagu, J. Global soil pollution by toxic metals threatens agriculture and human health. Science 2025, 388, 316–321. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements; PWN: Warszawa, Poland, 1999; pp. 144–156. [Google Scholar]
- Ociepa-Kubicka, A.; Ociepa, E. Toxic effects of heavy metals on plants, animals and humans. Inż. Ochr. Środowiska 2012, 15, 169–180. [Google Scholar]
- Bosiacki, M.; Bednorz, L.; Fedeńczak, K.; Górecki, T.; Mizgajski, A.; Poniży, L.; Spiżewski, T. Soil Quality as a Key Factor in Producing Vegetables for Home Consumption—A Case Study of Urban Allotments in Gorzów Wielkopolski (Poland). Agronomy 2021, 11, 1836. [Google Scholar] [CrossRef]
- Sethy, S.K.; Ghosh, S. Effect of heavy metals on germination of seeds. J. Nat. Sci. Biol. Med. 2013, 4, 272–275. [Google Scholar]
- Bosiacki, M.; Kleiber, T.; Markiewicz, B. Continuous and Induced Phytoextraction-Plant-Based Methods of Remove Heavy Metals from Contaminated Soil. In Environmental Risk Assessment of Soil Contamination; Hernandez-Soriano, M.C., Ed.; InTech: Rijeka, Croatia, 2014; Volume 20, pp. 575–612. ISBN 978-953-51-1235-8. [Google Scholar]
- Siwek, M. Plants in postindustrial sites, contaminated with heavy metals. Part 1. Uptake, transport and toxicity of heavy [trace] metals. Wiad. Bot. 2008, 52, 7–22. [Google Scholar]
- Szatanik-Kloc, A. Effect of pH and selected heavy metals in soil on their content in plants. Acta Agrophys. 2004, 4, 177–183. [Google Scholar]
- Kaczyńska, A.; Zajączkowski, M.; Grzybiak, M. Cadmium toxicity in plants and humans. Ann. Acad. Med. Gedan. 2015, 45, 65–70. [Google Scholar]
- Rajjou, L.; Duval, M.; Gallardo, K.; Catusse, J.; Bally, J.; Job, C.; Job, D. Seed germination and vigor. Annu. Rev. Plant Biol. 2012, 63, 507–533. [Google Scholar] [CrossRef]
- Miransari, M.; Smith, D.L. Plant hormones and seed germination. Environ. Exp. Bot. 2014, 99, 110–121. [Google Scholar] [CrossRef]
- Gan, Y.; Stobbe, E.H.; Njue, C. Evaluation of selected nonlinear regression models in quantifying seedling emergence rate of spring wheat. Crop Sci. 1996, 36, 165–168. [Google Scholar] [CrossRef]
- Duczmal, K.; Tucholska, H. Seeding; Państwowe Wydawnictwo Rolnicze i Leśne: Poznań, Poland, 2000; Volume 1, pp. 164–181. [Google Scholar]
- Gallardo, K.; Job, C.; Steven, P.; Groot, C.; Puype, M.; Demol, H.; Vandekerckhove, J.; Job, D. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 2001, 126, 835–848. [Google Scholar] [CrossRef] [PubMed]
- Lewicki, P. Sprouts as source of valuable nutritients. Żywność Nauka Technol. Jakość 2010, 6, 18–33. [Google Scholar] [CrossRef]
- Gniazdowska, A.; Budnicka, K.; Krasuska, U. Regulacja spoczynku i kiełkowania nasion—Czynniki endogenne i oddziaływania środowiskowe w: Różnorodność biologiczna—Od komórki do ekosystemu. In Rośliny i Grzyby w Zmieniających się Warunkach Środowiska Pod Red; Ciereszko, I., Bajguza, A., Eds.; Polskie Towarzystwo Botaniczne Białystok, Agencja Wydawnicza EkoPress: Białystok, Poland, 2013; pp. 25–33. [Google Scholar]
- Xue, X.; Du, S.; Jiao, F.; Xi, M.; Wang, A.; Xu, H.; Jiao, Q.; Zhang, X.; Jiang, H.; Chen, J.; et al. The regulatory network behind maize seed germination: Effects of temperature, water, phytohormones, and nutrients. Crop J. 2021, 9, 718–724. [Google Scholar] [CrossRef]
- Gładyszewska, B. Matematyczne metody oceny wpływu procesów przedsiewnej stymulacji na kiełkowanie nasion. Acta Agrophys. 2004, 3, 443–452. [Google Scholar]
- Kornarzyński, K.; Pietruszewski, S. Influence of alternating magnetic field on the germination of seeds with low germination capacity. Acta Agrophys. 2008, 11, 429–435. [Google Scholar]
- Jakubowski, T. Eevaluation of the impact of pre-sowing microwave stimulation of bean seeds on the germination process. Agric. Eng. 2015, 2, 45–56. [Google Scholar]
- Casal, J.J.; Sánchez, R.A. Phytochromes and seed germination. Seed Sci. Res. 1998, 8, 317–329. [Google Scholar] [CrossRef]
- Dekkers, B.J.W.; Schuurmans, J.A.M.J.; Smeekens, S.C.M. Glucose delays seed germination in Arabidopsis thaliana. Planta 2004, 218, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Florez, M.; Carbonell, M.V.; Martínez, E. Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environ. Exp. Bot. 2007, 59, 68–75. [Google Scholar] [CrossRef]
- Xing, Y.U.; Jia, W.; Zhang, J. AtMKK1 and AtMPK6 are involved in abscisic acid and sugar signaling in Arabidopsis seed germination. Plant Mol. Biol. 2009, 70, 725–736. [Google Scholar] [CrossRef]
- Johnson, T.R.; Kane, M.E.; Pérez, H.E. Examining the interaction of light, nutrients and carbohydrates on seed germination and early seedling development of Bletia purpurea (Orchidaceae). Plant Growth Regul. 2011, 63, 89–99. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, X.; Hwang, H.; Liu, S.; Guan, H. Promotive effects of alginate-derived oligosaccharide on maize seed germination. J. Appl. Phycol. 2004, 16, 73–76. [Google Scholar] [CrossRef]
- Xia, H.; Yandeau-Nelson, M.; Thompson, D.B.; Guiltinan, M.J. Deficiency of maize starch-branching enzyme results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination. BMC Plant Biol. 2011, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Limami, A.M.; Rouillon, C.; Glevarec, G.; Gallais, A.; Hirel, B. Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase. Plant Physiol. 2002, 130, 1860–1870. [Google Scholar] [CrossRef] [PubMed]
- Hegeman, C.E.; Grabau, E.A. A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol. 2011, 126, 1598–1608. [Google Scholar] [CrossRef]
- Nadeem, M.; Mollier, A.; Morel, C.; Vives, A.; Prud’homme, L.; Pellerin, S. Maize (Zea mays L.) endogenous seed phosphorus remobilization is not influenced by exogenous phosphorus availability during germination and early growth stages. Plant Soil 2012, 357, 13–24. [Google Scholar] [CrossRef]
- Grzesik, M.; Janas, R.; Górnik, K.; Romanowska-Duda, Z. Biological and physical methods of seed production and processing. J. Res. Appl. Agric. Eng. 2012, 57, 147–152. [Google Scholar]
- Kępczyńska, E. In vitro germination and conversion of somatic embryos. Biotechnologia 2006, 4, 78–94. [Google Scholar]
- International Rules for Seed Testing. Handbook of Vigour Test Methods; International Rules for Seed Testing: Wallisellen, Switzerland, 1995; pp. 92–103. [Google Scholar]
- Drab, M.; Greinert, A.; Kostecki, J.; GRzechnik, M. Seed germination of selected plants under the influence of heavy metals. Civ. Environ. Eng. Rep. 2011, 7, 47–57. [Google Scholar]
- Możdżeń, K.; Barabasz-Krasny, B.; Puła, J.; Lepiarczyk, A. Impact of compounds of cadmium and zinc in early stages of growth of radish (Raphanus sativus L. var. sativus). Fragm. Agron. 2017, 34, 45–54. [Google Scholar]
- Hamzah Saleem, M.; Usman, K.; Rizwan, M.; Al Jabri, H.; Alsafran, M. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Front. Plant Sci. 2022, 13, 1033092. [Google Scholar] [CrossRef] [PubMed]
- Rasafi, E.; Oukarroum, A.; Haddioui, A.; Song, H.; Kwon, E.E.; Bolan, N.; Tack, F.M.G.; Sebastian, A.; Prasad, M.N.V.; Rinklebe, J. Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Crit. Rev. Environ. Sci. Technol. 2020, 52, 675–726. [Google Scholar] [CrossRef]
- Kaur, H.; Garg, N. Zinc toxicity in plants: A review. Planta 2021, 253, 129. [Google Scholar] [CrossRef]
- Vijayaragavan, M.; Prabhahar, C.; Sureshkumar, J.; Natarajan, A.; Vijayarengan, P.; Sharavanan, S. Toxic effect of cadmium on seed germination, growth and biochemical contents of cowpea (Vigna unguiculata L.) plants. Int. Multidiscip. Res. J. 2011, 1, 1–6. [Google Scholar]
- Fan, P.; Wu, L.; Wang, Q.; Wang, Y.; Luo, H.; Song, J.; Yang, M.; Yao, H.; Chen, S. Physiological and molecular mechanisms of medicinal plants in response to cadmium stress: Current status and future perspective. J. Hazard. Mater. 2023, 450, 131008. [Google Scholar] [CrossRef]
- Kuriakose, S.V.; Prasad, M.N.V. Cadmium stress affects seed germination and seedling growth in Sorghum bicolor (L.) Moench by changing the activities of hydrolyzing enzymes. Plant Growth Regul. 2008, 54, 143–156. [Google Scholar] [CrossRef]
- Kalai, T.; Bouthour, D.; Manai, J.; Ben Kaab, L.B.; Gouia, H. Salicylic acid alleviates the toxicity of cadmium on seedling growth, amylases and phosphatases activity in germinating barley seeds. Arch. Agron. Soil Sci. 2016, 62, 892–904. [Google Scholar] [CrossRef]
- He, J.Y.; Ren, Y.F.; Pan, X.B.; Yan, Y.P.; Zhu, C.; Jiang, D. Salicylic acid alleviates the toxicity effect of cadmium on germination, seedling growth, and amylase activity of rice. J. Plant Nutr. Soil Sci. 2010, 173, 300–305. [Google Scholar] [CrossRef]
- Basahi, M. Humic acid improved germination rate, seedling growth and antioxidant system of pea (Pisum sativum L. var. Alicia) grown in water polluted with CdCl2. AIMS Environ. Sci. 2021, 8, 358–370. [Google Scholar] [CrossRef]
- Anwar, S.; Shafiq, F.; Nisa, Z.U.; Usman, U.; Ashraf, M.Y.; Ali, N. Effect of cadmium stress on seed germination, plant growth and hydrolyzing enzymes activities in mungbean seedlings. J. Seed Sci. 2021, 43, e202143042. [Google Scholar] [CrossRef]
- Zaari Jabri, N.; Ait-El-Mokhtar, M.; Mekkaoui, F.; Amghar, I.; Achemrk, O.; Diria, G.; Hmyene, A. Impacts of cadmium toxicity on seed germination and seedling growth of Triticum durum cultivars. Cereal Res. Commun. 2024, 52, 1399–1409. [Google Scholar] [CrossRef]
- Carvalho, M.E.A.; Agathokleous, E.; Nogueira, M.L.; Brunetto, G.; Brown, P.H.; Azevedo, R.A. Neutral-to-positive cadmium effects on germination and seedling vigor, with and without seed priming. J. Hazard. Mater. 2023, 448, 130813. [Google Scholar] [CrossRef] [PubMed]
- Mishra, D.; Chitara, M.K.; Negi, S.; Pal Singh, J.; Kumar, R.; Chaturvedi, P. Biosynthesis of zinc oxide nanoparticles via leaf extracts of Catharanthus roseus (L.) G. Don and Their Application in Improving Seed Germination Potential and Seedling Vigor of Eleusine coracana (L.) Gaertn. Hindawi Adv. Agric. 2023, 2023, 7412714. [Google Scholar] [CrossRef]
Dose of Zinc mg·dm−3 | Germination Energy Eschscholzia californica Cham. (%) | Germination Capacity Eschscholzia californica Cham. (%) | ||
---|---|---|---|---|
Application Technique of the Solution | ||||
Seed Soaking 10 min | Tissue Paper Soaked in Solution | Seed Soaking 10 min | Tissue Paper Soaked in Solution | |
Control | 83 b * | 83 b | 85 b | 85 b |
1 | 88 b | 0 a | 89 b | 0 a |
5 | 90 b | 0 a | 93 b | 0 a |
10 | 85 b | 0 a | 87 b | 0 a |
Dose of Zinc mg·dm−3 | Number of Abnormal Seedlings, Dead, Hard, and Fresh Seeds Eschscholzia californica Cham. (%) | |||||||
---|---|---|---|---|---|---|---|---|
Application Technique of the Solution | ||||||||
Seed Soaking 10 min | Tissue Paper Soaked in Solution | |||||||
Abnormal Seedlings | Dead Seeds | Hard Seeds | Fresh Seeds | Abnormal Seedlings | Dead Seeds | Hard Seeds | Fresh Seeds | |
Control | 0 | 15 | 0 | 0 | 0 | 15 | 0 | 0 |
1 | 1 | 10 | 0 | 0 | 63 | 37 | 0 | 0 |
5 | 1 | 6 | 0 | 0 | 74 | 26 | 0 | 0 |
10 | 0 | 13 | 0 | 0 | 69 | 31 | 0 | 0 |
Dose of Zinc mg·dm−3 | Germination Energy Coreopsis lanceolata (%) | Germination Capacity Coreopsis lanceolata (%) | ||
---|---|---|---|---|
Application Technique of the Solution | ||||
Seed Soaking 10 min | Tissue Paper Soaked in Solution | Seed Soaking 10 min | Tissue Paper Soaked in Solution | |
Control | 49 b * | 49 b | 77 b | 77 b |
1 | 37 b | 0 a | 80 b | 0 a |
5 | 41 b | 0 a | 84 b | 0 a |
10 | 31 b | 0 a | 71 b | 0 a |
Dose of Zinc mg·dm−3 | Number of Abnormal Seedlings, Dead, Hard, and Fresh Seeds Coreopsis lanceolata (%) | |||||||
---|---|---|---|---|---|---|---|---|
Application Technique of the Solution | ||||||||
Seed Soaking 10 min | Tissue Paper Soaked in Solution | |||||||
Abnormal Seedlings | Dead Seeds | Hard Seeds | Fresh Seeds | Abnormal Seedlings | Dead Seeds | Hard Seeds | Fresh Seeds | |
Control | 5 | 18 | 0 | 0 | 5 | 18 | 0 | 0 |
1 | 8 | 12 | 0 | 0 | 55 | 45 | 0 | 0 |
5 | 6 | 10 | 0 | 0 | 78 | 22 | 0 | 0 |
10 | 1 | 28 | 0 | 0 | 66 | 34 | 0 | 0 |
Dose of Cadmium mg·dm−3 | Germination Energy Eschscholzia californica Cham. (%) | Germination Capacity Eschscholzia californica Cham. (%) | ||
---|---|---|---|---|
Application Technique of the Solution | ||||
Seed Soaking 10 min | Tissue Paper Soaked in Solution | Seed Soaking 10 min | Tissue Paper Soaked in Solution | |
Control | 83 a * | 83 a | 85 b | 85 b |
1.5 | 91 a | 0 a | 91 b | 3 a |
2.0 | 87 a | 0 a | 87 b | 0 a |
2.5 | 80 a | 0 a | 80 b | 1 a |
Dose of Cadmium mg·dm−3 | Number of Abnormal Seedlings, Dead, Hard, and Fresh Seeds Eschscholzia californica Cham. (%) | |||||||
---|---|---|---|---|---|---|---|---|
Application Technique of the Solution | ||||||||
Seed Soaking 10 min | Tissue Paper Soaked in Solution | |||||||
Abnormal Seedlings | Dead Seeds | Hard Seeds | Fresh Seeds | Abnormal Seedlings | Dead Seeds | Hard Seeds | Fresh Seeds | |
Control | 0 | 15 | 0 | 0 | 0 | 15 | 0 | 0 |
1.5 | 2 | 7 | 0 | 0 | 72 | 25 | 0 | 0 |
2.0 | 1 | 12 | 0 | 0 | 70 | 30 | 0 | 0 |
2.5 | 3 | 17 | 0 | 0 | 62 | 37 | 0 | 0 |
Dose of Cadmium mg·dm−3 | Germination Energy Coreopsis lanceolata (%) | Germination Capacity Coreopsis lanceolata (%) | ||
---|---|---|---|---|
Application Technique of the Solution | ||||
Seed Soaking 10 min | Tissue Paper Soaked in Solution | Seed Soaking 10 min | Tissue Paper Soaked in Solution | |
Control | 49 c * | 49 c | 77 b | 77 b |
1.5 | 38 b | 0 a | 81 b | 0 a |
2.0 | 32 b | 0 a | 84 b | 0 a |
2.5 | 29 b | 0 a | 81 b | 0 a |
Dose of Cadmium mg dm−3 | Number of Abnormal Seedlings, Dead, Hard, and Fresh Seeds Coreopsis lanceolata (%) | |||||||
---|---|---|---|---|---|---|---|---|
Application Technique of the Solution | ||||||||
Seed Soaking 10 min | Tissue Paper Soaked in Solution | |||||||
Abnormal Seedlings | Dead Seeds | Hard Seeds | Fresh Seeds | Abnormal Seedlings | Dead Seeds | Hard Seeds | Fresh Seeds | |
Control | 5 | 18 | 0 | 0 | 5 | 18 | 0 | 0 |
1.5 | 5 | 14 | 0 | 0 | 76 | 24 | 0 | 0 |
2.0 | 5 | 11 | 0 | 0 | 75 | 25 | 0 | 0 |
2.5 | 6 | 13 | 0 | 0 | 67 | 33 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcin, O.; Bosiacki, M.; Świerczyński, S. The Effect of Increasing Doses of Heavy Metals on Seed Germination of Selected Ornamental Plant Species. Agronomy 2025, 15, 1262. https://doi.org/10.3390/agronomy15061262
Marcin O, Bosiacki M, Świerczyński S. The Effect of Increasing Doses of Heavy Metals on Seed Germination of Selected Ornamental Plant Species. Agronomy. 2025; 15(6):1262. https://doi.org/10.3390/agronomy15061262
Chicago/Turabian StyleMarcin, Olzacki, Maciej Bosiacki, and Sławomir Świerczyński. 2025. "The Effect of Increasing Doses of Heavy Metals on Seed Germination of Selected Ornamental Plant Species" Agronomy 15, no. 6: 1262. https://doi.org/10.3390/agronomy15061262
APA StyleMarcin, O., Bosiacki, M., & Świerczyński, S. (2025). The Effect of Increasing Doses of Heavy Metals on Seed Germination of Selected Ornamental Plant Species. Agronomy, 15(6), 1262. https://doi.org/10.3390/agronomy15061262