Optimizing Water and Nitrogen Application to Furrow-Irrigated Summer Corn Using the AquaCrop Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Overview of the Test Area
2.2. Experimental Design
2.3. Research Methodology
2.3.1. AquaCrop Model Principles, Parameters, and Validation
2.3.2. Measurement and Calculation of Indicators
- (1)
- Canopy Cover
- (2)
- Aboveground Biomass and Yield
- (3)
- Soil Moisture Content
- (4)
- Crop water consumption
- (5)
- Water use efficiency and irrigation water use efficiency
- (6)
- Net irrigation water requirement
- (7)
- Fertilizer Bias Productivity
- (8)
- Data statistics and processing
2.3.3. Water–Nitrogen Simulation Program Setup
2.4. Data Sources
3. Results
3.1. AquaCrop Model Calibration and Validation
3.1.1. Canopy Cover (CC) Validation
3.1.2. Biomass (B) Validation
3.1.3. Soil Water Content (SWC) Validation
3.1.4. Final Biomass and Yield Validation
3.2. Simulation of Different Water–Nitrogen Scenarios
3.2.1. Effect of Water–Nitrogen Application on Yield
3.2.2. Effect of Water–Nitrogen Application on PFPN and IWUE
3.3. Water–Nitrogen Program Preferences
4. Discussion
4.1. Evaluation of Model Applicability
4.2. Water–Nitrogen Program Modeling and Treatment Analysis
4.3. Selection of Water and Nitrogen Application Scheme
5. Conclusions
- (1)
- Model Performance: This study indicates that the model can effectively simulate the growth and development of summer maize under furrow irrigation after calibration, demonstrating high accuracy. It is suitable for studying yield, nitrogen fertilizer bias productivity, and water use efficiency for summer maize under furrow irrigation in the North China Plain.
- (2)
- Impact of irrigation and fertilization: Irrigation and fertilization are critical for maize growth and yield. Adequate irrigation ensures that the crop receives sufficient water, reduces drought-induced water stress, and increases nitrogen bioproductivity, increasing yields by 8.1–12.6%. Appropriate fertilization ensures adequate nutrient availability to the crop and improves soil water use while increasing water use efficiency, increasing yields by 4.1–19.3%. However, over-irrigation leads to excess soil water, disrupting nutrient and water uptake and reducing irrigation water use efficiency by 6.4–20.7%. Similarly, over-application of nitrogen fertilizer causes seedling burning, which leads to yield reduction and decreases nitrogen productivity by 8.1–12.7%.
- (3)
- Optimal Water and Nitrogen Application Scheme: Based on the calibrated AquaCrop model, 16 water and nitrogen application schemes for summer maize were simulated. The results of the simulations were analyzed, and an optimal water and nitrogen application scheme for furrow-irrigated summer maize was determined based on screening criteria and actual production conditions. That is, 360 mm of irrigation water and 240 kg/mm2 of nitrogen fertilizer application.
- (4)
- Model Limitations: While the AquaCrop model effectively simulates the growth and development of maize under furrow irrigation, it exhibits low accuracy in simulating soil water content. Therefore, future research will focus on strengthening field experiments and optimizing the model to more accurately and effectively simulate soil water content and water transport.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qin, W.L.; Zhang, J.; Xiao, G.M.; Cui, S.Q.; Ye, J.X.; Zhi, J.F.; Zhang, L.F.; Xie, N.; Feng, W.; Liu, Z.Y.; et al. Effects of partial replacement of chemical fertilizer nitrogen by green manure on soil physical properties. J. Grassl. 2025, 34, 27–45. [Google Scholar]
- Kang, A.-L.; Meng, F.-Q.; Li, H.; Wang, L.G.; Wu, S.X.; Zhang, X.; Wu, W.L.; Li, H.B.; Hu, Z.J. Effects of drip irrigation fertilization on yield and water and nitrogen use efficiency of winter wheat-summer maize crops in North China. Soil Bull. 2020, 51, 958–968. [Google Scholar]
- Qiang, M. Optimization of water and nitrogen application system for winter wheat under wide-row furrow irrigation. Agric. Technol. 2024, 44, 58–60. [Google Scholar]
- Wang, S.S.; Meng, P.T.; Liu, D.X.; Shi, S.; Wang, X. Experimental study on the effects of water wetting front transport and irrigation quality in broad-row furrow irrigation. Water Sav. Irrig. 2015, 10, 1–4+8. [Google Scholar]
- Wang, S.S.; Yao, Y.Q.; Huang, Y.D.; Yang, C.Y.; Yang, J.Y.; Zhang, H. Evaluation of irrigation and fertilization quality of winter wheat under broad-row furrow irrigation. China Agric. Sci. Technol. Guide 2023, 25, 145–157. [Google Scholar]
- Shi, X.R.; Xu, Q.; Hu, K.L.; Li, S.E. Influence of irrigation frequency on nitrogen loss and water and nitrogen utilization efficiency of oasis spring maize field. J. Agric. Eng. 2018, 34, 118–126. [Google Scholar]
- An, L.; Song, B.; Zou, J.; Cheng, Y.; Luo, D.Y.; Cui, R.; Wang, Y.L.; Sa, W.; Luo, Z. Exploration of the current situation of maize production and technical ways of yield improvement in Guizhou Province. China Agric. Sci. Technol. 2025. [Google Scholar] [CrossRef]
- Zhao, R.F.; Chen, X.P.; Zhang, F.L. Nitrogen cycling and balance in winter wheat-summer maize rotation in North China. Soil Sci. 2009, 46, 684–697. [Google Scholar]
- Ech-chatir, L.; Er-Raki, S.; Rodriguez, J.C.; Meddich, A.; Chehbouni, A. Optimizing sowing date, fertilization, and irrigation strategies for winter wheat in Tensift Al Haouz (Morocco) using the DSSAT-CERES-wheat model. Agric. Water Manag. 2025, 312, 109443. [Google Scholar] [CrossRef]
- Casella, P.; De Rosa, L.; Salluzzo, A.; De Gisi, S. Combining GIS and FAO′s crop water productivity model for the estimation of water footprinting in a temporary river catchment. Sustain. Prod. Consum. 2019, 17, 254–268. [Google Scholar] [CrossRef]
- Van Diepen, C.V.; Wolf, J.V.; Van Keulen, H.; Rappoldt, C. WOFOST: A simulation model of crop production. Soil Use Manag. 1989, 5, 16–24. [Google Scholar] [CrossRef]
- Suárez-Rey, E.M.; Romero-Gámez, M.; Giménez, C.; Thompson, R.B.; Gallardo, M. Predicting yield, growth and water-nitrogen dynamics and determining nitrogen fertilizer requirements of fertilized leafy vegetables in a Mediterranean climate using EU-Rot_N and CropSyst models. Agric. Syst. 2016, 149, 150–164. [Google Scholar] [CrossRef]
- ten Den, T.; Ravensbergen, A.P.; van de Wiel, I.; de Wit, A.; van Evert, F.K.; van Ittersum, M.K.; Reidsma, P. Simulating water-limited potato yield across the Netherlands with (SWAP-) WOFOST: Experiments, model improvement and evaluation. Agric. Water Manag. 2024, 302, 109011. [Google Scholar] [CrossRef]
- Abi Saab, M.T.; Todorovic, M.; Albrizio, R. Comparison of AquaCrop and CropSyst models for simulating barley growth and yield under different water and nitrogen regimes. Does calibration year affect the performance of crop growth models? Agric. Water Manag. 2015, 147, 21–33. [Google Scholar] [CrossRef]
- Araya, A.; Habtu, S.; Hadgu, K.M.; Kebede, A.; Dejene, T. AquaCrop modeling of proposed water deficit irrigated barley biomass and yield tests. Agric. Water Manag. 2010, 97, 1838–1846. [Google Scholar] [CrossRef]
- Zhu, X.F.; Li, Y.Z.; Pan, Y.Z. Progress in research and application of AquaCrop crop modeling. Chin. Agron. Bull. 2014, 30, 270–278. [Google Scholar]
- Yang, G.; Lei, J.; Kong, C.X.; He, X.L.; Li, P.F. Effects of mineralization of drip irrigation water source under membrane on cotton growth and AquaCrop simulation. J. Agric. Eng. 2022, 38, 83–92. [Google Scholar]
- Jia, H.S.; Shi, Y.L.; Zi, X.M.; Liao, M.S.; Yang, K. Optimal planting density of maize in western Yunnan based on the AquaCrop model. J. Yunnan Agric. Univ. (Nat. Sci.) 2024, 39, 171–180. [Google Scholar]
- Nie, W.B.; Ma, Y.P.; Feng, Z.J.; Li, G. Optimization of furrow irrigation scheme for summer maize based on combination of AquaCrop and WinSRFR. J. Agric. Eng. 2024, 40, 51–61. [Google Scholar]
- Umesh, B.; Reddy, K.S.; Polisgowdar, B.S.; Maruthi, V.; Satishkumar, U.; Ayyanagoudar, M.S.; Veeresh, H. Assessment of climate change impact on maize (Zea mays L.) through aquacrop model in semi-arid alfisol of southern Telangana. Agric. Water Manag. 2022, 274, 107950. [Google Scholar] [CrossRef]
- Dai, J.L.; Li, R.P.; Li, C.C.; Lu, Y.Z.; Zou, C.J. Simulation of the effects of different water and fertilizer treatments on maize growth by AquaCrop model in Hetao Irrigation Area. J. Soil Water Conserv. 2021, 35, 312–319. [Google Scholar]
- Oulaid, B.; Milne, A.E.; Waine, T.; El Alami, R.; Rafiqi, M.; Corstanje, R. Stepwise model parametrisation using satellite imagery and hemispherical photography. Tuning AquaCrop sensitive parameters for improved winter wheat yield predictions in semi-arid regions. Field Crops Res. 2024, 309, 109327. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop-The FAO Crop Model to Simulate Yield Response to Water. I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef]
- da Costa, S.A.T.; de Souza, L.S.B.; de Assunção Montenegro, A.A.; de Souza, C.A.A.; de Morais, J.E.F.; de Carvalho Lopes, D.; da Silva, T.G.F. Calibration and validation of the AquaCrop model for forage cactus production systems under different management interventions in the semi-arid region of Brazil. Phys. Chem. Earth Parts A/B/C 2024, 136, 103716. [Google Scholar] [CrossRef]
- Zhang, C.; Kong, J.; Tang, M.; Lin, W.; Ding, D.; Feng, H. Improvement of maize growth and development simulation by temperature compensation effect under plastic film cover in AquaCrop model. J. Crops 2023, 11, 1559–1568. [Google Scholar] [CrossRef]
- Feng, D.; Li, G.; Wang, D.; Wulazibieke, M.; Cai, M.; Kang, J.; Xu, H. Evaluation of the performance of AquaCrop model under drip irrigation with plastic film cover for maize in Northeast China. Agric. Water Manag. 2022, 261, 107372. [Google Scholar] [CrossRef]
- Xing, H.M.; Xiang, S.Y.; Xu, X.G.; Chen, Y.J.; Feng, H.K.; Yang, G.J.; Chen, Z.X. Global sensitivity analysis of AquaCrop crop model parameters based on EFAST method. Chin. Agric. Sci. 2017, 50, 64–76. [Google Scholar]
- Vanuytrecht, E.; Raes, D.; Willems, P. Global sensitivity analysis of yield outputs of water productivity models. Environ. Model. Softw. 2014, 51, 323–332. [Google Scholar] [CrossRef]
- Li, Y.; Li, N.; Javed, T.; Pulatov, A.S.; Yang, Q. Cotton yield response to climate change and sowing period adaptation simulated by AquaCrop model. Ind. Crops Prod. 2024, 212, 118319. [Google Scholar] [CrossRef]
- Tang, B.W.; Meng, F.X.; Meng, B.; Wang, J.; Fan, Y.M. Simulation of maize yield and water use efficiency based on AquaCrop model. South North Water Divers. Water Conserv. Sci. Technol. (Chin. Engl.) 2024, 22, 1224–1238. [Google Scholar]
- Xuan, Z.; Zhang, X.; Dang, H. Study on the preferred irrigation system for winter wheat in Hebei Plain based on AquaCrop model. J. Irrig. Drain. [CrossRef]
- Li, W.F. Research on Agricultural Water Demand Consistency Analysis and Forecasting in Jianghan Plain. Master’s Thesis, Wuhan University, Wuhan, China, 2019. [Google Scholar]
- Zhou, Q.L.; Liu, Z.M.; Yu, H.; Ma, Q.; Liang, W.; Jiang, Y.; Zhang, J.Q.; Ma, Y.P. Water balance characteristics of Changwu County, Liaoning Province based on remotely sensed evapotranspiration data. J. Appl. Ecol. 2025. [Google Scholar] [CrossRef]
- Zhang, J.P.; Wang, W.; Cui, Y.F. Analysis of spatial and temporal variability of typical meteorological elements in the Yellow River Basin [J/OL]. China Rural. Water Conserv. Hydropower 2025, 1–17. Available online: http://kns.cnki.net/kcms/detail/42.1419.tv.20250306.1753.044.html (accessed on 6 May 2025).
- Chaofei, C. Research on Winter Wheat-Summer Corn Irrigation Nitrogen Application System in Guanzhong Region Based on AquaCrop Model. Master’s Thesis, College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang, China, 2019. [Google Scholar]
- Li, Y.; Niu, J.Y.; Guo, L.Z.; Gao, Z.N.; Sun, X.H. Application and validation of AquaCrop model in simulation of biomass and yield of Northwest huisache. Chin. J. Ecol. Agric. 2014, 22, 93–103. [Google Scholar] [CrossRef]
- Wu, Y.J. Research on Crop Irrigation Water Demand Based on AquaCrop Model. Master’s Thesis, Guilin University of Technology, Guilin, China, 2024. [Google Scholar]
- Zhang, M.; Tian, J.C. Simulation and applicability of AquaCrop model for silage corn growth in saline and alkaline land under different irrigation quotas. Water Sav. Irrig. 2024, 11, 10–17. [Google Scholar]
- Xue, H.L. Research and Numerical Simulation of Soil Water Transport in Wide-Row Furrow Irrigation. Master’s Thesis, North China University of Water Resources and Electric Power, Zhengzhou, China, 2018. [Google Scholar]
- Chang, M.; Zhou, Q.Y.; Yin, L.P. Effects of different irrigation methods and irrigation quotas on the growth of summer maize and adaptation of AquaCrop model. J. Irrig. Drain. 2023, 42, 32–39. [Google Scholar]
- Abedinpour, M.; Sarangi, A.; Rajput, T.B.S.; Singh, M.; Pathak, H.; Ahmad, T. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric. Water Manag. 2012, 110, 55–66. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, J.; Wang, M.; Zhang, H.; Yang, N.; Ma, J.; Cai, H. Effects of irrigation and fertilization with biochar on the growth, yield, and water/nitrogen use of maize on the Guanzhong Plain, China. Agric. Water Manag. 2024, 295, 108786. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, Y.; Xu, C.; Wang, P.; Huang, S.; Lv, Y. Enhancing spatial and temporal coordination of soil water and root growth to improve maize (Zea mays L.) yield. Agric. Water Manag. 2024, 294, 108728. [Google Scholar] [CrossRef]
- Kisekka, I.; Schlegel, A.; Ma, L.; Gowda, P.H.; Prasad, P.V.V. Optimizing preplant irrigation for maize under limited water in the High Plains. Agric. Water Manag. 2017, 187, 154–163. [Google Scholar] [CrossRef]
- Yang, T.; Zhao, J.; Hong, M.; Ma, M. Appropriate water and nitrogen supply regulates the dynamics of nitrogen translocation and thereby enhancing the accumulation of nitrogen in maize grains. Agric. Water Manag. 2024, 306, 109160. [Google Scholar] [CrossRef]
- Yang, T.; Zhao, J.; Hong, M.; Ma, M.; Ma, S.; Yuan, Y. Optimizing water and nitrogen supply can regulate the dynamics of dry matter accumulation in maize, thereby promoting dry matter accumulation and increasing yield. Field Crops Res. 2025, 326, 109837. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, F.; Zhang, X.; Gao, Q.; Yan, L. Optimum management strategy for improving maize water productivity and partial factor productivity for nitrogen in China: A meta-analysis. Agric. Water Manag. 2024, 303, 109043. [Google Scholar] [CrossRef]
- Ning, D.; Chen, H.; Qin, A.; Gao, Y.; Zhang, J.; Duan, A.; Liu, Z. Optimizing irrigation and N fertigation regimes achieved high yield and water productivity and low N leaching in a maize field in the North China Plain. Agric. Water Manag. 2024, 301, 108945. [Google Scholar] [CrossRef]
- Lu, J.; Hu, T.; Zhang, B.; Wang, L.; Yang, S.; Fan, J.; Zhang, F. Nitrogen fertilizer management effects on soil nitrate leaching, grain yield and economic benefit of summer maize in Northwest China. Agric. Water Manag. 2021, 247, 106739. [Google Scholar] [CrossRef]
Soil Depth (mm) | Soil Particle Size Mass Fraction (%) | Physical Parameter (%) | Chemical Parameter (mg/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | Wilting Factor | Field Water Holding Capacity | Saturated Water Content | Organic Matter | Total Nitrogen | Effective Potassium | Effective Phosphorus | |
0–20 | 0.17 | 0.64 | 0.19 | 20.4 | 33.3 | 36.5 | 18,951.0 | 576.0 | 115.6 | 12.1 |
20–40 | 0.11 | 0.65 | 0.24 | 20.9 | 35.5 | 39 | ||||
40–60 | 0.09 | 0.65 | 0.26 | 19.7 | 35.4 | 40 | ||||
60–80 | 0.08 | 0.65 | 0.27 | 21.1 | 35.6 | 39 | ||||
80–100 | 0.05 | 0.61 | 0.34 | 21.4 | 35.7 | 38 |
Year | Process | Timing of Fertilizer Application and Amount of Nitrogen Applied (kg/ha) | Frequency and Quota of Irrigation | Irrigation Quota (mm) | |||
---|---|---|---|---|---|---|---|
Base Fertilizer (Before Sowing) | Jointing Stage | Grouting Period | Number of Times of Irrigation | Flooding Quota (mm) | |||
2023 | W1N1 | 60 | 30 | 30 | 4 | 40 | 160 |
W1N2 | 60 | 60 | 4 | ||||
W1N3 | 130 | 130 | 4 | ||||
W2N1 | 30 | 30 | 5 | 200 | |||
W2N2 | 60 | 60 | 5 | ||||
W2N3 | 130 | 130 | 5 | ||||
W3N1 | 30 | 30 | 6 | 240 | |||
W3N2 | 60 | 60 | 6 | ||||
W3N3 | 130 | 130 | 6 | ||||
CK | 0 | 0 | 0 | 0 | 0 | ||
2024 | W1N1 | 60 | 30 | 30 | 3 | 120 | |
W1N2 | 60 | 60 | 3 | ||||
W1N3 | 130 | 130 | 3 | ||||
W2N1 | 30 | 30 | 4 | 160 | |||
W2N2 | 60 | 60 | 4 | ||||
W2N3 | 130 | 130 | 4 | ||||
W3N1 | 30 | 30 | 5 | 200 | |||
W3N2 | 60 | 60 | 5 | ||||
W3N3 | 130 | 130 | 5 | ||||
CK | 0 | 0 | 0 | 0 | 0 |
Nitrogen Application | Parameter Calibration Values | Parameter Calibration Results | |||||
---|---|---|---|---|---|---|---|
Relative Biomass (%) | Maximum Canopy Cover Under Fertilizer Stress (%) | Degree of Canopy Attenuation | Reduction in Maximum Canopy Cover (%) | Reduced Canopy Growth Coefficient (%) | Average Crown Reduction (%) | Reduced Standardized Water Productivity (%) | |
N1 (120 kg/ha) | 81 | 83.9 | small | 11 | 3 | 0.3 | 34 |
N2 (220 kg/ha) | 93 | 94.5 | small | 4 | 1 | 0.18 | 28 |
N3 (320 kg/ha) | 86 | 87.2 | small | 8 | 2 | 0.21 | 34 |
Parameters | Notation | Calibration Value |
---|---|---|
Initial canopy cover (%) | CC0 | 0.40 |
Maximum canopy cover (%) | CCX | 95 |
Maximum Effective Root Depth (m) | ZX | 2.3 |
Canopy growth coefficient (%·d−1) | CGC | 20.7 |
Canopy Decay Coefficient (%·°C−1·d−1) | CDC | 0.0088 |
Crop transpiration coefficient(%) | Kcb | 1.10 |
Effective temperature required from sowing to emergence (°C)/GDD | Teme | 98 |
Effective temperature build-up from sowing to flowering (°C)/GDD | Tfl | 1015 |
Effective cumulative temperature required from sowing to the onset of senescence (°C)/GDD | Tsen | 1373 |
Effective temperature required from sowing to maturity (°C)/GDD | Tmat | 1650 |
Effective temperature accumulation during flowering (°C)/GDD | TL-flo | 227 |
base temperature (°C) | Tbase | 10 |
upper temperature (°C) | Tupper | 40 |
Crop water productivity (g·m−2) | WP | 33.7 |
Reference harvest index (%) | HI | 50 |
Soil Moisture Depletion Thresholds for Canopy Expansion—Upper Thresholds (%ofTAW) | Pexpupper | 0.72 |
Soil Moisture Depletion Thresholds for Canopy Expansion—Lower Thresholds (%ofTAW) | Pexplower | 0.14 |
Water and Fertilizer Program | Timing of Fertilizer Application and Amount of Nitrogen Applied (kg/ha) | Irrigation Schedules and Irrigation Quotas (mm) | Irrigation Quota (mm) | ||||
---|---|---|---|---|---|---|---|
Base Fertilizer (Before Sowing) | Jointing Stage | Grouting Period | Jointing Stage | Staminate | Grouting Period | ||
P1 | 60 | 60 | 60 | 100 | 100 | 100 | 300 |
P2 | 60 | 70 | 70 | 100 | 100 | 100 | 300 |
P3 | 60 | 80 | 80 | 100 | 100 | 100 | 300 |
P4 | 60 | 90 | 90 | 100 | 100 | 100 | 300 |
P5 | 60 | 60 | 60 | 120 | 120 | 120 | 360 |
P6 | 60 | 70 | 70 | 120 | 120 | 120 | 360 |
P7 | 60 | 80 | 80 | 120 | 120 | 120 | 360 |
P8 | 60 | 90 | 90 | 120 | 120 | 120 | 360 |
P9 | 60 | 60 | 60 | 140 | 140 | 140 | 420 |
P10 | 60 | 70 | 70 | 140 | 140 | 140 | 420 |
P11 | 60 | 80 | 80 | 140 | 140 | 140 | 420 |
P12 | 60 | 90 | 90 | 140 | 140 | 140 | 420 |
P13 | 60 | 60 | 60 | 160 | 160 | 160 | 480 |
P14 | 60 | 70 | 70 | 160 | 160 | 160 | 480 |
P15 | 60 | 80 | 80 | 160 | 160 | 160 | 480 |
P16 | 60 | 90 | 90 | 160 | 160 | 160 | 480 |
Process | Final Biomass (kg/ha) | Yield (kg/ha) | ||||
---|---|---|---|---|---|---|
Observed Value | Predicted Value | Relative Error (%) | Observed Value | Predicted Value | Relative Error (%) | |
W1N1 | 13,477 | 14,626 | 8.53 | 7348 | 7606 | 3.51 |
W1N2 | 15,989 | 16,025 | 0.23 | 8465 | 8333 | 1.56 |
W1N3 | 12,047 | 13,209 | 9.65 | 7244 | 6869 | 5.18 |
W2N1 | 16,980 | 16,308 | 3.96 | 7987 | 8480 | 6.17 |
W2N2 | 19,985 | 21,005 | 5.10 | 9679 | 10,927 | 12.89 |
W2N3 | 20,419 | 20,547 | 0.63 | 10,168 | 10,684 | 5.07 |
W3N1 | 12,039 | 13,050 | 8.40 | 6554 | 6786 | 3.54 |
W3N2 | 14,726 | 15,899 | 7.97 | 7986 | 8267 | 3.52 |
W3N3 | 17,194 | 17,530 | 1.95 | 8603 | 9116 | 5.96 |
CK | 8562 | 8941 | 4.43 | 4361 | 4470 | 2.50 |
average value | 15,142 | 15,714 | 5.09 | 7840 | 8154 | 4.99 |
Program Number | Irrigation Quota (mm) | Nitrogen Application (kg/ha) | Y (kg/ha) | PFPN | IWUE |
---|---|---|---|---|---|
P1 | 300 | 180 | 8896 Bb | 49.42 Ba | 29.64 Ab |
P2 | 300 | 200 | 9122 Bab | 45.61 Ba | 30.39 Ab |
P3 | 300 | 220 | 9703 Ba | 44.10 Bab | 32.33 Ab |
P4 | 300 | 240 | 9490 Ba | 39.54 Bb | 31.62 Aa |
P5 | 360 | 180 | 9410 Ab | 52.28 Aa | 26.13 Ab |
P6 | 360 | 200 | 10,481 Aab | 52.41 Aa | 29.10 Ab |
P7 | 360 | 220 | 10,642 Aa | 48.37 Aab | 29.55 Ab |
P8 | 360 | 240 | 11,241 Aa | 46.84 Ab | 31.21 Aa |
P9 | 420 | 180 | 8676 ABb | 48.20 ABa | 20.65 Bb |
P10 | 420 | 200 | 9607 ABab | 48.04 ABa | 22.86 Bb |
P11 | 420 | 220 | 10,095 ABa | 45.89 ABab | 24.03 Bb |
P12 | 420 | 240 | 10,268 ABa | 42.78 ABb | 24.44 Ba |
P13 | 480 | 180 | 8409 Bb | 46.72 Ba | 17.51 Cb |
P14 | 480 | 200 | 8981 Bab | 44.91 Ba | 18.70 Cb |
P15 | 480 | 220 | 9611 Ba | 43.69 Bab | 20.01 Cb |
P16 | 480 | 240 | 10,090 Ba | 42.04 Bb | 21.01 Ca |
irrigation quota | ** | * | ** | ||
nitrogen application | ** | ** | * | ||
irrigation quota×nitrogen application | ** | * | * |
Programmatic | Normalize | Programmatic | Normalize | ||||
---|---|---|---|---|---|---|---|
Y | PFPN | IWUE | Y | PFPN | IWUE | ||
P1 | 0.17 | 0.77 | 0.62 | P9 | 0.09 | 0.67 | 0.17 |
P2 | 0.25 | 0.47 | 0.69 | P10 | 0.42 | 0.66 | 0.38 |
P3 | 0.46 | 0.35 | 0.87 | P11 | 0.60 | 0.49 | 0.49 |
P4 | 0.38 | 0 | 0.81 | P12 | 0.66 | 0.25 | 0.53 |
P5 | 0.35 | 0.99 | 0.78 | P13 | 0 | 0.56 | 0 |
P6 | 0.73 | 1 | 0.80 | P14 | 0.20 | 0.42 | 0.11 |
P7 | 0.79 | 0.69 | 0.84 | P15 | 0.42 | 0.32 | 0.24 |
P8 | 1 | 0.60 | 1 | P16 | 0.59 | 0.19 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Wang, S.; Wang, A. Optimizing Water and Nitrogen Application to Furrow-Irrigated Summer Corn Using the AquaCrop Model. Agronomy 2025, 15, 1229. https://doi.org/10.3390/agronomy15051229
Zhao Y, Wang S, Wang A. Optimizing Water and Nitrogen Application to Furrow-Irrigated Summer Corn Using the AquaCrop Model. Agronomy. 2025; 15(5):1229. https://doi.org/10.3390/agronomy15051229
Chicago/Turabian StyleZhao, Yifei, Shunsheng Wang, and Aili Wang. 2025. "Optimizing Water and Nitrogen Application to Furrow-Irrigated Summer Corn Using the AquaCrop Model" Agronomy 15, no. 5: 1229. https://doi.org/10.3390/agronomy15051229
APA StyleZhao, Y., Wang, S., & Wang, A. (2025). Optimizing Water and Nitrogen Application to Furrow-Irrigated Summer Corn Using the AquaCrop Model. Agronomy, 15(5), 1229. https://doi.org/10.3390/agronomy15051229