Enhancing Soil Health, Growth, and Bioactive Compound Accumulation in Sunflower Sprouts Using Agricultural Byproduct-Based Soil Amendments
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil, Manure, and Rice Husk Biochar Preparation
2.2. Experimental Setup
2.3. Soil Sampling and Analyses
2.3.1. Soil Texture
2.3.2. pH and Electrical Conductivity
2.3.3. Water-Holding Capacity
2.3.4. Organic Matter and Organic Carbon
2.3.5. Water-Stable Aggregates
2.3.6. Soil Respiration
2.3.7. Nitrate, Available Phosphorus, and Available Potassium
2.4. Plant Sampling and Measures
2.4.1. Germination Rate
2.4.2. Leaf Area Measurement
2.4.3. Root-to-Shoot Ratio
2.4.4. Total Phenolic Content
2.4.5. Antioxidant Activity
2.4.6. Total Chlorophyll Content
2.5. Statistical Analyses
3. Results and Discussion
3.1. Soil Aggregation and Physicochemical Properties
3.1.1. Effects on Soil Aggregation
3.1.2. Effects on pH and Electrical Conductivity
3.1.3. Effects on Soil Organic Carbon
3.1.4. Effects on Soil Respiration
3.1.5. Effects on Soil Nitrate, Phosphorus, and Potassium
3.2. Growth Performance of and Biomass Allocation in Sunflower Sprouts
3.2.1. Changes in Germination Rate and Leaf Area
3.2.2. Changes in Plant Biomass and Root-to-Shoot Ratio
3.3. Bioactive Compounds in Sunflower Sprouts
3.3.1. Changes in Total Phenolic Content
3.3.2. Changes in Antioxidant Activity
3.3.3. Changes in Total Chlorophyll Content
3.4. Principal Component Analysis (PCA) of Soil and Plant Responses to Amendments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Elemental Composition Analysis
Element | RHB (%) 1 | LWB (%) | CCB (%) |
---|---|---|---|
Oxygen (O) | 48.45 | 39.04 | 37.85 |
Nitrogen (N) | 4.08 | 28.01 | 31.45 |
Carbon (C) | 3.50 | 23.02 | 24.15 |
Calcium (Ca) | 0.58 | 3.34 | 0.04 |
Hydrogen (H) | 0.29 | 2.17 | 2.2 |
Potassium (K) | 3.69 | 2.8 | 3.2 |
Phosphorus (P) | 0.89 | 0.43 | 0.15 |
Chlorine (Cl) | 1.54 | 0.15 | 0.15 |
Magnesium (Mg) | 0.37 | 0.87 | 0.11 |
Sulfur (S) | 0.18 | 0.08 | 0.03 |
Silicon (Si) | 35.90 | 0.03 | 0.59 |
Sodium (Na) | 0.03 | 0.03 | 0.01 |
Iron (Fe) | 0.18 | 0.01 | 0.05 |
Aluminum (Al) | 0.10 | 0.01 | 0.01 |
Copper (Cu) | ND 2 | 0.01 | 0.01 |
Strontium (Sr) | ND | 0 | ND |
Titanium (Ti) | 0.01 | ND | ND |
Manganese (Mn) | 0.14 | ND | ND |
Zinc (Zn) | 0.05 | ND | 0.01 |
Bromine (Br) | ND | ND | 0.00 |
Rubidium (Rb) | 0.10 | 0.00 | 0.00 |
Chromium (Cr) | 0.01 | ND | ND |
References
- Funakawa, S.; Yanai, J.; Hayashi, Y.; Hayashi, T.; Watanabe, T.; Noichana, C.; Panitkasate, T.; Katawatin, R.; Kosaki, T.; Natawa, E. Soil organic matter dynamics in a sloped sandy cropland of Northeast Thailand with special reference to the spatial distribution of soil properties. Jpn. J. Trop. Agric. 2006, 50, 199–207. [Google Scholar] [CrossRef]
- Šimanský, V.; Juriga, M.; Jonczak, J.; Uzarowicz, L.; Stępień, W. How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma 2019, 342, 75–84. [Google Scholar] [CrossRef]
- Ding, Y.; Gao, X.; Shu, D.; Siddique, K.H.M.; Song, X.; Wu, P.; Li, C.; Zhao, X. Enhancing soil health and nutrient cycling through soil amendments: Improving the synergy of bacteria and fungi. Sci. Total Environ. 2024, 923, 171332. [Google Scholar] [CrossRef]
- Guo, X.X.; Liu, H.T.; Zhang, J. The role of biochar in organic waste composting and soil improvement: A review. Waste Manag. 2020, 102, 884–899. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Akhtar, M.; Malik, A. Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: A review. Bioresour. Technol. 2000, 74, 35–47. [Google Scholar] [CrossRef]
- Gross, A.; Glaser, B. Meta-analysis on how manure application changes soil organic carbon storage. Sci. Rep. 2021, 11, 5516. [Google Scholar] [CrossRef]
- Dunjana, N.; Nyamugafata, P.; Shumba, A.; Nyamangara, J.; Zingore, S. Effects of cattle manure on selected soil physical properties of smallholder farms on two soils of Murewa, Zimbabwe. Soil Use Manag. 2012, 28, 221–228. [Google Scholar] [CrossRef]
- Mustafa, A.; Hu, X.; Abrar, M.M.; Shah, S.A.A.; Nan, S.; Saeed, Q.; Kamran, M.; Naveed, M.; Conde-Cid, M.; Hongjun, G.; et al. Long-term fertilization enhanced carbon mineralization and maize biomass through physical protection of organic carbon in fractions under continuous maize cropping. Appl. Soil Ecol. 2021, 165, 103971. [Google Scholar] [CrossRef]
- Hammerschmiedt, T.; Holatko, J.; Pecina, V.; Huska, D.; Latal, O.; Kintl, A.; Radziemska, M.; Muhammad, S.; Gusiatin, Z.M.; Kolackova, M.; et al. Assessing the potential of biochar aged by humic substances to enhance plant growth and soil biological activity. Chem. Biol. Technol. Agric. 2021, 8, 46. [Google Scholar] [CrossRef]
- Rayne, N.; Aula, L. Livestock manure and the impacts on soil health: A review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Marques-dos-Santos, C.; Serra, J.; Attard, G.; Marchaim, U.; Calvet, S.; Amon, B. Available technical options for manure management in environmentally friendly and circular livestock production. In Technology for Environmentally Friendly Livestock Production; Springer International Publishing: Cham, Switzerland, 2023; pp. 147–176. [Google Scholar] [CrossRef]
- Linam, F.; Limmer, M.A.; Ebling, A.M.; Seyfferth, A.L. Rice husk and husk biochar soil amendments store soil carbon while water management controls dissolved organic matter chemistry in well-weathered soil. J. Environ. Manag. 2023, 339, 117936. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Supriyadi, S.; Widjajani, B.W.; Murniyanto, E. The effect of rice husk biochar and cow manure on some soil characteristics, N and P uptake and plant growth of soybean in Alfisol. J. Trop. Soils 2022, 27, 59–66. [Google Scholar] [CrossRef]
- Oni, B.A.; Oziegbe, O.; Olawole, O.O. Significance of biochar application to the environment and economy. Ann. Agric. Sci. 2019, 64, 222–236. [Google Scholar] [CrossRef]
- Antonious, G.F. Duality of biochar and organic manure co-composting on soil heavy metals and enzymes activity. Appl. Sci. 2025, 15, 3031. [Google Scholar] [CrossRef]
- Tazebew, E.; Addisu, S.; Bekele, E.; Alemu, A.; Belay, B.; Sato, S. Sustainable soil health and agricultural productivity with biochar-based indigenous organic fertilizers in acidic soils: Insights from Northwestern Highlands of Ethiopia. Discov. Sustain. 2024, 5, 205. [Google Scholar] [CrossRef]
- Yao, R.; Li, H.; Zhu, W.; Yang, J.; Wang, X.; Yin, C.; Jing, Y.; Chen, Q.; Xie, W. Biochar and potassium humate shift the migration, transformation and redistribution of urea-N in salt-affected soil under drip fertigation: Soil column and incubation experiments. Irrig. Sci. 2022, 40, 267–282. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Banik, C.; Koziel, J.A.; De, M.; Bonds, D.; Chen, B.; Singh, A.; Licht, M.A. Biochar-swine manure impact on soil nutrients and carbon under controlled leaching experiment using a Midwestern Mollisols. Front. Environ. Sci. 2021, 9, 609621. [Google Scholar] [CrossRef]
- Brtnicky, M.; Datta, R.; Holatko, J.; Bielska, L.; Gusiatin, Z.M.; Kucerik, J.; Hammerschmiedt, T.; Danish, S.; Radziemska, M.; Mravcova, L.; et al. A critical review of the possible adverse effects of biochar in the soil environment. Sci. Total Environ. 2021, 796, 148756. [Google Scholar] [CrossRef] [PubMed]
- Agyarko-Mintah, E.; Cowie, A.; Singh, B.P.; Joseph, S.; Zwieten, L.V.; Cowie, A.; Harden, S.; Smillie, R. Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter. Waste Manag. 2017, 61, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Zarezadeh, S.; Zheng, Y.; Jenkins, S.N.; Mercer, G.D.; Moheimani, N.R.; Singh, P.; Mickan, B.S. Sustainable soil management in agriculture under drought stress: Utilising waste-derived organic soil amendments and beneficial impacts on soil bacterial processes. Appl. Soil Ecol. 2025, 206, 105870. [Google Scholar] [CrossRef]
- Bastida, F.; Torres, I.F.; Hernández, T.; García, C. The impacts of organic amendments: Do they confer stability against drought on the soil microbial community? Soil Biol. Biochem. 2017, 113, 173–183. [Google Scholar] [CrossRef]
- Sun, Y.; Tao, C.; Deng, X.; Liu, H.; Shen, Z.; Liu, Y.; Li, R.; Shen, Q.; Geisen, S. Organic fertilization enhances the resistance and resilience of soil microbial communities under extreme drought. J. Adv. Res. 2023, 47, 1–12. [Google Scholar] [CrossRef]
- Fichtner, T.; Goersmeyer, N.; Stefan, C. Influence of soil pore system properties on the degradation rates of organic substances during soil aquifer treatment (SAT). Appl. Sci. 2019, 9, 496. [Google Scholar] [CrossRef]
- Kroetsch, D.; Wang, C. Particle size distribution. Soil Sampl. Methods Anal. 2008, 2, 713–725. [Google Scholar] [CrossRef]
- Hendershot, W.H.; Lalande, H.; Duquette, M. Soil reaction and exchangeable acidity. In Soil Sampling and Methods of Analysis; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar] [CrossRef]
- Motsara, M.R.; Roy, R.N. Guide to Laboratory Establishment for Plant Nutrient Analysis; FAO Fertilizer and Plant Nutrition Bulletin, 19; FAO: Rome, Italy, 2008; Available online: https://www.fao.org/4/i0131e/i0131e00.htm (accessed on 13 April 2025).
- Smallholder Agriculture. Soil Health Evaluation Manual (Version 6.4). 2020. Available online: https://smallholder-sha.org/wp-content/uploads/2020/08/soiltoolkitmanual_sv6.4_edits_8_2020_pom_rewrite_changeaccepted.pdf (accessed on 27 December 2024).
- USDA Agricultural Research Service. Soil Aggregate Analysis. Available online: https://www.ars.usda.gov/ARSUserFiles/30640500/Glomalin/Soil%20aggregate%20analysis.pdf (accessed on 27 December 2024).
- Page, A.L.; Miller, R.H.; Keeney, D.R. (Eds.) Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties, 2nd ed.; Agronomy Monograph No. 9, Part 2; Front Matter—1982—Agronomy Monographs—Wiley Online Library; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- Goyne, P.J.; Woodruff, D.R.; Churchett, J.D. Environmental causes of yield variation in rain grown sunflower in Central Queensland. Aust. J. Exp. Agric. 1978, 18, 129–134. [Google Scholar] [CrossRef]
- Deng, G.F.; Lin, X.; Xu, X.R.; Gao, L.L.; Xie, J.F.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Foods 2013, 5, 260–266. [Google Scholar] [CrossRef]
- Ghafoor, K.; Ozcan, M.M.; AL-Juhaimi, F.; Babiker, E.E.; Fadimu, G.J. Changes in quality, bioactive compounds, fatty acids, tocopherols, and phenolic composition in oven- and microwave-roasted poppy seeds and oil. LWT Food Sci. Technol. 2019, 99, 490–496. [Google Scholar] [CrossRef]
- Barua, U.; Das, R.P.; Gogoi, B. Chlorophyll estimation in some minor fruits of Assam. Ecol. Environ. Conserv. 2016, 22, 1787–1789. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Srivastava, A.K.; Rajput, V.D.; Chauhan, P.K.; Bhojiya, A.A.; Jain, D.; Chaubey, G.; Dwivedi, P.; Sharma, B.; Minkina, T. Root exudates: Mechanistic insight of plant growth promoting rhizobacteria for sustainable crop production. Front. Microbiol. 2022, 13, 916488. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, N.; Ge, T.; Kuzyakov, Y.; Wang, Z.L.; Li, Z.; Tang, Z.; Chen, Y.; Wu, C.; Lou, Y. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment. Appl. Soil Ecol. 2017, 111, 65–72. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Zhang, J.; Chi, F.; Wei, D.; Zhou, B.; Cai, S.; Li, Y.; Kuang, E.; Sun, L.; Li, L.J. Impacts of long-term fertilization on the molecular structure of humic acid and organic carbon content in soil aggregates in black soil. Sci. Rep. 2019, 9, 11908. [Google Scholar] [CrossRef] [PubMed]
- Ozlu, E.; Kumar, S. Response of soil organic carbon, pH, electrical conductivity, and water stable aggregates to long-term annual manure and inorganic fertilizer. Soil Sci. Soc. Am. J. 2018, 82, 1243–1251. [Google Scholar] [CrossRef]
- Mikha, M.M.; Hergert, G.W.; Benjamin, J.G.; Jabro, J.D.; Nielsen, R.A. Long-term manure impacts on soil aggregates and aggregate-associated carbon and nitrogen. Soil Sci. Soc. Am. J. 2015, 79, 626–636. [Google Scholar] [CrossRef]
- Yu, H.; Ding, W.; Luo, J.; Geng, R.; Cai, Z. Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil Tillage Res. 2012, 124, 170–177. [Google Scholar] [CrossRef]
- Mikha, M.M.; Rice, C.W. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen. Soil Sci. Soc. Am. J. 2004, 68, 809–816. [Google Scholar] [CrossRef]
- Mohammadi, K.; Heidari, G.; Khalesro, S.; Sohrabi, Y. Soil management, microorganisms and organic matter interactions: A review. Afr. J. Biotechnol. 2011, 10, 19840. [Google Scholar] [CrossRef]
- Verchot, L.V.; Dutaur, L.; Shepherd, K.D.; Albrecht, A. Organic matter stabilization in soil aggregates: Understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils. Geoderma 2011, 161, 182–193. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Abulaiti, A.; She, D.; Liu, Z.; Sun, X.; Wang, H. Application of biochar and polyacrylamide to revitalize coastal saline soil quality to improve rice growth. Environ. Sci. Pollut. Res. 2023, 30, 18731–18747. [Google Scholar] [CrossRef]
- Jeffery, S.; Meinders, M.B.; Stoof, C.R.; Bezemer, T.M.; van de Voorde, T.F.; Mommer, L.; van Groenigen, J.W. Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma 2015, 251, 47–54. [Google Scholar] [CrossRef]
- Vanotti, M.B.; García-González, M.C.; Szögi, A.A.; Harrison, J.H.; Smith, W.B.; Moral, R. Removing and recovering nitrogen and phosphorus from animal manure. Anim. Manure Prod. Charact. Environ. Concerns Manag. 2020, 67, 275–321. [Google Scholar] [CrossRef]
- Van Dang, L.; Ngoc, N.P.; Hung, N.N. Soil quality and pomelo productivity as affected by chicken manure and cow dung. Sci. World J. 2021, 2021, 6289695. [Google Scholar] [CrossRef] [PubMed]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Ewulo, B.S. Effect of poultry dung and cattle manure on chemical properties of clay and sandy clay loam soil. J. Anim. Vet. Adv. 2005, 4, 839–841. [Google Scholar]
- Whalen, J.K.; Chang, C.; Clayton, G.W.; Carefoot, J.P. Cattle manure amendments can increase the pH of acid soils. Soil Sci. Soc. Am. J. 2000, 64, 962–966. [Google Scholar] [CrossRef]
- Da Silva Mendes, J.; Fernandes, J.D.; Chaves, L.H.G.; Guerra, H.O.C.; Tito, G.A.; de Brito Chaves, I. Chemical and physical changes of soil amended with biochar. Water Air Soil Pollut. 2021, 232, 338. [Google Scholar] [CrossRef]
- Ghorbani, M.; Asadi, H.; Abrishamkesh, S. Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. Int. Soil Water Conserv. Res. 2019, 7, 258–265. [Google Scholar] [CrossRef]
- Oladele, S.O. Changes in physicochemical properties and quality index of an Alfisol after three years of rice husk biochar amendment in rainfed rice–Maize cropping sequence. Geoderma 2019, 353, 359–371. [Google Scholar] [CrossRef]
- Abrishamkesh, S.; Gorji, M.; Asadi, H.; Bagheri–Marandi, G.H.; Pourbabaee, A.A. Effects of rice husk biochar application on the properties of alkaline soil and lentil growth. Plant Soil Environ. 2015, 61, 475–482. [Google Scholar] [CrossRef]
- Karam, D.S.; Nagabovanalli, P.; Rajoo, K.S.; Ishak, C.F.; Abdu, A.; Rosli, Z.; Muharam, F.M.; Zulperi, D. An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application. J. Saudi Soc. Agric. Sci. 2022, 21, 149–159. [Google Scholar] [CrossRef]
- Chen, X.; Lewis, S.; Heal, K.V.; Lin, Q.; Sohi, S.P. Biochar engineering and ageing influence the spatiotemporal dynamics of soil pH in the charosphere. Geoderma 2021, 386, 114919. [Google Scholar] [CrossRef]
- Asadi, H.; Ghorbani, M.; Rezaei-Rashti, M.; Abrishamkesh, S.; Amirahmadi, E.; Chen, C.; Gorji, M. Application of rice husk biochar for achieving sustainable agriculture and environment. Rice Sci. 2021, 28, 325–343. [Google Scholar] [CrossRef]
- Maillard, É.; Angers, D.A. Animal manure application and soil organic carbon stocks: A meta-analysis. Glob. Change Biol. 2014, 20, 666–679. [Google Scholar] [CrossRef]
- Lin, Y.; Ye, G.; Kuzyakov, Y.; Liu, D.; Fan, J.; Ding, W. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 2019, 134, 187–196. [Google Scholar] [CrossRef]
- Liu, S.; Kong, F.; Li, Y.; Jiang, Z.; Xi, M.; Wu, J. Mineral-ions modified biochars enhance the stability of soil aggregate and soil carbon sequestration in a coastal wetland soil. Catena 2020, 193, 104618. [Google Scholar] [CrossRef]
- Du, Z.L.; Zhao, J.K.; Wang, Y.D.; Zhang, Q.Z. Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system. J. Soils Sediments 2017, 17, 581–589. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Holatko, J.; Bielska, L.; Hammerschmiedt, T.; Kucerik, J.; Mustafa, A.; Radziemska, M.; Kintl, A.; Baltazar, T.; Latal, O.; Brtnicky, M. Cattle manure fermented with biochar and humic substances improve the crop biomass, microbiological properties and nutrient status of soil. Agronomy 2022, 12, 368. [Google Scholar] [CrossRef]
- Han, Z.; Xu, P.; Li, Z.; Guo, S.; Li, S.; Liu, S.; Wu, S.; Wang, J.; Zou, J. Divergent effects of biochar amendment and replacing mineral fertilizer with manure on soil respiration in a subtropical tea plantation. Biochar 2023, 5, 73. [Google Scholar] [CrossRef]
- López-López, G.; Lobo, M.C.; Negre, A.; Colombàs, M.; Rovira, J.M.; Martorell, A.; Reolid, C.; Sastre-Conde, I. Impact of fertilisation practices on soil respiration, as measured by the metabolic index of short-term nitrogen input behaviour. J. Environ. Manag. 2012, 113, 517–526. [Google Scholar] [CrossRef]
- Lai, R.; Arca, P.; Lagomarsino, A.; Cappai, C.; Seddaiu, G.; Demurtas, C.E.; Roggero, P.P. Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system. Catena 2017, 151, 202–212. [Google Scholar] [CrossRef]
- Kheyrodin, H.; Ghazvinian, K.; Taherian, M. Tillage and manure effect on soil microbial biomass and respiration, and on enzyme activities. Afr. J. Biotechnol. 2012, 11, 14652–14659. [Google Scholar]
- Sanei, H.; Rudra, A.; Przyswitt, Z.M.M.; Kousted, S.; Sindlev, M.B.; Zheng, X.; Nielsen, S.B.; Petersen, H.I. Assessing biochar’s permanence: An inertinite benchmark. Int. J. Coal Geol. 2024, 281, 104409. [Google Scholar] [CrossRef]
- Fatima, S.; Riaz, M.; Al-Wabel, M.I.; Arif, M.S.; Yasmeen, T.; Hussain, Q.; Roohi, M.; Fahad, S.; Ali, K.; Arif, M. Higher biochar rate strongly reduced decomposition of soil organic matter to enhance C and N sequestration in nutrient-poor alkaline calcareous soil. J. Soils Sediments 2021, 21, 148–162. [Google Scholar] [CrossRef]
- Hammerschmiedt, T.; Holatko, J.; Kucerik, J.; Mustafa, A.; Radziemska, M.; Kintl, A.; Malicek, O.; Baltazar, T.; Latal, O.; Brtnicky, M. Manure maturation with biochar: Effects on plant biomass, manure quality and soil microbiological characteristics. Agriculture 2022, 12, 314. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J.J.; Fultz, L.M.; White, P.; Jeong, C. Application of biochar in estrogen hormone-contaminated and manure-affected soils: Impact on soil respiration, microbial community and enzyme activity. Chemosphere 2021, 270, 128625. [Google Scholar] [CrossRef]
- Geng, Y.; Cao, G.; Wang, L.; Wang, S. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PLoS ONE 2019, 14, e0219512. [Google Scholar] [CrossRef]
- Wen, Z.; Shen, J.; Blackwell, M.; Li, H.; Zhao, B.; Yuan, H. Combined applications of nitrogen and phosphorus fertilizers with manure increase maize yield and nutrient uptake via stimulating root growth in a long-term experiment. Pedosphere 2016, 26, 62–73. [Google Scholar] [CrossRef]
- Cao, H.; Ning, L.; Xun, M.; Feng, F.; Li, P.; Yue, S.; Song, J.; Zhang, W.; Yang, H. Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. Appl. Soil Ecol. 2019, 135, 25–32. [Google Scholar] [CrossRef]
- Liu, Z.; He, T.; Cao, T.; Yang, T.; Meng, J.; Chen, W. Effects of biochar application on nitrogen leaching, ammonia volatilization and nitrogen use efficiency in two distinct soils. J. Soil Sci. Plant Nutr. 2017, 17, 515–528. [Google Scholar] [CrossRef]
- Rufino, M.C.; Rowe, E.C.; Delve, R.J.; Giller, K.E. Nitrogen cycling efficiencies through resource-poor African crop–livestock systems. Agric. Ecosyst. Environ. 2006, 112, 261–282. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Routledge: Abingdon-on-Thames, UK, 2015. [Google Scholar] [CrossRef]
- Fischer, D.; Glaser, B. Synergisms between compost and biochar for sustainable soil amelioration. In Management of Organic Waste; InTech: London, UK, 2012. [Google Scholar] [CrossRef]
- Garg, S.; Bahl, G.S. Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils. Bioresour. Technol. 2008, 99, 5773–5777. [Google Scholar] [CrossRef]
- Sharpley, A.N.; McDowell, R.W.; Kleinman, P.J. Amounts, forms, and solubility of phosphorus in soils receiving manure. Soil Sci. Soc. Am. J. 2004, 68, 2048–2057. [Google Scholar] [CrossRef]
- Griffin, T.S.; Honeycutt, C.W.; He, Z. Changes in soil phosphorus from manure application. Soil Sci. Soc. Am. J. 2003, 67, 645–653. [Google Scholar] [CrossRef]
- Jha, P.; Neenu, S.; Rashmi, I.; Meena, B.P.; Jatav, R.C.; Lakaria, B.L.; Biswas, A.K.; Singh, M.; Patra, A.K. Ameliorating effects of Leucaena biochar on soil acidity and exchangeable ions. Commun. Soil Sci. Plant Anal. 2016, 47, 1252–1262. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, Y.; Chang, E.; Wang, R.; Hong, Z.; Cui, J.; Zhang, F.; Jiang, J.; Xu, R. Effect of biochar incorporation on phosphorus supplementation and availability in soil: A review. J. Soils Sediments 2023, 23, 672–686. [Google Scholar] [CrossRef]
- Rashmi, I.; Jha, P.; Biswas, A.K. Phosphorus sorption and desorption in soils amended with subabul biochar. Agric. Res. 2020, 9, 371–378. [Google Scholar] [CrossRef]
- Gao, S.; DeLuca, T.H.; Cleveland, C.C. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Sci. Total Environ. 2019, 654, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Glaser, B.; Lehr, V.I. Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Sci. Rep. 2019, 9, 9338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, C.; Gray, E.M.; Boyd, S.E.; Yang, H.; Zhang, D. Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus. Geoderma 2016, 276, 1–6. [Google Scholar] [CrossRef]
- Arif, M.; Ali, S.; Ilyas, M.; Riaz, M.; Akhtar, K.; Ali, K.; Adnan, M.; Fahad, S.; Khan, I.; Shah, S.; et al. Enhancing phosphorus availability, soil organic carbon, maize productivity and farm profitability through biochar and organic–inorganic fertilizers in an irrigated maize agroecosystem under semi-arid climate. Soil Use Manag. 2021, 37, 104–119. [Google Scholar] [CrossRef]
- Kizito, S.; Luo, H.; Lu, J.; Bah, H.; Dong, R.; Wu, S. Role of nutrient-enriched biochar as a soil amendment during maize growth: Exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability 2019, 11, 3211. [Google Scholar] [CrossRef]
- Römheld, V.; Kirkby, E.A. Research on potassium in agriculture: Needs and prospects. Plant Soil 2010, 335, 155–180. [Google Scholar] [CrossRef]
- Das, I.; Pradhan, M. Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In Potassium Solubilizing Microorganisms for Sustainable Agriculture; Meena, V., Maurya, B., Verma, J., Meena, R., Eds.; Springer: New Delhi, India, 2016. [Google Scholar] [CrossRef]
- Wang, J.; Shi, D.; Huang, C.; Zhai, B.; Feng, S. Effects of common biochar and acid-modified biochar on growth and quality of spinach in coastal saline soils. Plants 2023, 12, 3232. [Google Scholar] [CrossRef]
- Yan, X.; Wang, Z.; Zhao, M.; Hao, J.; Liu, J.; Yan, Y.; Sun, P.; Jia, Y.; Ge, G. Hydrothermal biochar enhances the photosynthetic efficiency and yield of alfalfa by optimizing soil chemical properties and stimulating the activity of microbial communities. Sci. Rep. 2024, 14, 31420. [Google Scholar] [CrossRef]
- Zhu, Q.; Kong, L.J.; Shan, Y.Z.; Yao, X.D.; Zhang, H.J.; Xie, F.T.; Xue, A.O. Effect of biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies. J. Integr. Agric. 2019, 18, 2242–2254. [Google Scholar] [CrossRef]
- Graber, E.R.; Meller Harel, Y.; Kolton, M.; Cytryn, E.; Silber, A.; Rav David, D.; Tsechansky, L.; Borenshtein, M.; Elad, Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010, 337, 481–496. [Google Scholar] [CrossRef]
- Agbede, T.M.; Oyewumi, A. Benefits of biochar, poultry manure and biochar–poultry manure for improvement of soil properties and sweet potato productivity in degraded tropical agricultural soils. Resour. Environ. Sustain. 2022, 7, 100051. [Google Scholar] [CrossRef]
- Nduka, B.A.; Ogunlade, M.O.; Adeniyi, D.O.; Oyewusi, I.K.; Ugioro, O.; Mohammed, I. The influence of organic manure and biochar on cashew seedling performance, soil properties and status. Agric. Sci. 2019, 10, 110–120. [Google Scholar] [CrossRef]
- Agegnehu, G.; Nelson, P.N.; Bird, M.I. Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil Tillage Res. 2016, 160, 1–13. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, X.; Wang, S.; Pu, X. Benefits of organic manure combined with biochar amendments to cotton root growth and yield under continuous cropping systems in Xinjiang, China. Sci. Rep. 2020, 10, 4718. [Google Scholar] [CrossRef]
- Ibrahim, M.; Yamin, M.; Sarwar, G.; Anayat, A.; Habib, F.; Ullah, S. Tillage and farm manure affect root growth and nutrient uptake of wheat and rice under semi-arid conditions. Appl. Geochem. 2011, 26, S194–S197. [Google Scholar] [CrossRef]
- Yang, C.; Yang, L.; Yang, Y.; Ouyang, Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric. Water Manag. 2004, 70, 67–81. [Google Scholar] [CrossRef]
- Zou, Z.; Fan, L.; Li, X.; Dong, C.; Zhang, L.; Zhang, L.; Fu, J.; Han, W.; Yan, P. Response of plant root growth to biochar amendment: A meta-analysis. Agronomy 2021, 11, 2442. [Google Scholar] [CrossRef]
- Zhu, Q.; Kong, L.; Xie, F.; Zhang, H.; Wang, H.; Ao, X. Effects of biochar on seedling root growth of soybeans. Chil. J. Agric. Res. 2018, 78, 549–558. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M.; Aboyeji, C.M.; Dunsin, O.; Simeon, V.T. Effects of biochar and poultry manure on soil characteristics and the yield of radish. Sci. Hortic. 2019, 243, 457–463. [Google Scholar] [CrossRef]
- Comas, L.H.; Becker, S.R.; Cruz, V.M.V.; Byrne, P.F.; Dierig, D.A. Root traits contributing to plant productivity under drought. Front. Plant Sci. 2013, 4, 442. [Google Scholar] [CrossRef]
- Hermans, C.; Hammond, J.P.; White, P.J.; Verbruggen, N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 2006, 11, 610–617. [Google Scholar] [CrossRef]
- Thepsilvisut, O.; Chutimanukul, P.; Sae-Tan, S.; Ehara, H. Effect of chicken manure and chemical fertilizer on the yield and qualities of white mugwort at dissimilar harvesting times. PLoS ONE 2022, 17, e0266190. [Google Scholar] [CrossRef] [PubMed]
- Anugoolprasert, O.; Rithichai, P. Effect of high quality organic fertilizer on yield and quality of lettuce. Thai J. Sci. Technol. 2015, 4, 81–94. [Google Scholar] [CrossRef]
- Elhanafi, L.; Houhou, M.; Rais, C.; Mansouri, I.; Elghadraoui, L.; Greche, H. Impact of excessive nitrogen fertilization on the biochemical quality, phenolic compounds, and antioxidant power of Sesamum indicum L. seeds. J. Food Qual. 2019, 2, 9428092. [Google Scholar] [CrossRef]
- Pacheco, A.C.; Feba, L.G.T.; Serra, E.G.; Takata, W.H.S.; Gorni, P.H.; Yoshida, C.H.P. The use of animal manure in the organic cultivation of Passiflora incarnata L. increases the content of phenolic compounds in the leaf and the antioxidant activity of the plant. Org. Agric. 2021, 11, 567–575. [Google Scholar] [CrossRef]
- Misra, D.; Dutta, W.; Jha, G.; Ray, P. Interactions and regulatory functions of phenolics in soil-plant-climate nexus. Agronomy 2023, 13, 280. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Z.; Gerendás, J. Effects of nitrogen and sulfur on total phenolics and antioxidant activity in two genotypes of leaf mustard. J. Plant Nutr. 2008, 31, 1642–1655. [Google Scholar] [CrossRef]
- Łata, B. Variability in enzymatic and non-enzymatic antioxidants in red and green-leafy kale in relation to soil type and N-level. Sci. Hortic. 2014, 168, 38–45. [Google Scholar] [CrossRef]
- Amarowicz, R.; Ambroziak, B.C.; Janiak, M.A. Effect of N fertilization on the content of phenolic compounds in Jerusalem artichoke (Helianthus tuberosus L.) tubers and their antioxidant capacity. Agronomy 2020, 10, 1215. [Google Scholar] [CrossRef]
- Rodnuch, N.; Phongsri, S.; Aninbon, C. Responses of landrace rice to organic fertilizer for physiological traits, grain yield and total phenolic content. Curr. Appl. Sci. Technol. 2019, 19, 297–305. [Google Scholar]
- Knoblauch, C.; Priyadarshani, S.H.R.; Haefele, S.M.; Schröder, N.; Pfeiffer, E.-M. Impact of biochar on nutrient supply, crop yield and microbial respiration on sandy soils of northern Germany. Eur. J. Soil Sci. 2021, 72, 1885–1901. [Google Scholar] [CrossRef]
- Regmi, A.; Poudyal, S.; Singh, S.; Coldren, C.; Moustaid-Moussa, N.; Simpson, C. Biochar influences phytochemical concentrations of Viola cornuta flowers. Sustainability 2023, 15, 3882. [Google Scholar] [CrossRef]
- Sharma, R.; Kumar, R.; Bakshi, P.; Amit Jasrotia Sinha, B.K.; Sharma, N.; Sharma, P.; Kumar, V.; Sood, M.; Dadheechi, M. Synergistic impact of vermicompost, biochar and jaggery on antioxidants, phenols and flavonoids in Guava cv. L-49. BioResources 2024, 19, 8173–8187. [Google Scholar] [CrossRef]
- Antonious, G.F. Impact of biochar and organic fertilizers on sweet potato yield, quality, ascorbic acid, β-carotene, sugars, and phenols contents. Int. J. Environ. Health Res. 2024, 34, 3708–3719. [Google Scholar] [CrossRef]
- Liwanda, N.; Nurinayah, I.; Mubayyinah, H.; Pratiwi, A.R.R.; Wahyuningrum, T.; Ashari, R.Z.; Aisyah, S.I.; Nurcholis, W. Effect of cow manure fertilizer on growth, polyphenol content, and antioxidant activity of purslane plants. Int. J. Chem. Biochem. Sci. 2023, 23, 43–54. [Google Scholar]
- Ribeiro, F.N.S.; Rocha, T.T.; Medeiros, A.P.R.; Germano, C.M.; de Assis, R.M.A.; de Carvalho, A.A.; Bertolucci, S.K.V.; Pinto, J.E.B.P. Manure application enhances the biomass production, phytochemical contents, antioxidant, and essential oil of Lippia dulcis. Rev. Ciência Agronômica 2024, 55, e20238873. [Google Scholar] [CrossRef]
- Rostaei, M.; Fallah, S.; Carrubba, A.; Lorigooini, Z. Organic manures enhance biomass and improve content, chemical compounds of essential oil and antioxidant capacity of medicinal plants: A review. Heliyon 2024, 10, e36693. [Google Scholar] [CrossRef]
- Duri, L.G.; Pannico, A.; Petropoulos, S.A.; Caporale, A.G.; Adamo, P.; Graziani, G.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Bioactive compounds and antioxidant activity of lettuce grown in different mixtures of monogastric-based manure with lunar and Martian soils. Front. Nutr. 2022, 9, 890786. [Google Scholar] [CrossRef]
- Krupodorova, T.; Barshteyn, V.; Dzhagan, V.; Pluzhnyk, A.; Zaichenko, T.; Blume, Y. Enhancement of antioxidant activity and total phenolic content of Fomitopsis pinicola mycelium extract. Fungal Biol. Biotechnol. 2024, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Gaafar, A.A.; Ali, S.I.; El-Shawadfy, M.A.; Salama, Z.A.; Sękara, A.; Ulrichs, C.; Abdelhamid, M.T. Ascorbic acid induces the increase of secondary metabolites, antioxidant activity, growth, and productivity of the common bean under water stress conditions. Plants 2020, 9, 627. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Jaafar, H.Z.E. The Relationship of nitrogen and C/N ratio with secondary metabolites levels and antioxidant activities in three varieties of Malaysian Kacip Fatimah (Labisia pumila Blume). Molecules 2011, 16, 5514–5526. [Google Scholar] [CrossRef] [PubMed]
- Hasnain, M.; Munir, N.; Abideen, Z.; Zulfiqar, F.; Koyro, H.W.; El-Naggar, A.; Caçador, I.; Duarte, B.; Rinklebe, J.; Yong, J.W.H. Biochar-plant interaction and detoxification strategies under abiotic stresses for achieving agricultural resilience: A critical review. Ecotoxicol. Environ. Saf. 2023, 249, 114408. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Xu, L.; Liu, Y.; Su, W.; Yan, J.; Xu, D. Effect of biochar on the growth, photosynthesis, antioxidant system and cadmium content of Mentha piperita ‘Chocolate’ and Mentha spicata in cadmium-contaminated soil. Agronomy 2022, 12, 2737. [Google Scholar] [CrossRef]
- Ghassemi-Golezani, K.; Rahimzadeh, S. The biochar-based nanocomposites influence the quantity, quality and antioxidant activity of essential oil in dill seeds under salt stress. Sci. Rep. 2022, 12, 21903. [Google Scholar] [CrossRef]
- Sharma, S.; Rana, V.S.; Rana, N.; Sharma, U.; Gudeta, K.; Alharbi, K.; Ameen, F.; Bhat, S.A. Effect of organic manures on growth, yield, leaf nutrient uptake and soil properties of kiwifruit (Actinidia deliciosa Chev.) cv. Allison. Plants 2022, 11, 3354. [Google Scholar] [CrossRef]
- Liu, M.; Linna, C.; Ma, S.; Ma, Q.; Guo, J.; Wang, F.; Wang, L. Effects of biochar with inorganic and organic fertilizers on agronomic traits and nutrient absorption of soybean and fertility and microbes in purple soil. Front. Plant Sci. 2022, 13, 871021. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, L. Biochar and cow manure organic fertilizer amendments improve the quality of composted green waste as a growth medium for the ornamental plant Centaurea cyanus L. Environ. Sci. Pollut. Res. Int. 2022, 29, 45474–45486. [Google Scholar] [CrossRef]
- Ghaedi, M.; Bijanzadeh, E.; Behpouri, A.; Najafi-Ghiri, M. Biochar application affected biochemical properties, yield and nutrient content of safflower under water stress. Sci. Rep. 2024, 14, 20228. [Google Scholar] [CrossRef]
- Cong, M.; Hu, Y.; Sun, X.; Yan, H.; Yu, G.; Tang, G.; Chen, S.; Xu, W.; Jia, H. Long-term effects of biochar application on the growth and physiological characteristics of maize. Front. Plant Sci. 2023, 14, 1172425. [Google Scholar] [CrossRef] [PubMed]
- AG, B.; Rashwan, E.; El-Sharkawy, T.A. Effect of organic manure, antioxidant and proline on corn (Zea mays L.) grown under saline conditions. Environ. Biodivers. Soil Secur. 2017, 1, 203–217. [Google Scholar] [CrossRef]
- Sugier, D.; Sugier, P.; Jakubowicz-Gil, J.; Gawlik-Dziki, U.; Zając, A.; Król, B.; Chmiel, S.; Kończak, M.; Pięt, M.; Paduch, R. Nitrogen fertilization and solvents as factors modifying the antioxidant and anticancer potential of Arnica montana L. flower head extracts. Plants 2022, 12, 142. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Vancov, T.; Penuelas, J.; Sardans, J.; Singla, A.; Alrefaei, A.F.; Song, X.; Fang, Y.; Wang, W. Optimal biochar application rates for mitigating global warming and increasing rice yield in a subtropical paddy field. Exp. Agric. 2021, 57, 283–299. [Google Scholar] [CrossRef]
- Fan, C.; Cui, Y.; Zhang, Q.; Yin, N.; Cai, X.; Yuan, X.; Senadheera, S.; Cho, Y.; Ok, Y.S. A critical review of the interactions between rhizosphere and biochar during the remediation of metal(loid) contaminated soils. Biochar 2023, 5, 87. [Google Scholar] [CrossRef]
- Duan, S.; AL-Huqail, A.A.; Alsudays, I.M.; Younas, M.; Aslam, A.; Shahzad, A.N.; Qayyum, M.F.; Rizwan, M.; Hamooud, Y.A.; Shaghaleh, H.; et al. Effects of biochar types on seed germination, growth, chlorophyll contents, grain yield, sodium, and potassium uptake by wheat (Triticum aestivum L.) under salt stress. BMC Plant Biol. 2024, 24, 487. [Google Scholar] [CrossRef]
Property | Soil | CM | RHB |
---|---|---|---|
Soil texture | Sandy loam | - | - |
pH value (–) | 6.7 (0.1) | 8.9 (0.0) | 6.8 (0.0) |
Electrical conductivity (EC, μS/cm) | 0.7 (0.0) | 1.5 (0.1) | 0.1 (0.00) |
Organic matter (OM, %) | 4.1 (0.3) | 62.6 (1.1) | 12.6 (1.6) |
Soil organic carbon (SOC, %) | 2.4 (0.2) | 36.3 (0.6) | 7.3 (0.9) |
Moisture (%) | 0.3 (0.0) | 5.0 (0.0) | 5.2 (0.5) |
Water-holding capacity (WHC, %) | 15.4 (1.5) | 469.9 (21.8) | 231.8 (10.9) |
Nitrate (NO3−, mg/kg) | 118.2 (7.2) | 119.3 (47.2) | 43.5 (9.7) |
Available phosphorus (P, mg/kg) | 16.2 (0.6) | 2385.5 (196.0) | 74.0 (6.1) |
Available potassium (K, mg/kg) | 452.9 (10.0) | 10,123.2 (599.3) | 2610.7 (167.5) |
Carbon-to-nitrogen (C/N) ratio (–) | - | 20.2 (1.1) | - |
Parameter | CM | RHB | Interaction (CM × RHB) |
---|---|---|---|
Soil physical properties (N = 24) | |||
Microaggregate ratio (MiA) | *** | *** | * |
Mesoaggregate ratio (MeA) | *** | *** | ** |
Macroaggregate ratio (MaA) | *** | *** | *** |
Soil chemical and biological properties (N = 24) | |||
pH | ns | ns | ns |
Electrical conductivity (EC) | ns | *** | ** |
Soil organic carbon (SOC) | *** | * | ns |
Soil respiration | ** | ns | ns |
Nitrate (NO3−) | * | *** | *** |
Available phosphorus (P) | *** | *** | *** |
Available potassium (K) | ns | ns | ns |
Plant growth parameters (N = 24) | |||
Germination rate | ns | ns | ns |
Total leaf area | ns | * | ns |
Shoot fresh biomass | *** | ns | * |
Root fresh biomass | *** | ns | * |
Root dry biomass | ** | ** | *** |
Root–shoot ratio | * | ** | ns |
Bioactive compounds (N = 18) | |||
Total phenolic content (TPC) | *** | *** | *** |
DPPH antioxidant activity | *** | ** | ns |
Total chlorophyll | *** | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rupngam, T.; Udomkun, P.; Boonupara, T.; Kaewlom, P. Enhancing Soil Health, Growth, and Bioactive Compound Accumulation in Sunflower Sprouts Using Agricultural Byproduct-Based Soil Amendments. Agronomy 2025, 15, 1213. https://doi.org/10.3390/agronomy15051213
Rupngam T, Udomkun P, Boonupara T, Kaewlom P. Enhancing Soil Health, Growth, and Bioactive Compound Accumulation in Sunflower Sprouts Using Agricultural Byproduct-Based Soil Amendments. Agronomy. 2025; 15(5):1213. https://doi.org/10.3390/agronomy15051213
Chicago/Turabian StyleRupngam, Thidarat, Patchimaporn Udomkun, Thirasant Boonupara, and Puangrat Kaewlom. 2025. "Enhancing Soil Health, Growth, and Bioactive Compound Accumulation in Sunflower Sprouts Using Agricultural Byproduct-Based Soil Amendments" Agronomy 15, no. 5: 1213. https://doi.org/10.3390/agronomy15051213
APA StyleRupngam, T., Udomkun, P., Boonupara, T., & Kaewlom, P. (2025). Enhancing Soil Health, Growth, and Bioactive Compound Accumulation in Sunflower Sprouts Using Agricultural Byproduct-Based Soil Amendments. Agronomy, 15(5), 1213. https://doi.org/10.3390/agronomy15051213