The Effect of the Harvest Date on the Possibility of Harvesting by Shaking, Chemical Composition, Color, and Antioxidant Properties of Common Sea Buckthorn Fruit (Hippophae rhamnoides L.)
Abstract
:1. Introduction
- Is there a difference in the values of the fruit–shoot bonding forces at different harvest dates?
- How do the morphometric features of fruit harvested at different dates change?
- What changes occur in the chemical composition and antioxidant properties of fruit?
- What changes occur in the color parameters of fruit?
2. Materials and Methods
- Term I—17 July (seventh year of plantation), 22 July (eighth year);
- Term II—2 August (seventh year), 3 August (eighth year);
- Term III—13 August (seventh year), 14 August (eighth year).
3. Results and Discussion
3.1. Meteorological Conditions
3.2. Bonding Strength
3.3. Morphometric Characteristics
3.4. Dry Matter, Total Sugars, Titratable Acidity, and Total Protein Content
3.5. Vitamin C and Total Polyphenol Content and Antioxidant Activity
3.6. Color in the CIELab System
3.7. PCA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Su, T.; Zhao, J.; Zhu, Y.; Oyom, W.; Li, S.; Xie, P.; Bi, Y.; Wei, J.; George, G. Comparison of nutrient composition, phytochemicals and antioxidant activities of two large fruit cultivars of sea buckthorn in Xinjiang of China. Sci. Horticul. 2024, 324, 112602. [Google Scholar] [CrossRef]
- Jaroszewska, A.; Biel, W.; Telesiński, A. Effect of mycorrhization and variety on the chemical composition and antioxidant activity of sea buckthorn berries. J. Element. 2018, 23, 673–684. [Google Scholar] [CrossRef]
- Purushothaman, J.; Suryakumar, G.; Shukla, D.; Malhotra, A.S.; Kasiganesan, H.; Kumar, R.; Sawhney, R.C.; Chami, A. Modulatory effects of sea buckthorn (Hippophae rhamnoides L.) in hypobaric hypoxia induced cerebral vascular injury. Brain Res. Bull. 2008, 77, 246–252. [Google Scholar] [CrossRef]
- Selvamuthukumaran, M.; Farhath, K. Evaluation of shelf stability of antioxidant rich seabuckthorn fruit yoghurt. Int. Food Res. J. 2014, 21, 759–765. [Google Scholar]
- Teleszko, M.; Wojdyło, A.; Rudzińska, M.; Oszmiański, J.; Golis, T. Analysis of lipophilic and hydrophilic bioactive compounds content in sea buckthorn (Hippophae rhamnoides L.) berries. J. Agric. Food Chem. 2015, 63, 4120–4129. [Google Scholar] [CrossRef] [PubMed]
- Damian, C.; Leahu, A.; Oroian, M.; Avramiuc, M.; Carpiuc, N. Antioxidant activity in extracts from sea buckthorn. Lucr. Ştiinţifice—Ser. Zooteh. 2013, 60, 151–154. [Google Scholar]
- Yang, B.; Kallio, H. Composition and physiological effects of sea buckthorn (Hippophae) lipids. Trends Food Sci. Technol. 2002, 13, 160–167. [Google Scholar] [CrossRef]
- Witkowska, A.; Gryn-Rynko, A.; Syrkiewicz, P.; Kitala-Tańska, K.; Majewski, M.S. Characterizations of white mulberry, sea-buckthorn, garlic, lily of the valley, motherwort, and hawthorn as potential candidates for managing cardiovascular disease—In vitro and ex vivo animal studies. Nutrients 2024, 16, 1313. [Google Scholar] [CrossRef]
- Masoodi, K.Z.; Wani, W.; Dar, Z.A.; Mansoor, S.; Anam-ul-Haq, S.; Farooq, I.; Hussain, K.; Wani, S.A.; Nehvi, F.A.; Ahmed, N. Sea buckthorn (Hippophae rhamnoides L.) inhibits cellular proliferation, wound healing and decreases expression of prostate specific antigen in prostate cancer cells in vitro. J. Functi. Foods 2020, 73, 104102. [Google Scholar] [CrossRef]
- Dupak, R.; Hrnkova, J.; Simonova, N.; Kovac, J.; Ivanisova, E.; Kalafova, A.; Schneidgenova, M.; Prnova, M.S.; Brindza, J.; Tokarova, K.; et al. The consumption of sea buckthorn (Hippophae rhamnoides L.) effectively alleviates type 2 diabetes symptoms in spontaneous diabetic rats. Res. Vet. Sci. 2022, 152, 261–269. [Google Scholar] [CrossRef]
- Kanayama, Y.; Kato, K.; Stobdan, T.; Galitsyn, G.G.; Kochetov, A.V.; Kanahama, K. Research progress on the medicinal and nutritional properties of sea buckthorn (Hippophae rhamnoides)—A review. J. Hortic. Sci. Biotechnol. 2012, 87, 203–210. [Google Scholar] [CrossRef]
- Chen, A.; Feng, X.; Dorjsuren, B.; Chimedtseren, C.; Damda, T.A.; Zhang, C. Traditional food, modern food and nutritional value of Sea buckthorn (Hippophae rhamnoides L.): A review. J. Future Foods 2023, 3, 191–205. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, B.; Trépanier, M.; Kallio, H. Effects of genotype, latitude, and weather conditions on the composition of sugars, sugar alcohols, fruit acids, and ascorbic acid in sea buckthorn (Hippophaë rhamnoides ssp. mongolica) berry juice. J. Agric. Food Chem. 2012, 60, 3180–3189. [Google Scholar] [CrossRef]
- Borczak, B.; Sikora, E.; Sikora, M.; Kapusta-Duch, J.; Kutyła-Kupidura, E.M.; Fołta, M. Nutritional properties of wholemeal wheat-flour bread with an addition of selected wild grown fruits. Starch-Stärke 2016, 68, 675–682. [Google Scholar] [CrossRef]
- Li, T.S.; Beveridge, T.H. Sea Buckthorn (Hippophae rhamnoides L.) Production and Utilization; National Research Council Canada, NRC Research Press: Ottawa, ON, Canada, 2003. [Google Scholar]
- Kawecki, Z.; Bieniek, A.; Szałkiewicz, M. Plonowanie i cechy biometryczne owoców Rokitnika zwyczajnego Hippophaë rhamnoides L. (Common sea buckthorn in the agricultural landscape). Acta Sci. Polon. Adm. Locorum 2010, 9, 45–53. [Google Scholar]
- Liu, H.; Ni, B.; Duan, A.; He, C.; Zhang, J. High Frankia abundance and low diversity of microbial community are associated with nodulation specificity and stability of sea buckthorn root nodule. Front. Plant Sci. 2024, 15, 1301447. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E.; Ozdemir, O.; Sengul, M. The genotypic effects on the chemical composition and antioxidant activity of sea buckthorn (Hippophae rhamnoides L.) berries grown in Turkey. Sci. Hort. 2007, 115, 27–33. [Google Scholar] [CrossRef]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemist, Official Methods of Analysis, 18th ed.; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- PN-A-75101-07; Fruit and Vegetable Products—Sample Preparation and Methods of Physicochemical Analyses—Determination of Sugar Content and Non-Sugar Extract Content. Polish Committee for Standardization: Warsaw, Poland, 1990.
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Pekkarinen, S.S.; Heinonen, I.M.; Hopia, A.I. Flavonoids quercetin, myricetin, kaemferol and (+) catechin and antioxidants in methyl linoleate. J. Sci. Food Agric. 1999, 79, 499–506. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Smith, D.E. Color Analysis; Springer: Cham, Switzerland, 2017; pp. 545–555. [Google Scholar]
- Yang, B.; Kallio, H. Effects of harvesting time on triacylglycerols and glycerophospholipids of sea buckthorn (Hippophaë rhamnoides L.) berries of different origins. J. Food Comp. Anal. 2002, 15, 143–157. [Google Scholar] [CrossRef]
- Farinelli, D.; Tombesi, S.; Famiani, F.; Tombesi, A. The fruit detachment force/fruit weight ratio can be used to predict the harvesting yield and the efficiency of trunk shakers on mechanically harvested olives. Acta Hortic. 2012, 965, 61–64. [Google Scholar] [CrossRef]
- Fu, L.; Peng, J.; Nan, Q.; He, D.; Yang, Y.; Cui, Y. Simulation of vibration harvesting mechanism for sea buckthorn. Eng. Agric. Environ. Food 2016, 9, 101–108. [Google Scholar] [CrossRef]
- Tkacz, K.; Wojdyło, A.; Turkiewicz, I.P.; Bobak, Ł.; Nowicka, P. Anti-oxidant and anti-enzymatic activities of sea buckthorn (Hippophae rhamnoides L.) fruits modulated by chemical components. Antioxidants 2019, 8, 618. [Google Scholar] [CrossRef]
- Zenkova, M.; Pinchykova, J. Chemical composition of sea-buckthorn and highbush blueberry fruits grown in the Republic of Belarus. Food Sci. Appl. Biotechnol. 2019, 2, 121–129. [Google Scholar] [CrossRef]
- Kortesniemi, M.; Sinkkonen, J.; Yang, B.; Kallio, H. 1H NMR spectroscopy reveals the effect of genotype and growth conditions on composition of sea buckthorn (Hippophaë rhamnoides L.) berries. Food Chem. 2014, 147, 138–146. [Google Scholar] [CrossRef]
- Rop, O.; Ercişli, S.; Mlcek, J.; Jurikova, T.; Hoza, I. Antioxidant and radical scavenging activities in fruits of 6 sea buckthorn (Hippophae rhamnoides L.) cultivars. Turk. J. Agric. For. 2014, 38, 224–232. [Google Scholar] [CrossRef]
- He, C.Y.; Zhang, G.Y.; Zhang, J.G.; Zeng, Y.F.; Liu, J.J. Integrated analysis of multiomic data reveals the role of the antioxidant network in the quality of sea buckthorn berry. FASEB J. 2017, 31, 1929–1938. [Google Scholar] [CrossRef]
- Fatima, T.; Kesari, V.; Watt, I.; Wishart, D.; Todd, J.F.; Schroeder, W.R.; Paliyath, G.; Krishna, P. Metabolite profiling and expression analysis of flavonoid, vitamin C and tocopherol biosynthesis genes in the antioxidant-rich sea buckthorn (Hippophae rhamnoides L.). Phytochemistry 2015, 118, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Niesteruk, A.; Lewandowska, H.; Golub, Ż.; Świsłocka, R.; Lewandowski, W. Zainteresujmy się rokitnikiem. Preparaty z rokitnika zwyczajnego (Hippophae rhamnoides L.) jako dodatki do żywności oraz ocena ich rynku w Polsce. (Let’s get interested with sea buckthorn. Preparations of sea buckthorn as food additives and assessment of their market in Poland). Kosmos 2013, 4, 571–581. [Google Scholar]
- Gut, M.; Gasik, A.; Mitek, M.; Rokitnik—Roślina niczym apteka. (Sea Buckthorn—A plant like a pharmacy). Przem. Spoż. 2008, 6, 36–38. [Google Scholar]
- Ji, M.Y.; Gong, X.; Li, X.; Wang, C.C.; Li, M.H. Advanced research on the antioxidant activity and mechanism of polyphenols from Hippophae species—A review. Molecules 2020, 25, 917. [Google Scholar] [CrossRef] [PubMed]
Component | Harvest Date | Cultivar | Means for Harvest Dates | |||
---|---|---|---|---|---|---|
Luchistaja | Prozrachnaja | Botanicheskaja | Augustinka | |||
Bonding strength (N) | I | 1.65 ± 0.68 h | 1.22 ± 0.43 ab | 1.29 ± 0.37 abc | 1.40 ± 0.40 def | 1.39 ± 0.5 * |
II | 1.49 ± 0.54 fg | 1.31 ± 0.39 bc | 1.29 ± 0.37 abc | 1.48 ± 0.40 fg | 1.39 ± 0.44 * | |
III | 1.52 ± 0.63 g | 1.37 ± 0.43 cde | 1.20 ± 0.42 a | 1.43 ± 0.35 efg | 1.38 ± 0.49 * | |
means for cultivar | 1.55 ± 0.62 C | 1.30 ± 0.42 A | 1.26 ± 0.39 A | 1.44 ± 0.38 B | ||
p-value | for cultivar 0.000 | for harvest dates 0.843 | for cultivar and harvest dates 0.000 | |||
Individual fruit mass (g) | I | 0.468 ± 0.061 c | 0.462 ± 0.103 c | 0.406 ± 0.119 b | 0.352 ± 0.057 a | 0.422 ± 0.101 * |
II | 0.528 ± 0.110 e | 0.556 ± 0.108 f | 0.469 ± 0.134 c | 0.492 ± 0.089 d | 0.511 ± 0.116 ** | |
III | 0.635 ± 0.138 g | 0.624 ± 0.186 g | 0.402 ± 0.092 b | 0.557 ± 0.131 f | 0.554 ± 0.169 *** | |
means for cultivar | 0.544 ± 0.128 C | 0.547 ± 0.153 C | 0.426 ± 0.120 A | 0.467 ± 0.130 B | ||
p-value | for cultivar 0.000 | for harvest dates 0.000 | for cultivar and harvest dates 0.000 | |||
Strength/mass (N·g−1) | I | 3.60 ± 1.60 e | 2.78 ± 1.21 bc | 3.48 ± 1.54 e | 4.06 ± 1.34 f | 3.48 ± 1.50 *** |
II | 2.96 ± 1.33 cd | 2.46 ± 0.92 a | 3.03 ± 1.37 cd | 3.16 ± 1.20 d | 2.90 ± 1.24 ** | |
III | 2.54 ± 1.31 ab | 2.39 ± 1.01 a | 3.13 ± 1.30 d | 2.79 ± 1.17 bc | 2.71 ± 1.23 * | |
means for cultivar | 3.04 ± 1.49 B | 2.54 ± 1.06 A | 3.21 ± 1.42 C | 3.34 ± 1.35 C | ||
p-value | for cultivar 0.000 | for harvest dates 0.000 | for cultivar and harvest dates 0.000 | |||
Length (mm) | I | 9.47 ± 0.59 a | 10.02 ± 0.94 b | 10.02 ± 1.51 b | 9.41 ± 0.72 a | 9.73 ± 1.04 * |
II | 10.16 ± 0.72 b | 10.63 ± 0.97 cde | 10.50 ± 1.42 cd | 10.56 ± 0.89 cd | 10.46 ± 1.05 *** | |
III | 10.43 ± 0.91 c | 10.81 ± 1.16 e | 9.42 ± 1.14 a | 10.72 ± 1.01 de | 10.34 ± 1.19 ** | |
means for cultivar | 10.02 ± 0.85 A | 10.49 ± 1.08 C | 9.98 ± 1.43 A | 10.23 ± 1.05 B | ||
p-value | for cultivar 0.000 | for harvest dates 0.000 | for cultivar and harvest dates 0.000 | |||
Width (mm) | I | 7.99 ± 0.57 de | 7.39 ± 0.59 c | 6.98 ± 0.88 bc | 7.11 ± 0.69 c | 7.37 ± 0.79 * |
II | 8.61 ± 0.75 f | 7.98 ± 0.62 de | 7.49 ± 0.84 c | 7.84 ± 0.62 d | 7.98 ± 0.80 ** | |
III | 8.84 ± 0.73 g | 8.09 ± 0.90 e | 6.89 ± 0.81 a | 7.87 ± 0.65 d | 7.92 ± 1.05 ** | |
means for cultivar | 8.48 ± 0.77 D | 7.82 ± 0.78 C | 7.12 ± 0.88 A | 7.61 ± 0.74 B | ||
p-value | for cultivar 0.000 | for harvest dates 0.000 | for cultivar and harvest dates 0.000 |
Component | Harvest Date | Cultivar | Means for Harvest Dates | |||
---|---|---|---|---|---|---|
Luchistaja | Prozrachnaja | Botanicheskaja | Augustinka | |||
Dry matter | I | 14.62 c ± 0.15 | 14.98 bc ± 0.17 | 16.34 f ± 0.13 | 17.60 g ± 0.06 | 15.88 ** ± 1.27 |
II | 13.43 a ± 0.11 | 15.46 de ± 0.12 | 15.73 e ± 0.19 | 16.4 1 f ± 0.01 | 15.26 * ± 1.19 | |
III | 14.65 bc ± 0.03 | 15.07 cd ± 0.25 | 16.24 f ± 0.46 | 17.60 g ± 0.06 | 15.81 ** ± 1.12 | |
means for cultivar | 14.23 A ± 0.63 | 15.17 B ± 0.27 | 16.10 C ± 0.37 | 17.10 D ± 0.55 | ||
p-value | for cultivar 0.000 | for harvest dates 0.000 | for cultivar and harvest dates 0.000 | |||
Total sugars | I | 5.86 cd ± 0.30 | 3.44 a ± 0.27 | 4.35 b ± 0.12 | 6.17 de ± 0.54 | 4.96 * ± 1.20 |
II | 6.11 de ± 0.12 | 5.37 c ± 0.18 | 5.46 c ± 0.25 | 6.36 def ± 0.30 | 5.82 ** ± 0.48 | |
III | 6.50 ef ± 0.21 | 7.44 g ± 0.44 | 6.50 ef ± 0.35 | 6.74 f ± 0.09 | 6.82 *** ± 0.47 | |
means for cultivar | 6.16 B ± 0.33 | 5.42 A ± 1.75 | 5.47 A ± 1.00 | 6.42 B ± 0.41 | ||
p-value | for cultivar 0.000 | for harvest dates 0.000 | for cultivar and harvest dates 0.000 | |||
Total acidity (as citric acid) | I | 3.24 bc ± 0.06 | 3.44 de± 0.08 | 3.13 ab ± 0.04 | 3.19 b ± 0.05 | 3.25 * ± 0.13 |
II | 3.34 cd ± 0.07 | 3.81 g ± 0.09 | 3.67 f ± 0.06 | 3.20 b ± 0.05 | 3.51 ** ± 0.26 | |
III | 3.04 a ± 0.04 | 3.17 b ± 0.07 | 3.54 e ± 0.14 | 3.15 b ± 0.07 | 3.22 * ± 0.21 | |
means for cultivar | 3.20 A ± 0.14 | 3.47 B ± 0.28 | 3.45 B ± 0.26 | 3.18 A ± 0.05 | ||
p-value | for cultivar 0.000 | for harvest dates 0.000 | for cultivar and harvest dates 0.000 | |||
Total protein | I | 1.89 bcd ± 0.39 | 1.88 bcd ± 0.33 | 1.61 abc ± 0.30 | 2.05 d ± 0.12 | 1.86 ** ± 0.30 |
II | 1.71 abcd ± 0.16 | 1.52 ab ± 0.06 | 1.46 a ± 0.10 | 1.93 cd ± 0.10 | 1.66 * ± 0.21 | |
III | 1.80 abcd ± 0.12 | 1.93 cd ± 0.12 | 2.04 d ± 0.13 | 1.80 abcd ± 0.09 | 1.89 ** ± 0.14 | |
means for cultivar | 1.80 AB ± 0.23 | 1.78 AB ± 0.26 | 1.71 A ± 0.31 | 1.93 B ± 0.13 | ||
p-value | for cultivar 0.000 | for harvest dates 0.013 | for cultivar and harvest dates 0.043 |
Component | Harvest Date | Cultivar | Means for Harvest Dates | |||
---|---|---|---|---|---|---|
Luchistaja | Prozrachnaja | Botanicheskaja | Augustinka | |||
L-ascorbic acid mg 100 g−1 fw | I | 114.4 d ± 1.5 | 69.8 a ± 4.5 | 88.0 c ± 0.7 | 80.5 b ± 1.9 | 88.2 * ± 17.1 |
II | 79.7 b ± 1.2 | 81.6 b ± 1.5 | 85.1 c ± 0.4 | 131.8 e ± 0.4 | 94.6 ** ± 22.3 | |
III | 79.3 b ± 4.8 | 85.4 c ± 1.9 | 86.2 c ± 1.0 | 130.5 e ± 2.2 | 95.4 ** ± 21.3 | |
means for cultivar | 91.1 C ± 17.4 | 78.9 A ± 7.4 | 86.5 B ± 1.4 | 114.3 D ± 25.0 | ||
p-value | for cultivar 0.000 | for harvest dates 0.000 | for cultivar and harvest dates 0.000 | |||
Total polyphenols mg 100 g−1 fw | I | 127 a ± 6 | 190 ef ± 11 | 191 ef ± 4 | 221 g ± 20 | 182 ** ± 37 |
II | 128 a ± 7 | 183 de ± 7 | 181 de ± 7 | 207 fg ± 9 | 175 ** ± 31 | |
III | 140 ab ± 11 | 166 cd ± 10 | 156 bc ± 6 | 200 ef ± 15 | 166 * ± 25 | |
means for cultivar | 131 C ± 10 | 180 B ± 14 | 176 B ± 16 | 209 C ± 16 | ||
p-value | for cultivar 0.000 | for harvest dates 0.002 | for cultivar and harvest dates 0.013 | |||
ABTS µM Trolox g−1 fw | I | 108.8 d ± 5.7 | 145.2 e ± 2.0 | 148.6 ef ± 1.4 | 152.5 f ± 3.9 | 138.8 *** ± 18.5 |
II | 93.7 c ± 1.3 | 90.7 abc ± 5.2 | 94.5 c ± 1.2 | 93.2 c ± 1.4 | 93.1 ** ± 2.8 | |
III | 90.6 abc ± 0.9 | 91.9 bc ± 1.2 | 85.6 a ± 3.8 | 86.7 ab ± 0.9 | 88.7 * ± 3.3 | |
means for cultivar | 97.7 A ± 9.0 | 109.3 B ± 27.1 | 109.6 B ± 29.6 | 110.8 B ± 31.5 | ||
p-value | for cultivar 0.000 | for harvest dates 0.000 | for cultivar and harvest dates 0.000 | |||
DPPH µM Trolox g−1 fw | I | 46.3 d ± 3.6 | 54.8 e ± 1.5 | 62.0 f ± 3.7 | 70.6 g ± 2.0 | 58.4 *** ± 9.6 |
II | 27.7 bc ± 1.0 | 25.6 ab ± 0.6 | 27.3 bc ± 1.8 | 29.6 c ± 0.9 | 27.6 ** ± 1.7 | |
III | 23.0 a ± 1.0 | 26.8 bc ± 0.6 | 24.9 ab ± 0.7 | 27.7 bc ± 0.7 | 25.6 * ± 2.0 | |
means for cultivar | 32.3 A ± 10.8 | 35.8 B ± 14.3 | 38.0 C ± 18.1 | 42.6 D ± 21.0 | ||
p-value | for cultivar 0.000 | for harvest dates 0.000 | for cultivar and harvest dates 0.000 | |||
FRAP µM Fe2+ g−1 fw | I | 10.43 bc ± 1.81 | 16.18 de ± 0.60 | 16.12 de ± 1.62 | 18.21 e ± 0.61 | 15.2 *** ± 3.44 |
II | 8.54 ab ± 0.73 | 11.87 c ± 0.84 | 9.97 bc ± 0.63 | 14.86 d ± 1.65 | 11.31 ** ± 2.75 | |
III | 6.45 a ± 0.32 | 12.04 c ± 0.63 | 8.40 ab ± 0.42 | 12.11 c ± 0.44 | 9.76 * ± 2.56 | |
means for cultivar | 8.47 A ± 2.24 | 13.36 C ± 2.19 | 11.50 B ± 3.77 | 15.06 D ± 2.95 | ||
p-value | for cultivar 0.000 | for harvest dates 0.000 | for cultivar and harvest dates 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadowska, U.; Słupski, J. The Effect of the Harvest Date on the Possibility of Harvesting by Shaking, Chemical Composition, Color, and Antioxidant Properties of Common Sea Buckthorn Fruit (Hippophae rhamnoides L.). Agronomy 2025, 15, 1184. https://doi.org/10.3390/agronomy15051184
Sadowska U, Słupski J. The Effect of the Harvest Date on the Possibility of Harvesting by Shaking, Chemical Composition, Color, and Antioxidant Properties of Common Sea Buckthorn Fruit (Hippophae rhamnoides L.). Agronomy. 2025; 15(5):1184. https://doi.org/10.3390/agronomy15051184
Chicago/Turabian StyleSadowska, Urszula, and Jacek Słupski. 2025. "The Effect of the Harvest Date on the Possibility of Harvesting by Shaking, Chemical Composition, Color, and Antioxidant Properties of Common Sea Buckthorn Fruit (Hippophae rhamnoides L.)" Agronomy 15, no. 5: 1184. https://doi.org/10.3390/agronomy15051184
APA StyleSadowska, U., & Słupski, J. (2025). The Effect of the Harvest Date on the Possibility of Harvesting by Shaking, Chemical Composition, Color, and Antioxidant Properties of Common Sea Buckthorn Fruit (Hippophae rhamnoides L.). Agronomy, 15(5), 1184. https://doi.org/10.3390/agronomy15051184