A Predictive Method for Greenhouse Soil Pore Water Electrical Conductivity Based on Multi-Model Fusion and Variable Weight Combination
Abstract
:1. Introduction
- (1)
- It addresses a practical challenge in protected agriculture by enabling precise forecasting of soil pore water EC;
- (2)
- A hybrid model integrating deep learning and machine learning algorithms with adaptive optimization capability was developed, achieving a balance between predictive accuracy and generalization performance;
- (3)
- It integrates feature extraction, hyperparameter optimization, and dynamic ensemble control into a unified framework, offering both theoretical insights and practical guidance for intelligent irrigation and fertilization management in greenhouse systems.
2. Materials and Methods
2.1. Data Sources and Processing
2.1.1. Data Sources
2.1.2. Data Processing and Correlation Analysis
2.2. CNN–LSTM Predictive Model
2.2.1. CNN Feature Extraction
2.2.2. CNN–LSTM Model Architecture
2.3. BOA–XGBoost Predictive Model
2.3.1. XGBoost Model
2.3.2. BOA–XGBoost Model Architecture
2.4. Hybrid Model Based on LSTM–CNN and BOA–XGBoost
2.4.1. Particle Swarm Optimization Algorithm
2.4.2. PCLBX Hybrid Model
- (1)
- The dataset was partitioned into training and testing subsets, in an 8:2 ratio, based on chronological order to preserve the temporal dependencies inherent in time-series data.
- (2)
- The model parameters were initialized, and the CNN–LSTM and BOA–XGBoost models were constructed based on the training set. The prediction results were used to generate the weights WCNN-LSTM and WBOA-XGBoost.
- (3)
- The particle swarm was initialized and individual fitness evaluated. The specific calculation formula was as follows:
- (4)
- The hybrid prediction model based on CNN–LSTM and BOA–XGBoost is constructed using the testing set to obtain the optimal prediction values for the combined model.
2.5. Model Execution Environment and Evaluation Metrics
3. Results and Analysis
4. Discussion
5. Conclusions
- (1)
- The predictive performance of the CNN–LSTM model exhibited lower MSE and MAE compared to the LSTM and GRU models, indicating that the LSTM-based approach was more suitable for forecasting soil pore water EC in this study. Furthermore, the convolutional layers effectively enhance the feature-extraction process, thereby improving the predictive capability of the LSTM model. The BOA–XGBoost model, optimized through Bayesian optimization, successfully identifies the optimal hyperparameter combination, further enhancing the model’s predictive performance. Notably, in this study, the BOA–XGBoost model demonstrated a significant advantage in predicting soil pore water EC, providing robust support for soil-moisture forecasting. In time-series tasks, even marginal changes in model performance indicate that such improvements can effectively enhance the predictive accuracy with respect to soil pore–water EC, thereby providing more precise guidance for irrigation and fertilization decisions in greenhouse cultivation. This is particularly crucial in rose greenhouses, in which optimal resource allocation and yield optimization are key. Even slight improvements in prediction accuracy can have significant impacts on plant health and yield.
- (2)
- The PCLBX model, optimized through PSO and employing a dynamic weighting strategy, successfully integrates the advantages of time-series analysis and nonlinear learning. The results indicate that, compared to the equally weighted CNN–LSTM–BOA–XGBoost model, the dynamically weighted PCLBX model achieves superior predictive accuracy. The model’s predictions exhibit a high degree of agreement with actual values, demonstrating its precision in forecasting soil pore water EC. Moreover, its strong performance across multiple evaluation metrics highlights the practical value of this approach.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gürsoy, S.; Türk, Z. Effects of land rolling on soil properties and plant growth in chickpea production. Soil Tillage Res. 2019, 195, 104425. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, G.; Zhu, P.; Wang, C.; Wan, Y. Impact of land use type on soil erodibility in a small watershed of rolling hill northeast China. Soil Tillage Res. 2023, 227, 105597. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, D.; Hu, W.; Li, X. Land use dependent variation of soil water infiltration characteristics and their scale-specific controls. Soil Tillage Res. 2018, 178, 139–149. [Google Scholar] [CrossRef]
- Yin, X.; Chen, J.; Ye, Y.; Zhu, H.; Li, J.; Zhang, L.; Zhang, H.; He, S.; Wu, H. Optimizing bent branch numbers improves transpiration and crop water productivity of cut rose (Rosa hybrida) in greenhouse. Agric. Water Manag. 2024, 296, 108795. [Google Scholar] [CrossRef]
- Sui, Y.; Jiang, R.; Liu, Y.; Zhang, X.; Lin, N.; Zheng, X.; Li, B.; Yu, H. Predicting the spatial distribution of soil salinity based on multi-temporal multispectral images and environmental covariates. Comput. Electron. Agric. 2025, 231, 109970. [Google Scholar] [CrossRef]
- Ibraheem, A.H.A.; Lana, S.; Sergey, S. Understanding the mechanistic basis of adaptation of perennial Sarcocornia quinqueflora species to soil salinity. Physiol. Plant. 2021, 172, 1997–2010. [Google Scholar]
- Vyavahare, G.D.; Lee, Y.; Seok, Y.J.; Kim, H.N.; Sung, J.; Park, J.H. Monitoring of soil nutrient levels by an ec sensor during spring onion (Allium fistulosum) cultivation under different fertilizer treatments. Agronomy 2023, 13, 2156. [Google Scholar] [CrossRef]
- Ferrarezi, R.S.; Alem, P.O.; van Iersel, M.W. Prediction of pore water electrical conductivity using real dielectric and bulk electrical conductivity in soilless substrates. HortScience 2014, 49, S165–S166. [Google Scholar]
- Sodini, M.; Cacini, S.; Navarro, A.; Traversari, S.; Massa, D. Estimation of pore-water electrical conductivity in soilless tomatoes cultivation using an interpretable machine learning model. Comput. Electron. Agric. 2024, 218, 108746. [Google Scholar] [CrossRef]
- Hosseinpour-Zarnaq, M.; Omid, M.; Sarmadian, F.; Ghasemi-Mobtaker, H. A CNN model for predicting soil properties using VIS–NIR spectral data. Environ. Earth Sci. 2023, 82, 382. [Google Scholar] [CrossRef]
- Liang, Z.; Zou, T.; Gong, J.; Zhou, M.; Shen, W.; Zhang, J.; Fan, D.; Lu, Y. Evaluation of soil nutrient status based on LightGBM model: An example of tobacco planting soil in Debao county, Guangxi. Appl. Sci. 2022, 12, 12354. [Google Scholar] [CrossRef]
- Taşan, M.; Demir, Y.; Taşan, S.; Öztürk, E. Comparative analysis of different machine learning algorithms for predicting trace metal concentrations in soils under intensive paddy cultivation. Comput. Electron. Agric. 2024, 219, 108772. [Google Scholar] [CrossRef]
- Sankalp, S.; Rao, U.M.; Patra, K.C.; Sahoo, S.N. Modeling gated recurrent unit (GRU) neural network in forecasting surface soil wetness for drought districts of Odisha. Dev. Environ. Sci. 2023, 14, 217–229. [Google Scholar]
- Samadianfard, S.; Darbandi, S.; Salwana, E.; Nabipour, N.; Mosavi, A. Predicting soil electrical conductivity using multi-layer perceptron integrated with Grey Wolf Optimizer. J. Geochem. Explor 2020, 220, 106639. [Google Scholar]
- Gao, P.; Xie, J.; Yang, M.; Zhou, P.; Chen, W.; Liang, G.; Chen, Y.; Han, X.; Wang, W. Improved soil moisture and electrical conductivity prediction of citrus orchards based on IoT using deep bidirectional LSTM. Agriculture 2021, 11, 635. [Google Scholar] [CrossRef]
- Feng, A.; Zhou, J.; Vories, E.; Sudduth, K.A. Prediction of cotton yield based on soil texture, weather conditions and UAV imagery using deep learning. Precis. Agric. 2024, 25, 303–326. [Google Scholar] [CrossRef]
- Fu, C.; Feng, X.; Tian, A. Whale optimization algorithm coupled with machine learning models for quantitative prediction of soil Ni content. Microchem. J. 2025, 209, 112709. [Google Scholar] [CrossRef]
- Rahman, F.; Khan, M.A.R.; Alam, M. Hybrid PSO-GA Optimization for Enhancing Decision Tree Performance in Soil Classification and Crop Cultivation Prediction. Evol. Intell. 2025, 18, 30. [Google Scholar] [CrossRef]
- Gao, P.; Lu, M.; Yang, Y.; Li, H.; Tian, S.; Hu, J. A predictive model of photosynthetic rates for eggplants: Integrating physiological and environmental parameters. Comput. Electron. Agric. 2025, 234, 110241. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Y.; Li, X.; Du, R.; Xiang, Y.; Zhang, F. An Interpretable Model for Salinity Inversion Assessment of the South Bank of the Yellow River Based on Optuna Hyperparameter Optimization and XGBoost. Agronomy 2024, 15, 18. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Z.; Li, H.; Li, X.; Yang, P. Soil Salinity Prediction in an Arid Area Based on Long Time-Series Multispectral Imaging. Agriculture 2024, 14, 1539. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, X.; Xu, L.; Dong, J.; Zhangzhong, L. A hybrid CNN-GRU model for predicting soil moisture in maize root zone. Agric. Water Manag. 2021, 245, 106649. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Jiang, Y.; Sun, L.; Zhao, R.; Yan, K.; Wang, W. Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model. J. Clean. Prod. 2022, 354, 131724. [Google Scholar] [CrossRef]
- Alshingiti, Z.; Alaqel, R.; Al-Muhtadi, J.; Haq, Q.E.U.; Saleem, K.; Faheem, M.H. A deep learning-based phishing detection system using CNN, LSTM, and LSTM-CNN. Electronics 2023, 12, 232. [Google Scholar] [CrossRef]
- Bagheri, A.; Patrignani, A.; Ghanbarian, B.; Pourkargar, D.B. A hybrid time series and physics-informed machine learning framework to predict soil water content. Eng. Appl. Artif. Intell. 2025, 144, 110105. [Google Scholar] [CrossRef]
- Wu, Z.; Cui, N.; Zhang, W.; Liu, C.; Jin, X.; Gong, D.; Xing, L.; Zhao, L.; Wen, S.; Yang, Y. Estimating soil moisture content in citrus orchards using multi-temporal sentinel-1A data-based LSTM and PSO-LSTM models. J. Hydrol. 2024, 637, 131336. [Google Scholar] [CrossRef]
- Liu, Z.; Qin, Z.; Zhu, P.; Li, H. An adaptive switchover hybrid particle swarm optimization algorithm with local search strategy for constrained optimization problems. Eng. Appl. Artif. Intell. 2020, 95, 103771. [Google Scholar] [CrossRef]
- Han, L.; Zhang, H.; An, N. A Continuous Space Path Planning Method for Unmanned Aerial Vehicle Based on Particle Swarm Optimization-Enhanced Deep Q-Network. Drones 2025, 9, 122. [Google Scholar] [CrossRef]
- Passalis, N.; Kanniainen, J.; Gabbouj, M.; Iosifidis, A.; Tefas, A. Forecasting financial time series using robust deep adaptive input normalization. J. Signal Process. Syst. 2021, 93, 1235–1251. [Google Scholar] [CrossRef]
- Dufera, A.G.; Liu, T.; Xu, J. Regression models of Pearson correlation coefficient. Stat. Theory Relat. Fields 2023, 7, 97–106. [Google Scholar] [CrossRef]
- Sheng, H.; Yin, Z.; Zhou, P.; Thompson, M.L. Soil C:N:P ratio in subtropical paddy fields: Variation and correlation with environmental controls. J. Soils Sediments 2022, 22, 21–31. [Google Scholar] [CrossRef]
- Latif, G.; Abdelhamid, S.E.; Mallouhy, R.E.; Alghazo, J.; Kazimi, Z.A. Deep Learning Utilization in Agriculture: Detection of Rice Plant Diseases Using an Improved CNN Model. Plants 2022, 11, 2230. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, J.; Fu, H.; Tang, X.; Liu, Z.; Chen, H.; Sun, Y.; Ning, X. Deep Learning for Multi-Source Data-Driven Crop Yield Prediction in Northeast China. Agriculture 2024, 14, 794. [Google Scholar] [CrossRef]
- Zhao, J.; Mao, X.; Chen, L. Speech emotion recognition using deep 1D & 2D CNN LSTM networks. Biomed. Signal Process. Control 2019, 47, 312–323. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Huang, R.; Wei, C.; Wang, B.; Yang, J.; Xu, X.; Wu, S.; Huang, S. Well performance prediction based on Long Short-Term Memory (LSTM) neural network. J. Pet. Sci. Eng. 2022, 208, 109686. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Sahin, E.K. Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN Appl. Sci. 2020, 2, 1308. [Google Scholar] [CrossRef]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; De Freitas, N. Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE 2015, 104, 148–175. [Google Scholar] [CrossRef]
- Wang, M.; Lai, W.; Sun, P.; Li, H.; Song, Q. Severity Estimation of Inter-Turn Short-Circuit Fault in PMSM for Agricultural Machinery Using Bayesian Optimization and Enhanced Convolutional Neural Network Architecture. Agriculture 2024, 14, 2214. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN′95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Shahhosseini, M.; Hu, G.; Archontoulis, S.V. Forecasting corn yield with machine learning ensembles. Front. Plant Sci. 2020, 11, 1120. [Google Scholar] [CrossRef]
- Cao, J.; Wang, H.; Li, J.; Tian, Q.; Niyogi, D. Improving the forecasting of winter wheat yields in Northern China with machine learning–dynamical hybrid subseasonal-to-seasonal ensemble prediction. Remote Sens. 2022, 14, 1707. [Google Scholar] [CrossRef]
- Mao, X.; Ren, N.; Dai, P.; Jin, J.; Wang, B.; Kang, R.; Li, D. A variable weight combination prediction model for climate in a greenhouse based on BiGRU-Attention and LightGBM. Comput. Electron. Agric. 2024, 219, 108818. [Google Scholar] [CrossRef]
- Sagheer, A.; Kotb, M. Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing 2019, 323, 203–213. [Google Scholar] [CrossRef]
- Gandh, D.R.; Harigovindan, V.; Haq, K.; Bhide, A. Attention-driven LSTM and GRU deep learning techniques for precise water quality prediction in smart aquaculture. Aquac. Int. 2024, 32, 8455–8478. [Google Scholar]
- Farhangmehr, V.; Imanian, H.; Mohammadian, A.; Cobo, J.H.; Shirkhani, H.; Payeur, P. A spatiotemporal CNN-LSTM deep learning model for predicting soil temperature in diverse large-scale regional climates. Sci. Total Environ. 2025, 968, 178901. [Google Scholar] [CrossRef]
- Zhang, Y.; Haghani, A. A gradient boosting method to improve travel time prediction. Transp. Res. Part C Emerg. Technol. 2015, 58, 308–324. [Google Scholar] [CrossRef]
- Ahn, J.M.; Kim, J.; Kim, K. Ensemble machine learning of gradient boosting (XGBoost, LightGBM, CatBoost) and attention-based CNN-LSTM for harmful algal blooms forecasting. Toxins 2023, 15, 608. [Google Scholar] [CrossRef]
- Zhou, S.; Song, C.; Zhang, J.; Chang, W.; Hou, W.; Yang, L. A hybrid prediction framework for water quality with integrated W-ARIMA-GRU and LightGBM methods. Water 2022, 14, 1322. [Google Scholar] [CrossRef]
- Arshad, S.; Kazmi, J.H.; Harsányi, E.; Nazli, F.; Hassan, W.; Shaikh, S.; Dalahmeh, M.A.; Mohammed, S. Predictive Modeling of soil salinity integrating remote sensing and soil variables: An ensembled deep learning approach. Energy Nexus 2025, 17, 100374. [Google Scholar] [CrossRef]
- Shixin, H.; Kedao, Z.; Hongmei, L.; Xiangjian, C. Application of Improved Monarch Butterfly Optimization for Parameters’ Optimization. Math. Probl. Eng. 2023, 2023, 1348624. [Google Scholar]
- Ko, H.; Choo, H.; Ji, K. Effect of temperature on electrical conductivity of soils–Role of surface conduction. Eng. Geol. 2023, 321, 107147. [Google Scholar] [CrossRef]
- Wang, D.; Yang, W.; Meng, C.; Cao, Y.; Li, M. Research on vehicle-mounted soil electrical conductivity and moisture content detection system based on current–voltage six-terminal method and spectroscopy. Comput. Electron. Agric. 2023, 205, 107640. [Google Scholar] [CrossRef]
- Rhoades, J.; Chanduvi, F.; Lesch, S. Soil Salinity Assessment: Methods and Interpretation of Electrical Conductivity Measurements; Food & Agriculture Org.: Rome, Italy, 1999. [Google Scholar]
Node | Time | Soil Temperature | Soil Moisture | EC | Pore Water EC | Air Temperature | Air Humidity | VPD |
---|---|---|---|---|---|---|---|---|
Node 1 | 1 January 2024 0:00 | 12.21 | 19.06 | 0.178 | 1.796 | 7.72 | 84.82 | 0.12 |
1 January 2024 0:10 | 12.13 | 19.06 | 0.178 | 1.796 | 7.34 | 86.91 | 0.09 | |
...... | ...... | ...... | ...... | ...... | ...... | ...... | ...... | |
19 December 2024 10:01 | 11.68 | 27.7 | 0.421 | 2.526 | 13.77 | 80.11 | 0.26 | |
19 December 2024 10:10 | 11.69 | 27.53 | 0.413 | 2.499 | 13.23 | 82.91 | 0.20 | |
Node 2 | 1 January 2024 0:00 | 12.16 | 28.52 | 0.622 | 3.583 | 7.72 | 84.82 | 0.12 |
1 January 2024 0:10 | 12.07 | 28.52 | 0.623 | 3.589 | 7.34 | 86.91 | 0.09 | |
...... | ...... | ...... | ...... | ...... | ...... | ...... | ...... | |
19 December 2024 10:01 | 11.22 | 31.79 | 0.608 | 3.012 | 13.77 | 80.11 | 0.26 | |
19 December 2024 10:10 | 11.22 | 31.79 | 0.605 | 2.997 | 13.23 | 82.91 | 0.20 | |
Node 3 | 1 January 2024 0:00 | 12.16 | 30.97 | 0.596 | 3.062 | 7.72 | 84.82 | 0.12 |
1 January 2024 0:10 | 12.11 | 30.96 | 0.595 | 3.058 | 7.34 | 86.91 | 0.09 | |
...... | ...... | ...... | ...... | ...... | ...... | ...... | ...... | |
19 December 2024 10:01 | 12.31 | 32.24 | 0.559 | 2.716 | 13.77 | 80.11 | 0.26 | |
19 December 2024 10:10 | 12.31 | 32.07 | 0.551 | 2.697 | 13.23 | 82.91 | 0.20 |
Time | Soil Temperature | Soil Moisture | EC | Pore Water EC | Air Temperature | Air Humidity | VPD |
---|---|---|---|---|---|---|---|
1 January 2024 00:00:00 | 12.054 | 26.184 | 0.465 | 2.813 | 7.197 | 87.365 | 0.087 |
1 January 2024 01:00:00 | 11.764 | 26.183 | 0.465 | 2.810 | 6.595 | 89.218 | 0.065 |
...... | ...... | ...... | ...... | ...... | ...... | ...... | ...... |
19 December 2024 08:00:00 | 11.582 | 28.499 | 0.467 | 2.659 | 9.858 | 88.703 | 0.090 |
19 December 2024 09:00:00 | 11.603 | 29.613 | 0.500 | 2.707 | 12.520 | 83.682 | 0.183 |
The Range of Values for ρp | Degree of Correlation |
---|---|
[−1, −0.6] | Strong Negative Correlation |
(−0.6, −0.4] | Moderate Negative Correlation |
(−0.4, −0.2] | Weak Negative Correlation |
(−0.2, 0.2) | Very Weak Correlation |
[0.2, 0.4) | Weak Positive Correlation |
[0.4, 0.6) | Moderate Positive Correlation |
[0.6, 1] | Strong Positive Correlation |
Model | MSE | MAE | R2 |
---|---|---|---|
GRU | 0.0040 | 0.0505 | 0.9456 |
LSTM | 0.0021 | 0.0351 | 0.9708 |
CNN–LSTM | 0.0017 | 0.0302 | 0.9763 |
LightGBM | 0.0031 | 0.0416 | 0.9572 |
XGBoost | 0.0030 | 0.0412 | 0.9593 |
BOA–XGBoost | 0.0022 | 0.0349 | 0.9701 |
CNN–LSTM–BOA–XGBoost | 0.0017 | 0.0293 | 0.9771 |
PCLBX | 0.0016 | 0.0288 | 0.9778 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Tian, P.; Sun, J.; Wang, X.; Deng, C.; Yang, Y.; Zhang, H.; Qian, Y. A Predictive Method for Greenhouse Soil Pore Water Electrical Conductivity Based on Multi-Model Fusion and Variable Weight Combination. Agronomy 2025, 15, 1180. https://doi.org/10.3390/agronomy15051180
Zhao J, Tian P, Sun J, Wang X, Deng C, Yang Y, Zhang H, Qian Y. A Predictive Method for Greenhouse Soil Pore Water Electrical Conductivity Based on Multi-Model Fusion and Variable Weight Combination. Agronomy. 2025; 15(5):1180. https://doi.org/10.3390/agronomy15051180
Chicago/Turabian StyleZhao, Jiawei, Peng Tian, Jihong Sun, Xinrui Wang, Changjun Deng, Yunlei Yang, Haokai Zhang, and Ye Qian. 2025. "A Predictive Method for Greenhouse Soil Pore Water Electrical Conductivity Based on Multi-Model Fusion and Variable Weight Combination" Agronomy 15, no. 5: 1180. https://doi.org/10.3390/agronomy15051180
APA StyleZhao, J., Tian, P., Sun, J., Wang, X., Deng, C., Yang, Y., Zhang, H., & Qian, Y. (2025). A Predictive Method for Greenhouse Soil Pore Water Electrical Conductivity Based on Multi-Model Fusion and Variable Weight Combination. Agronomy, 15(5), 1180. https://doi.org/10.3390/agronomy15051180