Effects of Irrigation Amounts and Fertilizer Types on Seed Yield and Water-Use Efficiency of Lespedeza potaninii in Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dimorphic Characteristic of L. potaninii
2.2. Experimental Site
2.3. Experimental Design and Treatments
2.4. Data Collection and Measurements
2.4.1. CH, CL, and Total Seed Yield; Yield Components; And Agronomic Characters
2.4.2. Water-Use Efficiency
2.5. Statistical Analysis
3. Results
3.1. Irrigation Amounts and Fertilizer Types Affect Seed Yield
3.2. Yield Components Were Influenced by Irrigation Amounts and Fertilizer Types
3.3. Correlation Analysis of Seed Yield and Yield Components
3.4. Irrigation Amount and Fertilizer Types Influence Seed Yield by Impacting Yield Components
3.5. Water-Use Efficiency
4. Discussion
4.1. Irrigation Amount and Fertilizer Type Influencing Seed Yield of Total, CH Part, and CL Part
4.2. Yield Components Were Affected by Irrigation and Fertilizer
4.3. Irrigation Amounts and Fertilization Types Affect Water-Use Efficiency
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M. Food, agriculture & the environment: Can we feed the world & save the earth? Daedalus 2015, 144, 8–23. [Google Scholar]
- Javed, T.; Zhang, J.; Bhattarai, N.; Sha, Z.; Rashid, S.; Yun, B.; Ahmad, S.; Henchiri, M.; Kamran, M. Drought characterization across agricultural regions of China using standardized precipitation and vegetation water supply indices. J. Clean. Prod. 2021, 313, 127866. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Y.; Sun, S.; Zhao, X.; Wang, Y. Analysis of the coupling characteristics of water resources and food security: The case of Northwest China. Agriculture 2022, 12, 1114. [Google Scholar] [CrossRef]
- Liu, M.; Nie, Z.; Liu, X.; Wang, L.; Cao, L. Change in groundwater table depth caused by natural change and human activities during the past 40 years in the Shiyang River Basin, northwest China. Sci. Total Environ. 2024, 906, 167722. [Google Scholar] [CrossRef]
- Ayangbenro, A.S.; Babalola, O.O. Reclamation of arid and semi-arid soils: The role of plant growth-promoting archaea and bacteria. Curr. Plant Biol. 2021, 25, 100173. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Zhao, J.; Nie, J.; Zang, H.; Zeng, Z.; Olesen, J.E. Yield benefits from replacing chemical fertilizers with manure under water deficient conditions of the winter wheat–summer maize system in the North China Plain. Eur. J. Agron. 2020, 119, 126118. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, H.; Li, H.; He, H.; Ma, S.; Ma, F.; Song, K. Physiological response and transcriptome analysis of the desert steppe dominant plant Lespedeza potaninii to drought stress. Pratacult. Sci. 2023, 32, 188–205. [Google Scholar]
- Yan, Q.; Xu, P.; Xiao, Y.; Chen, L.; Wu, F.; Wang, S.; Guo, F.; Duan, Z.; Zhang, J. The genome of Lespedeza potaninii reveals biased subgenome evolution and drought adaptation. Plant Physiol. 2024, 195, 2829–2842. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, Q.; Meng, Y.; Li, X.; Nan, Z.; Wang, Y.; Zhang, W. A genetic diversity analysis of wild Lespedeza populations based on morphological characters, allozyme and RAPD methods. Plant Breed. 2007, 126, 89–94. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, F.; Yan, Q.; John, U.P.; Cao, M.; Xu, P.; Zhang, Z.; Ma, T.; Zong, X.; Li, J. The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability. Plant Biotechnol. J. 2021, 19, 532–547. [Google Scholar] [CrossRef]
- Nair, S.K.; Wang, N.; Turuspekov, Y.; Pourkheirandish, M.; Sinsuwongwat, S.; Chen, G.; Sameri, M.; Tagiri, A.; Honda, I.; Watanabe, Y. Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc. Natl. Acad. Sci. USA 2010, 107, 490–495. [Google Scholar] [CrossRef]
- Bell, T.J.; Quinn, J.A. Effects of soil moisture and light intensity on the chasmogamous and cleistogamous components of reproductive effort of Dichanthelium clandestinum populations. Can. J. Bot. 1987, 65, 2243–2249. [Google Scholar] [CrossRef]
- Plitmann, U. Distribution of dimorphic flowers as related to other elements of the reproductive strategy. Plant Species Biol. 1995, 10, 53–60. [Google Scholar] [CrossRef]
- Hu, W.; Zhao, J.; Zhang, Y. Fitness advantage and maintenance mechanisms of dimorphic mixed-mating plants. Biodivers. Sci. 2019, 27, 468. [Google Scholar]
- Aydinsakir, K.; Erdal, S.; Buyuktas, D.; Bastug, R.; Toker, R. The influence of regular deficit irrigation applications on water use, yield, and quality components of two corn (Zea mays L.) genotypes. Agric. Water Manag. 2013, 128, 65–71. [Google Scholar] [CrossRef]
- Gao, H.; Yan, C.; Liu, Q.; Ding, W.; Chen, B.; Li, Z. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Sci. Total Environ. 2019, 651, 484–492. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Fan, J.; Wu, L.; Zhang, F.; Yan, S.; Xiang, Y. Evaluation of drip fertigation uniformity affected by injector type, pressure difference and lateral layout. Irrig. Drain. 2017, 66, 520–529. [Google Scholar] [CrossRef]
- Lekakis, E.; Georgiou, P.; Pavlatou-Ve, A.; Antonopoulos, V. Effects of fixed partial root-zone drying irrigation and soil texture on water and solute dynamics in calcareous soils and corn yield. Agric. Water Manag. 2011, 101, 71–80. [Google Scholar] [CrossRef]
- Chen, J.; Kang, S.; Du, T.; Qiu, R.; Guo, P.; Chen, R. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agric. Water Manag. 2013, 129, 152–162. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Bi, L.; Wang, Y.; Fan, J.; Zhang, F.; Hou, X.; Cheng, M.; Hu, W.; Wu, L. Multi-objective optimization of water and fertilizer management for potato production in sandy areas of northern China based on TOPSIS. Field Crops Res. 2019, 240, 55–68. [Google Scholar] [CrossRef]
- Malhotra, H.; Vandana; Sharma, S.; Pandey, R. Phosphorus nutrition: Plant growth in response to deficiency and excess. In Plant Nutrients and Abiotic Stress Tolerance; Springer: Singapore, 2018; pp. 171–190. [Google Scholar]
- Weihrauch, C.; Opp, C. Ecologically relevant phosphorus pools in soils and their dynamics: The story so far. Geoderma 2018, 325, 183–194. [Google Scholar] [CrossRef]
- Xiao, Y.; Puig-Bargués, J.; Zhou, B.; Li, Q.; Li, Y. Increasing phosphorus availability by reducing clogging in drip fertigation systems. J. Clean. Prod. 2020, 262, 121319. [Google Scholar] [CrossRef]
- Abd-Elrahman, S.H.; Saudy, H.S.; El–Fattah, D.A.A.; Hashem, F.A.E. Effect of irrigation water and organic fertilizer on reducing nitrate accumulation and boosting lettuce productivity. J. Soil Sci. Plant Nutr. 2022, 22, 2144–2155. [Google Scholar] [CrossRef]
- Gai, X.; Liu, H.; Liu, J.; Zhai, L.; Yang, B.; Wu, S.; Ren, T.; Lei, Q.; Wang, H. Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain. Agric. Water Manag. 2018, 208, 384–392. [Google Scholar] [CrossRef]
- Luan, H.; Gao, W.; Huang, S.; Tang, J.; Li, M.; Zhang, H.; Chen, X. Partial substitution of chemical fertilizer with organic amendments affects soil organic carbon composition and stability in a greenhouse vegetable production system. Soil Tillage Res. 2019, 191, 185–196. [Google Scholar] [CrossRef]
- Qaswar, M.; Jing, H.; Ahmed, W.; Dongchu, L.; Shujun, L.; Lu, Z.; Cai, A.; Lisheng, L.; Yongmei, X.; Jusheng, G. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Tillage Res. 2020, 198, 104569. [Google Scholar] [CrossRef]
- Chen, L.; Ma, P.; Li, J.; Liu, J.; Guo, F.; Wang, Y.; Zhang, J. Lespedeza potaninii Vass seed yield response to plant density and phosphate fertilization in Northwest China. Eur. J. Agron. 2024, 156, 127173. [Google Scholar] [CrossRef]
- Chen, L.; Liu, J.; Guo, F.; Jing, S.; Chu, B.; Qu, Y.; Li, W.; Zhang, J. The impact of drip irrigation and phosphorus fertilizer on enhancing dimorphic seed production of Lespedeza potaninii in Northwest China. Agric. Water Manag. 2024, 299, 108900. [Google Scholar] [CrossRef]
- United States Department of Agriculture Natural Resources Conservation Service. Soil quality resource concerns: Compaction. In Soil Quality Information Sheet; United States Department of Agriculture: Washington, DC, USA, 1996. [Google Scholar]
- Zhang, J.Y.; Ma, P.C.; Yan, Q. Spherical Hard Seed Processing Device. CN215121881U, 14 December 2021. [Google Scholar]
- Liao, Z.; Zeng, H.; Fan, J.; Lai, Z.; Zhang, C.; Zhang, F.; Wang, H.; Cheng, M.; Guo, J.; Li, Z. Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching. Agric. Water Manag. 2022, 268, 107688. [Google Scholar] [CrossRef]
- Ali, S.; Ma, X.; Jia, Q.; Ahmad, I.; Ahmad, S.; Sha, Z.; Yun, B.; Muhammad, A.; Ren, X.; Akbar, H. Supplemental irrigation strategy for improving grain filling, economic return, and production in winter wheat under the ridge and furrow rainwater harvesting system. Agric. Water Manag. 2019, 226, 105842. [Google Scholar] [CrossRef]
- Jha, S.K.; Ramatshaba, T.S.; Wang, G.; Liang, Y.; Liu, H.; Gao, Y.; Duan, A. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain. Agric. Water Manag. 2019, 217, 292–302. [Google Scholar]
- Wang, J.; Xie, J.; Zhang, Y.; Gao, S.; Zhang, J.; Mu, C. Methods to improve seed yield of Leymus chinensis based on nitrogen application and precipitation analysis. Agron. J. 2010, 102, 277–281. [Google Scholar] [CrossRef]
- Djaman, K.; O’neill, M.; Owen, C.K.; Smeal, D.; Koudahe, K.; West, M.; Allen, S.; Lombard, K.; Irmak, S. Crop evapotranspiration, irrigation water requirement and water productivity of maize from meteorological data under semiarid climate. Water 2018, 10, 405. [Google Scholar] [CrossRef]
- Bai, M.; Tao, Q.; Zhang, Z.; Lang, S.; Li, J.; Chen, D.; Wang, Y.; Hu, X. Effect of drip irrigation on seed yield, seed quality and water use efficiency of Hedysarum fruticosum in the arid region of Northwest China. Agric. Water Manag. 2023, 278, 108137. [Google Scholar] [CrossRef]
- Tao, Q.; Bai, M.; Jia, C.; Han, Y.; Wang, Y. Effects of irrigation and nitrogen fertilization on seed yield, yield components, and water use efficiency of Cleistogenes songorica. Agronomy 2021, 11, 466. [Google Scholar] [CrossRef]
- Ma, T.; Gao, F.; Han, B.; Peng, W.; Liu, D.; Liu, C.; Shen, Y.; Ma, H. Selection of seed production irrigation regime of the native plant Lespedeza potaninii in desert steppe. Chin. J. Appl. Ecol. 2024, 35, 3401–3408. [Google Scholar]
- Jia, Z.; Ou, C.; Sun, S.; Sun, M.; Zhao, Y.; Li, C.; Zhao, S.; Wang, J.; Jia, S.; Mao, P. Optimizing drip irrigation managements to improve alfalfa seed yield in semiarid region. Agric. Water Manag. 2024, 297, 108830. [Google Scholar] [CrossRef]
- Limeneh, D.F.; Beshir, H.M.; Mengistu, F.G. Nutrient uptake and use efficiency of onion seed yield as influenced by nitrogen and phosphorus fertilization. J. Plant Nutr. 2020, 43, 1229–1247. [Google Scholar] [CrossRef]
- Wang, X.; Nie, J.; Wang, P.; Zhao, J.; Yang, Y.; Wang, S.; Zeng, Z.; Zang, H. Does the replacement of chemical fertilizer nitrogen by manure benefit water use efficiency of winter wheat–summer maize systems? Agric. Water Manag. 2021, 243, 106428. [Google Scholar] [CrossRef]
- Luo, G.; Li, L.; Friman, V.-P.; Guo, J.; Guo, S.; Shen, Q.; Ling, N. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biol. Biochem. 2018, 124, 105–115. [Google Scholar] [CrossRef]
- Geng, Y.; Cao, G.; Wang, L.; Wang, S. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PLoS ONE 2019, 14, e0219512. [Google Scholar] [CrossRef]
- Liu, H.; Du, X.; Li, Y.; Han, X.; Li, B.; Zhang, X.; Li, Q.; Liang, W. Organic substitutions improve soil quality and maize yield through increasing soil microbial diversity. J. Clean. Prod. 2022, 347, 131323. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, Y.; Guan, S.; Dong, K.; Li, D. Seed production and yield components of Lespedeza davurica in response to N, P, and K fertilization and plant density. J. Plant Nutr. 2022, 45, 3057–3065. [Google Scholar] [CrossRef]
- Barrett, S.C.; Yakimowski, S.B.; Field, D.L.; Pickup, M. Ecological genetics of sex ratios in plant populations. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2549–2557. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Du, X.; Korpelainen, H.; Niinemets, Ü.; Li, C. Anatomical variation of mesophyll conductance due to salt stress in Populus cathayana females and males growing under different inorganic nitrogen sources. Tree Physiol. 2021, 41, 1462–1478. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Dong, H.; Li, Z.; Han, Z.; Korpelainen, H.; Li, C. Species-specific responses to drought, salinity and their interactions in Populus euphratica and P. pruinosa seedlings. J. Plant Ecol. 2020, 13, 563–573. [Google Scholar] [CrossRef]
- Song, H.; Lei, Y.; Zhang, S. Differences in resistance to nitrogen and phosphorus deficiencies explain male-biased populations of poplar in nutrient-deficient habitats. J. Proteom. 2018, 178, 123–127. [Google Scholar] [CrossRef]
- Xia, Z.; He, Y.; Yu, L.; Lv, R.; Korpelainen, H.; Li, C. Sex-specific strategies of phosphorus (P) acquisition in Populus cathayana as affected by soil P availability and distribution. New Phytol. 2020, 225, 782–792. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Li, J. Effects of film-uncovering time on soil enzyme activity and maize nitrogen uptake under drip irrigation. J. Drain. Irrig. Mach. Eng. 2019, 37, 454–460. [Google Scholar]
- Guo, Z.G.; Xialiu, H.; Wang, Y.R.; Kunhu, Y.; Yang, J.N. Irrigating at podding and regrowth stages increases seed yield and improves pod distribution in lucerne grown in the Hexi Corridor in China. N. Z. J. Agric. Res. 2007, 50, 285–290. [Google Scholar] [CrossRef]
- Iannucci, A.; Di Fonzo, N.; Martiniello, P. Alfalfa (Medicago sativa L.) seed yield and quality under different forage management systems and irrigation treatments in a Mediterranean environment. Field Crops Res. 2002, 78, 65–74. [Google Scholar] [CrossRef]
- Zhang, T.; Kang, J.; Zhao, Z.; Guo, W.; Yang, Q. Frequency, depth and rate of phosphorus fertilizer application effects on alfalfa seed yields. Can. J. Plant Sci. 2014, 94, 1149–1156. [Google Scholar] [CrossRef]
- Guo, L.; Cao, H.; Helgason, W.D.; Yang, H.; Wu, X.; Li, H. Effect of drip-line layout and irrigation amount on yield, irrigation water use efficiency, and quality of short-season tomato in Northwest China. Agric. Water Manag. 2022, 270, 107731. [Google Scholar] [CrossRef]
- Wei, T.; Dong, Z.; Zhang, C.; Ali, S.; Chen, X.; Han, Q.; Zhang, F.; Jia, Z.; Zhang, P.; Ren, X. Effects of rainwater harvesting planting combined with deficiency irrigation on soil water use efficiency and winter wheat (Triticum aestivum L.) yield in a semiarid area. Field Crops Res. 2018, 218, 231–242. [Google Scholar] [CrossRef]
- Wang, H.; Xiang, Y.; Zhang, F.; Tang, Z.; Guo, J.; Zhang, X.; Hou, X.; Wang, H.; Cheng, M.; Li, Z. Responses of yield, quality and water-nitrogen use efficiency of greenhouse sweet pepper to different drip fertigation regimes in Northwest China. Agric. Water Manag. 2022, 260, 107279. [Google Scholar] [CrossRef]
- Wang, L.; Rengel, Z.; Cheng, L.; Shen, J. Coupling phosphate type and placement promotes maize growth and phosphorus uptake by altering root properties and rhizosphere processes. Field Crops Res. 2024, 306, 109225. [Google Scholar] [CrossRef]
- Wang, H.; Wu, L.; Cheng, M.; Fan, J.; Zhang, F.; Zou, Y.; Chau, H.W.; Gao, Z.; Wang, X. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in northern Xinjiang, China. Field Crops Res. 2018, 219, 169–179. [Google Scholar] [CrossRef]
Treatments | Plant Height (cm) | Basal Stem Diameter (mm) | Aboveground Biomass (kg/ha) | Harvest Index (%) | ||||
---|---|---|---|---|---|---|---|---|
2023 | 2024 | 2023 | 2024 | 2023 | 2024 | 2023 | 2024 | |
I1F1 | 54.18 ± 1.39 e | 56.35 ± 3.32 f | 1.80 ± 0.06 de | 2.18 ± 0.07 b | 1967 ± 85 c | 1963 ± 132 d | 15.61 ± 0.53 c | 17.54 ± 1.05 b |
I1F2 | 56.93 ± 2.05 e | 65.85 ± 1.89 e | 2.02 ± 0.02 bc | 2.20 ± 0.18 b | 2226 ± 64 c | 2377 ± 64 d | 18.41 ± 1.09 b | 17.97 ± 0.90 b |
I1F3 | 54.00 ± 1.89 e | 59.30 ± 3.44 ef | 1.75 ± 0.06 e | 2.15 ± 0.18 b | 2036 ± 112 c | 2186 ± 113 d | 16.81 ± 0.99 bc | 16.64 ± 0.94 b |
I2F1 | 71.08 ± 0.80 d | 73.00 ± 2.82 d | 1.95 ± 0.03 cd | 2.25 ± 0.09 b | 3330 ± 122 b | 3519 ± 123 c | 26.49 ± 0.42 a | 26.03 ± 0.37 a |
I2F2 | 78.53 ± 1.99 c | 81.75 ± 1.95 bc | 2.42 ± 0.05 a | 2.47 ± 0.12 ab | 3823 ± 137 a | 3975 ± 258 ab | 25.54 ± 0.88 a | 25.77 ± 1.84 a |
I2F3 | 77.08 ± 1.99 c | 77.55 ± 1.93 cd | 2.10 ± 0.06 bc | 2.32 ± 0.07 ab | 3372 ± 105 b | 3561 ± 106 bc | 26.96 ± 0.79 a | 26.76 ± 0.80 a |
I3F1 | 83.93 ± 0.84 b | 79.80 ± 0.73 bcd | 2.14 ± 0.05 b | 2.37 ± 0.18 ab | 3302 ± 118 b | 3478 ± 119 c | 27.10 ± 0.78 a | 27.51 ± 1.00 a |
I3F2 | 90.80 ± 1.19 a | 92.20 ± 1.15 a | 2.47 ± 0.02 a | 2.75 ± 0.09 a | 3867 ± 104 a | 4048 ± 105 a | 25.26 ± 0.65 a | 25.02 ± 0.64 a |
I3F3 | 87.40 ± 0.70 ab | 86.40 ± 1.95 ab | 2.33 ± 0.07 a | 2.51 ± 0.19 ab | 3558 ± 138 ab | 3736 ± 139 abc | 25.67 ± 1.07 a | 25.96 ± 0.91 a |
Treatments | Stems (m−2) | CH Racemes/Stem | CL Racemes/Stem | CH Florets/Raceme | CL Florets/Raceme | |||||
---|---|---|---|---|---|---|---|---|---|---|
2023 | 2024 | 2023 | 2024 | 2023 | 2024 | 2023 | 2024 | 2023 | 2024 | |
I1F1 | 113 ± 2 d | 135 ± 10 d | 24.50 ± 1.10 e | 27.00 ± 3.33 d | 26.66 ± 1.14 d | 29.25 ± 0.48 d | 9.00 ± 0.58 c | 9.50 ± 0.50 b | 7.00 ± 0.58 b | 7.50 ± 0.50 b |
I1F2 | 131 ± 8 c | 165 ± 15 c | 29.21 ± 0.80 d | 31.16 ± 1.41 cd | 30.01 ± 0.53 cd | 32.40 ± 1.26 bcd | 9.75 ± 0.25 abc | 10.00 ± 0.00 ab | 7.50 ± 0.50 ab | 8.00 ± 0.00 ab |
I1F3 | 117 ± 4 d | 139 ± 3 d | 26.34 ± 1.46 e | 28.33 ± 1.46 d | 29.35 ± 0.50 cd | 30.00 ± 1.07 cd | 9.50 ± 0.65 bc | 9.75 ± 0.63 b | 7.00 ± 0.58 b | 8.00 ± 0.82 ab |
I2F1 | 212 ± 3 b | 227 ± 9 b | 37.40 ± 0.23 c | 39.04 ± 1.23 ab | 32.78 ± 2.01 bc | 33.54 ± 1.92 bc | 10.25 ± 0.25 abc | 11.00 ± 0.58 ab | 7.50 ± 0.50 ab | 8.50 ± 0.50 ab |
I2F2 | 231 ± 1 a | 257 ± 9 a | 41.90 ± 0.89 ab | 43.91 ± 2.93 ab | 36.64 ± 1.84 ab | 37.84 ± 1.70 a | 11.50 ± 0.95 ab | 12.00 ± 0.82 a | 9.00 ± 0.58 a | 9.50 ± 0.50 a |
I2F3 | 214 ± 4 b | 234 ± 13 ab | 37.90 ± 0.92 c | 39.86 ± 1.87 ab | 34.73 ± 1.53 ab | 36.20 ± 1.39 ab | 11.00 ± 0.58 ab | 11.50 ± 0.96 ab | 8.00 ± 0.00 ab | 9.00 ± 0.58 ab |
I3F1 | 208 ± 4 b | 228 ± 3 b | 39.40 ± 1.28 bc | 37.56 ± 1.22 bc | 34.40 ± 0.50 ab | 36.15 ± 1.30 ab | 10.75 ± 0.48 abc | 11.50 ± 0.50 ab | 8.50 ± 0.95 ab | 9.00 ± 0.58 ab |
I3F2 | 237 ± 5 a | 261 ± 5 a | 42.90 ± 0.32 a | 45.03 ± 3.67 a | 38.19 ± 0.91 a | 39.25 ± 0.48 a | 11.75 ± 0.85 a | 12.00 ± 0.82 a | 9.00 ± 0.58 a | 9.50 ± 0.50 a |
I3F3 | 214 ± 5 b | 234 ± 5 ab | 39.35 ± 0.57 bc | 41.79 ± 1.54 ab | 35.20 ± 1.16 ab | 36.55 ± 0.92 ab | 11.25 ± 0.48 ab | 12.00 ± 0.00 a | 8.50 ± 0.50 ab | 9.50 ± 0.50 a |
Treatments | CH Pods/Raceme | CL Pods/Raceme | CH 1000-Seed Weight (g) | CL 1000-Seed Weight (g) | CH Seed Yield Per Plant (g) | CL Seed Yield Per Plant (g) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2023 | 2024 | 2023 | 2024 | 2023 | 2024 | 2023 | 2024 | 2023 | 2024 | 2023 | 2024 | |
I1F1 | 8.75 ± 0.48 d | 9.25 ± 0.48 b | 7.00 ± 0.58 a | 7.50 ± 0.50 b | 2.18 ± 0.04 b | 2.26 ± 0.02 e | 2.09 ± 0.02 b | 2.19 ± 0.03 d | 2.50 ± 0.13 d | 2.63 ± 0.12 e | 3.00 ± 0.17 f | 3.49 ± 0.13 d |
I1F2 | 9.25 ± 0.25 cd | 9.50 ± 0.50 b | 7.25 ± 0.48 a | 7.75 ± 0.28 ab | 2.25 ± 0.09 ab | 2.37 ± 0.05 bcde | 2.20 ± 0.06 ab | 2.32 ± 0.06 bc | 3.11 ± 0.11 c | 3.46 ± 0.18 d | 4.23 ± 0.15 e | 4.20 ± 0.19 c |
I1F3 | 9.00 ± 0.41 bcd | 9.25 ± 0.48 b | 7.00 ± 0.58 a | 7.75 ± 0.68 ab | 2.21 ± 0.06 ab | 2.30 ± 0.06 de | 2.14 ± 0.04 b | 2.25 ± 0.04 cd | 2.80 ± 0.04 cd | 2.98 ± 0.11 e | 3.30 ± 0.13 f | 3.51 ± 0.11 d |
I2F1 | 9.75 ± 0.25 abcd | 10.50 ± 0.50 ab | 7.25 ± 0.48 a | 8.25 ± 0.28 ab | 2.24 ± 0.06 ab | 2.35 ± 0.02 cde | 2.24 ± 0.06 b | 2.26 ± 0.03 cd | 8.76 ± 0.13 b | 9.13 ± 0.26 c | 7.08 ± 0.33 d | 7.33 ± 0.18 b |
I2F2 | 10.00 ± 0.00 abcd | 11.50 ± 0.50 a | 8.75 ± 0.48 a | 9.25 ± 0.48 a | 2.44 ± 0.04 a | 2.50 ± 0.06 ab | 2.37 ± 0.10 a | 2.40 ± 0.02 a | 9.79 ± 0.10 a | 10.11 ± 0.08 a | 7.67 ± 0.13 a | 8.06 ± 0.08 a |
I2F3 | 10.50 ± 0.65 abc | 10.50 ± 0.28 ab | 7.75 ± 0.25 a | 8.75 ± 0.48 ab | 2.30 ± 0.03 ab | 2.43 ± 0.06 abc | 2.30 ± 0.05 b | 2.29 ± 0.03 bc | 9.05 ± 0.03 b | 9.40 ± 0.10 bc | 7.25 ± 0.04 abc | 7.69 ± 0.16 ab |
I3F1 | 10.50 ± 0.29 abc | 11.25 ± 0.48 a | 8.25 ± 0.85 a | 8.75 ± 0.48 ab | 2.31 ± 0.06 ab | 2.43 ± 0.06 abc | 2.28 ± 0.04 b | 2.25 ± 0.03 cd | 8.86 ± 0.04 b | 9.56 ± 0.10 bc | 7.19 ± 0.10 cd | 7.59 ± 0.15 ab |
I3F2 | 11.25 ± 0.95 a | 11.75 ± 0.68 a | 8.75 ± 0.48 a | 9.25 ± 0.48 a | 2.42 ± 0.13 a | 2.52 ± 0.03 a | 2.37 ± 0.11 a | 2.38 ± 0.02 ab | 9.88 ± 0.02 a | 10.17 ± 0.06 a | 7.65 ± 0.08 ab | 8.02 ± 0.33 a |
I3F3 | 10.75 ± 0.48 ab | 11.25 ± 0.48 a | 8.50 ± 0.29 a | 9.00 ± 0.58 ab | 2.25 ± 0.09 ab | 2.46 ± 0.06 abc | 2.28 ± 0.05 b | 2.38 ± 0.01 ab | 9.07 ± 0.21 b | 9.77 ± 0.18 ab | 7.28 ± 0.09 abc | 7.61 ± 0.13 ab |
Treatment | WUE (kg ha−1 mm−1) | IWUE (kg ha−1 mm−1) | PWUE (kg ha−1 mm−1) | |||
---|---|---|---|---|---|---|
2023 | 2024 | 2023 | 2024 | 2023 | 2024 | |
I1F1 | 1.59 ± 0.27 d | 1.64 ± 0.43 b | 3.06 ± 0.03 ef | 3.40 ± 0.01 de | 1.97 ± 0.02 e | 6.09 ± 0.02 e |
I1F2 | 2.88 ± 0.27 ab | 2.53 ± 0.16 ab | 4.08 ± 0.12 c | 4.26 ± 0.15 c | 2.63 ± 0.08 c | 7.62 ± 0.27 d |
I1F3 | 1.73 ± 0.21 cd | 2.18 ± 0.55 ab | 3.39 ± 0.08 d | 3.61 ± 0.05 d | 2.19 ± 0.05 d | 6.45 ± 0.10 e |
I2F1 | 3.27 ± 0.14 a | 2.94 ± 0.18 a | 4.40 ± 0.11 b | 4.58 ± 0.11 b | 5.68 ± 0.15 b | 16.37 ± 0.41 c |
I2F2 | 3.63 ± 0.15 a | 3.18 ± 0.46 a | 4.87 ± 0.04 a | 5.05 ± 0.04 a | 6.27 ± 0.05 a | 18.07 ± 0.16 a |
I2F3 | 3.19 ± 0.44 ab | 2.90 ± 0.41 a | 4.53 ± 0.01 b | 4.75 ± 0.02 b | 5.84 ± 0.01 b | 17.01 ± 0.08 bc |
I3F1 | 2.21 ± 0.02 bcd | 2.93 ± 0.31 a | 2.97 ± 0.02 f | 3.18 ± 0.01 e | 5.75 ± 0.05 b | 17.06 ± 0.06 b |
I3F2 | 2.71 ± 0.60 abc | 3.02 ± 0.17 a | 3.25 ± 0.02 de | 3.37 ± 0.07 e | 6.28 ± 0.03 a | 18.10 ± 0.39 a |
I3F3 | 2.19 ± 0.36 cd | 2.36 ± 0.34 ab | 3.03 ± 0.04 f | 3.22 ± 0.02 e | 5.86 ± 0.08 b | 17.29 ± 0.10 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Wu, F.; Guo, F.; Liu, J.; Guo, W.; Chu, B.; Qu, Y.; Zhang, J. Effects of Irrigation Amounts and Fertilizer Types on Seed Yield and Water-Use Efficiency of Lespedeza potaninii in Northwest China. Agronomy 2025, 15, 1175. https://doi.org/10.3390/agronomy15051175
Chen L, Wu F, Guo F, Liu J, Guo W, Chu B, Qu Y, Zhang J. Effects of Irrigation Amounts and Fertilizer Types on Seed Yield and Water-Use Efficiency of Lespedeza potaninii in Northwest China. Agronomy. 2025; 15(5):1175. https://doi.org/10.3390/agronomy15051175
Chicago/Turabian StyleChen, Lijun, Fan Wu, Fukang Guo, Jingze Liu, Wanli Guo, Boyu Chu, Yuncan Qu, and Jiyu Zhang. 2025. "Effects of Irrigation Amounts and Fertilizer Types on Seed Yield and Water-Use Efficiency of Lespedeza potaninii in Northwest China" Agronomy 15, no. 5: 1175. https://doi.org/10.3390/agronomy15051175
APA StyleChen, L., Wu, F., Guo, F., Liu, J., Guo, W., Chu, B., Qu, Y., & Zhang, J. (2025). Effects of Irrigation Amounts and Fertilizer Types on Seed Yield and Water-Use Efficiency of Lespedeza potaninii in Northwest China. Agronomy, 15(5), 1175. https://doi.org/10.3390/agronomy15051175