A Lightweight and High-Performance YOLOv5-Based Model for Tea Shoot Detection in Field Conditions
Abstract
:1. Introduction
- (1)
- To reduce the information loss of tea shoot features in the traditional downsampling process, a parallel-branch fusion downsampling block was proposed through the combination of max-pooling and depthwise separable convolution;
- (2)
- Construction of a lightweight feature extraction block based on partial convolution with enhanced ability to extract critical features of tea shoots;
- (3)
- Proposal of a lightweight and high-performance tea shoot detection model by combining lightweight modifications and model compression, which effectively reduces misdetection and omission.
2. Materials and Methods
2.1. Data Acquisition and Dataset Construction
2.2. Overall Structure of YOLOv5
2.3. Model Lightweighting Modifications
2.3.1. Parallel-Branch Fusion of Downsampling Block
2.3.2. Lightweight Feature Extraction Block
2.4. Model Pruning and Knowledge Distillation
2.5. Hyperparameter Setting and Experimental Platform
3. Results and Discussion
3.1. Detection Performance Metrics
3.2. Model Performance with Lightweighting Modifications
3.2.1. Influence of PFD and FC3 Blocks on Model Performance
3.2.2. Comparison of Different Lightweight Feature Extraction Blocks
3.3. Model Performance with Model Compression
3.4. Ablation Experiments and Detection Results Comparison
- (1)
- Improvement of bounding box prediction: Tea shoots often include buds and leaves with similar morphological features, complicating accurate bounding box prediction. The HLTS-Model demonstrated enhanced accuracy and confidence in bounding box predictions, effectively differentiating between these similar features (Figure 12a,b).
- (2)
- Reduction in omissions due to shading: Shading on tea leaves, stalks, and shoots can significantly impact the detection performance. The HLTS-Model notably reduced such omissions, providing more reliable detection even in shaded areas (Figure 12c,d).
- (3)
- Enhancing detection of small objects: Tea shoots vary considerably in size due to factors such as the sprouting period, location, and climatic conditions. The HLTS-Model excelled in detecting small-sized tea shoots, showcasing its effectiveness in handling significant size variations (Figure 12e,f).
- (4)
- Mitigation of misdetection: Misdetection often arises from the similarity between tea shoots and leaves, compounded by variable lighting conditions. For instance, the “second leaf” can resemble the tea shoots during the “one bud and two leaves” period. The HLTS-Model effectively reduced such misdetections, addressing the challenge of distinguishing between similar features under varying light conditions (Figure 12g,h).
3.5. Contrast Experiment
3.5.1. Comparison of Different Detection Models
3.5.2. Comparison with Other Existing Models
3.6. Generalizability of the Modification Strategy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, Y.; Li, H.; Sun, J.; Zhou, X.; Yao, K.; Nirere, A. Nondestructive Determination of the Total Mold Colony Count in Green Tea by Hyperspectral Imaging Technology. J. Food Process Eng. 2020, 43, e13570. [Google Scholar] [CrossRef]
- Yin, L.; Jayan, H.; Cai, J.; El-Seedi, H.; Guo, Z.; Zou, X. Development of a Sensitive SERS Method for Label-Free Detection of Hexavalent Chromium in Tea Using Carbimazole Redox Reaction. Foods 2023, 12, 2673. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, M.; Pan, Q.; Jin, X.; Wang, G.; Zhao, Y.; Hu, Y. Identification of Tea Plant Cultivars Based on Canopy Images Using Deep Learning Methods. Sci. Hortic. 2025, 339, 113908. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Yang, M.; Wang, G.; Zhao, Y.; Hu, Y. Optimal Training Strategy for High-Performance Detection Model of Multi-Cultivar Tea Shoots Based on Deep Learning Methods. Sci. Hortic. 2024, 328, 112949. [Google Scholar] [CrossRef]
- Wei, J.; Chen, Y.; Jin, X.; Zheng, J.; Shi, Y.; Zhang, H. Researches on tender tea shoots identification under natural conditions. J. Tea Sci. 2012, 32, 377–381. [Google Scholar] [CrossRef]
- Bojie, Z.; Dong, W.; Weizhong, S.; Yu, L.; Ke, W. Research on tea bud identification technology based on HSI/HSV color transformation. In Proceedings of the 2019 6th International Conference on Information Science and Control Engineering (ICISCE), Shanghai, China, 20–22 December 2019; pp. 511–515. [Google Scholar] [CrossRef]
- Zhang, L.; Zou, L.; Wu, C.; Jia, J.; Chen, J. Method of Famous Tea Sprout Identification and Segmentation Based on Improved Watershed Algorithm. Comput. Electron. Agric. 2021, 184, 106108. [Google Scholar] [CrossRef]
- Shao, P.; Wu, M.; Wang, X.; Zhou, J.; Liu, S. Research on the Tea Bud Recognition Based on Improved K-Means Algorithm. MATEC Web Conf. 2018, 232, 03050. [Google Scholar] [CrossRef]
- Li, W.; Chen, R.; Gao, Y. Automatic recognition of tea bud image based on support vector machine. In Advanced Hybrid Information Processing, Proceedings of the 4th EAI International Conference, ADHIP 2020, Binzhou, China, 26–27 September 2020; Springer: Berlin/Heidelberg, Germany, 2021; pp. 279–290. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Z.; Zhao, Y.; Zhang, Y. Tea bud recognition based on machine learning. In Proceedings of the 2022 41st Chinese Control Conference (CCC), Hefei, China, 25–27 July 2022; pp. 6533–6537. [Google Scholar] [CrossRef]
- Yang, H.; Chen, L.; Chen, M.; Ma, Z.; Deng, F.; Li, M.; Li, X. Tender Tea Shoots Recognition and Positioning for Picking Robot Using Improved YOLO-V3 Model. IEEE Access 2019, 7, 180998–181011. [Google Scholar] [CrossRef]
- Chen, C.; Lu, J.; Zhou, M.; Yi, J.; Liao, M.; Gao, Z. A YOLOv3-Based Computer Vision System for Identification of Tea Buds and the Picking Point. Comput. Electron. Agric. 2022, 198, 107116. [Google Scholar] [CrossRef]
- Gulzar, Y.; Ünal, Z.; Kızıldeniz, T.; Umar, M. Deep learning-based classification of alfalfa varieties: A comparative study using a custom leaf image dataset. MethodsX 2024, 13, 103051. [Google Scholar] [CrossRef]
- Amri, E.; Gulzar, Y.; Yeafi, A.; Jendoubi, S.; Dhawi, F.; Mir, M. Advancing automatic plant classification system in Saudi Arabia: Introducing a novel dataset and ensemble deep learning approach. Model. Earth Syst. Environ. 2024, 10, 2693–2709. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, Y.; Liu, J.; Wu, S. Tomato Leaf Disease Diagnosis Based on Improved Convolution Neural Network by Attention Module. Agriculture 2021, 11, 651. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, Y.; Fan, W.; Liu, J. An Improved YOLOv8 Model for Lotus Seedpod Instance Segmentation in the Lotus Pond Environment. Agronomy 2024, 14, 1325. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-Based Convolutional Networks for Accurate Object Detection and Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 142–158. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.; Berg, A. SSD: Single shot multibox detector. In Computer Vision—ECCV 2016, Proceedings of the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Gulzar, Y. Enhancing soybean classification with modified inception model: A transfer learning approach. Emir. J. Food Agric. 2024, 36, 1–9. [Google Scholar] [CrossRef]
- Yan, Z.; Zhao, Y.; Luo, W.; Ding, X.; Li, K.; He, Z.; Shi, Y.; Cui, Y. Machine Vision-Based Tomato Plug Tray Missed Seeding Detection and Empty Cell Replanting. Comput. Electron. Agric. 2023, 208, 107800. [Google Scholar] [CrossRef]
- Gulzar, Y.; Ünal, Z. Optimizing Pear Leaf Disease Detection Through PL-DenseNet. Appl. Fruit Sci. 2025, 67, 40. [Google Scholar] [CrossRef]
- Seelwal, P.; Dhiman, P.; Gulzar, Y.; Kaur, A.; Wadhwa, S.; Onn, C. A systematic review of deep learning applications for rice disease diagnosis: Current trends and future directions. Front. Comput. Sci. 2024, 6, 1452961. [Google Scholar] [CrossRef]
- Pei, H.; Sun, Y.; Huang, H.; Zhang, W.; Sheng, J.; Zhang, Z. Weed Detection in Maize Fields by UAV Images Based on Crop Row Preprocessing and Improved YOLOv4. Agriculture 2022, 12, 975. [Google Scholar] [CrossRef]
- Ji, W.; Zhang, T.; Xu, B.; He, G. Apple Recognition and Picking Sequence Planning for Harvesting Robot in a Complex Environment. J. Agric. Eng. 2024, 55, 1549. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, K.; Huang, J.; Wang, Z.; Zhang, B.; Xie, Q. Field Obstacle Detection and Location Method Based on Binocular Vision. Agriculture 2024, 14, 1493. [Google Scholar] [CrossRef]
- Du, X.; Meng, Z.; Ma, Z.; Zhao, L.; Lu, W.; Cheng, H.; Wang, Y. Comprehensive Visual Information Acquisition for Tomato Picking Robot Based on Multitask Convolutional Neural Network. Biosyst. Eng. 2024, 238, 51–61. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, K.; Zhang, W.; Wang, R.; Wan, S.; Rao, Y.; Jiang, Z.; Gu, L. Tea Picking Point Detection and Location Based on Mask-RCNN. Inf. Process. Agric. 2023, 10, 267–275. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, S. Localizing Plucking Points of Tea Leaves Using Deep Convolutional Neural Networks. Comput. Electron. Agric. 2020, 171, 105298. [Google Scholar] [CrossRef]
- Li, Y.; He, L.; Jia, J.; Lv, J.; Chen, J.; Qiao, X.; Wu, C. In-Field Tea Shoot Detection and 3D Localization Using an RGB-D Camera. Comput. Electron. Agric. 2021, 185, 106149. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, L.; Li, J.; Shang, S.; Ding, X.; Wang, T. Detection and Classification of Tea Buds Based on Deep Learning. Comput. Electron. Agric. 2022, 192, 106547. [Google Scholar] [CrossRef]
- Wang, C.; Huang, K.; Yao, Y.; Chen, J.; Shuai, H.; Cheng, W. Lightweight Deep Learning: An Overview. IEEE Consum. Electron. Mag. 2024, 13, 51–64. [Google Scholar] [CrossRef]
- Ji, W.; Pan, Y.; Xu, B.; Wang, J. A Real-Time Apple Targets Detection Method for Picking Robot Based on ShufflenetV2-YOLOX. Agriculture 2022, 12, 856. [Google Scholar] [CrossRef]
- Cong, P.; Feng, H.; Lv, K.; Zhou, J.; Li, S. MYOLO: A Lightweight Fresh Shiitake Mushroom Detection Model Based on YOLOv3. Agriculture 2023, 13, 392. [Google Scholar] [CrossRef]
- Zeng, T.; Li, S.; Song, Q.; Zhong, F.; Wei, X. Lightweight Tomato Real-Time Detection Method Based on Improved YOLO and Mobile Deployment. Comput. Electron. Agric. 2023, 205, 107625. [Google Scholar] [CrossRef]
- Ji, W.; Gao, X.; Xu, B.; Pan, Y.; Zhang, Z.; Zhao, D. Apple Target Recognition Method in Complex Environment Based on Improved YOLOv4. J. Food Process Eng. 2021, 44, e13866. [Google Scholar] [CrossRef]
- Ji, W.; Wang, J.; Xu, B.; Zhang, T. Apple Grading Based on Multi-Dimensional View Processing and Deep Learning. Foods 2023, 12, 2117. [Google Scholar] [CrossRef]
- Bai, Y.; Yu, J.; Yang, S.; Ning, J. An Improved YOLO Algorithm for Detecting Flowers and Fruits on Strawberry Seedlings. Biosyst. Eng. 2024, 237, 1–12. [Google Scholar] [CrossRef]
- Han, X.; Wang, H.; Yuan, T.; Zou, K.; Liao, Q.; Deng, K.; Zhang, Z.; Zhang, C.; Li, W. A Rapid Segmentation Method for Weed Based on CDM and ExG Index. Crop Prot. 2023, 172, 106321. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Zhao, X.; Su, X.; Wu, W. Lightweight Detection Networks for Tea Bud on Complex Agricultural Environment via Improved YOLO V4. Comput. Electron. Agric. 2023, 211, 107955. [Google Scholar] [CrossRef]
- Gui, Z.; Chen, J.; Li, Y.; Chen, Z.; Wu, C.; Dong, C. A Lightweight Tea Bud Detection Model Based on Yolov5. Comput. Electron. Agric. 2023, 205, 107636. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Zhao, Y.; Pan, Q.; Jin, K.; Xu, G.; Hu, Y. TS-YOLO: An All-Day and Lightweight Tea Canopy Shoots Detection Model. Agronomy 2023, 13, 1411. [Google Scholar] [CrossRef]
- Li, Y.; He, L.; Jia, J.; Chen, J.; Lyu, J.; Wu, C. High-Efficiency Tea Shoot Detection Method via a Compressed Deep Learning Model. Int. J. Agric. Biol. Eng. 2022, 15, 159–166. [Google Scholar] [CrossRef]
- Huang, J.; Tang, A.; Chen, G.; Zhang, D.; Gao, F.; Chen, T. Mobile recognition solution of tea buds based on compact-YOLO v4 algorithm. Trans. Chin. Soc. Agric. Mach. 2023, 54, 282–290. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; NanoCode012; Kwon, Y.; Michael, K.; Xie, T.; Fang, J.; Imyhxy; et al. Ultralytics/Yolov5: V7.0-YOLOv5 SOTA Realtime Instance Segmentation; Version v7.0; Zenodo: Geneva, Switzerland, 2022. [Google Scholar] [CrossRef]
- Lu, W.; Chen, S.; Tang, J.; Ding, C.; Luo, B. A Robust Feature Downsampling Module for Remote-Sensing Visual Tasks. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–12. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. RepVGG: Making VGG-style ConvNets great again. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 13728–13737. [Google Scholar] [CrossRef]
- Chen, J.; Kao, S.; He, H.; Zhuo, W.; Wen, S.; Lee, C.; Chan, S. Run, don’t walk: Chasing higher FLOPS for faster neural networks. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 12021–12031. [Google Scholar] [CrossRef]
- Tu, Z.; He, F.; Tao, D. Understanding Generalization in Recurrent Neural Networks. In Proceedings of the International Conference on Learning Representations, Virtual, 26 April–1 May 2020. [Google Scholar]
- Zheng, Z.; Li, J.; Qin, L. YOLO-BYTE: An Efficient Multi-Object Tracking Algorithm for Automatic Monitoring of Dairy Cows. Comput. Electron. Agric. 2023, 209, 107857. [Google Scholar] [CrossRef]
- Zhu, M.; Gupta, S. To prune, or not to prune: Exploring the efficacy of pruning for model compression. arXiv 2017, arXiv:1710.01878. [Google Scholar] [CrossRef]
- Lee, J.; Park, S.; Mo, S.; Ahn, S.; Shin, J. Layer-adaptive sparsity for the magnitude-based pruning. arXiv 2021, arXiv:2010.07611. [Google Scholar] [CrossRef]
- Gou, J.; Yu, B.; Maybank, S.; Tao, D. Knowledge Distillation: A Survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [Google Scholar] [CrossRef]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531. [Google Scholar] [CrossRef]
- Passban, P.; Wu, Y.; Rezagholizadeh, M.; Liu, Q. ALP-KD: Attention-Based Layer Projection for Knowledge Distillation. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 13657–13665. [Google Scholar] [CrossRef]
- Passalis, N.; Tzelepi, M.; Tefas, A. Heterogeneous knowledge distillation using information flow modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2339–2348. [Google Scholar] [CrossRef]
- Selvaraju, R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 December 2017; pp. 618–626. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, X.; Hua, Z.; Shang, Y.; Duan, Y.; Song, H. Lightweight recognition for the oestrus behavior of dairy cows combining YOLO v5n and channel pruning. Trans. Chin. Soc. Agric. Eng. 2022, 38, 130–140. [Google Scholar] [CrossRef]
- Yu, G.; Cai, R.; Luo, Y.; Hou, M.; Deng, R. A-Pruning: A Lightweight Pineapple Flower Counting Network Based on Filter Pruning. Complex Intell. Syst. 2024, 10, 2047–2066. [Google Scholar] [CrossRef]
- Tan, K.; Tang, J.; Zhao, Z.; Wang, C.; Miao, H.; Zhang, X.; Chen, X. Efficient and Lightweight Layer-Wise in-Situ Defect Detection in Laser Powder Bed Fusion via Knowledge Distillation and Structural Re-Parameterization. Expert Syst. Appl. 2024, 255, 124628. [Google Scholar] [CrossRef]
- Guan, B.; Li, J. Lightweight Detection Network for Bridge Defects Based on Model Pruning and Knowledge Distillation. Structures 2024, 62, 106276. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, D.; Krähenbühl, P. Objects as Points. arXiv 2019, arXiv:1904.07850. [Google Scholar] [CrossRef]
- Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully convolutional one-stage object detection. arXiv 2019, arXiv:1904.01355. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar] [CrossRef]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar] [CrossRef]
- Feng, C.; Zhong, Y.; Gao, Y.; Scott, M.; Huang, W. TOOD: Task-aligned One-stage object detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 3490–3499. [Google Scholar] [CrossRef]
- Wang, C.; Bochkovskiy, A.; Liao, H. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–27 August 2023; pp. 7464–7475. [Google Scholar] [CrossRef]
- Wang, C.; Yeh, I.; Liao, H. YOLOv9: Learning what you want to learn using programmable gradient information. arXiv 2014, arXiv:2402.13616. [Google Scholar] [CrossRef]
- Liu, Z.; Zhuo, L.; Dong, C.; Li, J. YOLO-TBD: Tea Bud Detection with Triple-Branch Attention Mechanism and Self-Correction Group Convolution. Ind. Crops Prod. 2025, 226, 120607. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Z.; Xiao, G.; Han, C.; Fang, C. YOLOv7-DWS: Tea bud recognition and detection network in multi-density environment via improved YOLOv7. Front. Plant Sci. 2025, 15, 1503033. [Google Scholar] [CrossRef]
- Yang, D.; Huang, Z.; Zheng, C.; Chen, H.; Jiang, X. Detecting tea shoots using improved YOLOv8n. Trans. Chin. Soc. Agric. Eng. Trans. CSAE 2024, 40, 165–173. [Google Scholar] [CrossRef]
- Fang, W.; Chen, W. TBF-YOLOv8n: A Lightweight Tea Bud Detection Model Based on YOLOv8n Improvements. Sensors 2025, 25, 547. [Google Scholar] [CrossRef]
- Li, H.; Kong, M.; Shi, Y. Tea Bud Detection Model in a Real Picking Environment Based on an Improved YOLOv5. Biomimetics 2024, 9, 692. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Wang, J.; Li, J.; Yu, L.; Wen, J.; Han, Y. T-YOLO: A lightweight and efficient detection model for nutrient buds in complex tea-plantation environments. J. Sci. Food Agric. 2024, 104, 5698–5711. [Google Scholar] [CrossRef] [PubMed]
Models | P (%) | R (%) | AP (%) | Model Size (MB) | Parameters (M) | FLOPs (G) |
---|---|---|---|---|---|---|
YOLOv5-N | 78.3 | 75.3 | 82.4 | 3.9 | 1.9 | 4.6 |
YOLOv5-N + PFD | 77.0 | 75.4 | 81.3 | 2.9 | 1.2 | 3.2 |
YOLOv5-N + PFD + FC3 | 76.1 | 72.2 | 78.4 | 2.3 | 0.9 | 2.4 |
YOLOv5-S | 80.8 | 78.5 | 85.4 | 13.7 | 7.2 | 16.6 |
YOLOv5-S + PFD | 79.3 | 78.5 | 84.6 | 10.3 | 4.9 | 11.7 |
YOLOv5-S + PFD + FC3 | 79.6 | 75.6 | 82.9 | 7.8 | 3.7 | 8.6 |
YOLOv5-M | 84.2 | 78.0 | 85.4 | 42.2 | 21.2 | 49.2 |
YOLOv5-M + PFD | 82.1 | 78.2 | 85.4 | 32.9 | 16.2 | 38.7 |
YOLOv5-M + PFD + FC3 | 80.9 | 79.2 | 85.6 | 21.8 | 10.6 | 24.6 |
YOLOv5-L | 81.1 | 80.7 | 85.8 | 94.8 | 46.1 | 107.6 |
YOLOv5-L + PFD | 81.9 | 79.5 | 86.1 | 76.2 | 38.2 | 90.7 |
YOLOv5-L + PFD + FC3 | 80.9 | 81.2 | 87.2 | 46.6 | 24.2 | 53.1 |
YOLOv5-X | 81.9 | 80.6 | 86.1 | 173.1 | 86.7 | 206.3 |
YOLOv5-X + PFD | 83.6 | 79.4 | 86.2 | 147.1 | 73.2 | 178.2 |
YOLOv5-X + PFD + FC3 | 81.8 | 81.2 | 87.2 | 85.5 | 42.4 | 99.8 |
Models | P (%) | R (%) | AP (%) | Model Size (MB) | Parameters (M) | FLOPs (G) |
---|---|---|---|---|---|---|
YOLOv5-L | 81.1 | 80.7 | 85.8 | 94.8 | 46.1 | 107.6 |
YOLOv5-L + PFD | 81.9 | 79.5 | 86.1 | 76.2 | 38.2 | 90.7 |
YOLOv5-L + PFD + FC3 | 80.9 | 81.2 | 87.2 | 46.6 | 24.2 | 53.1 |
YOLOv5-L + PFD + GC3 | 79.0 | 78.0 | 84.1 | 27.0 | 13.5 | 32.6 |
YOLOv5-L + PFD + DSC3 | 79.8 | 78.7 | 85.0 | 24.7 | 12.5 | 27.2 |
YOLOv5-L | PFD | FC3 | PK | P (%) | R (%) | AP (%) | Model Size (MB) | Parameters (M) | FLOPs (G) | FPS |
---|---|---|---|---|---|---|---|---|---|---|
√ | × | × | × | 81.1 | 80.7 | 85.8 | 94.8 | 46.1 | 107.6 | 58.4 |
√ | √ | × | × | 81.9 | 79.5 | 86.1 | 76.2 | 38.2 | 90.7 | 54.4 |
√ | √ | √ | × | 80.9 | 81.2 | 87.2 | 46.6 | 24.2 | 53.1 | 47.2 |
√ | √ | √ | √ | 81.5 | 81.3 | 87.8 | 8.9 | 4.2 | 15.8 | 44.5 |
Models | P (%) | R (%) | AP (%) | Model Size (MB) | Parameters (M) | FLOPs (G) | FPS |
---|---|---|---|---|---|---|---|
Faster RCNN | 72.8 | 82.3 | 77.5 | 317.0 | 41.3 | 71.7 | 28.3 |
CenterNet | 78.8 | 64.0 | 69.5 | 245.0 | 32.1 | 59.0 | 28.6 |
FCOS | 83.7 | 66.2 | 76.8 | 246.0 | 32.1 | 59.0 | 30.4 |
YOLOv3 | 80.9 | 80.0 | 85.0 | 207.7 | 103.7 | 282.2 | 43.7 |
YOLOv3-SPP | 81.4 | 79.1 | 85.2 | 209.8 | 104.7 | 283.1 | 42.6 |
YOLOv3-Tiny | 78.8 | 73.0 | 80.7 | 24.3 | 12.1 | 24.3 | 33.6 |
YOLOX-N | 68.4 | 76.5 | 73.7 | 13.3 | 0.9 | 0.5 | 43.6 |
YOLOX-Tiny | 69.0 | 86.7 | 83.3 | 60.4 | 5.0 | 7.6 | 40.7 |
YOLOv6 | 76.3 | 77.8 | 82.2 | 8.7 | 4.2 | 11.9 | 42.7 |
TOOD | 71.2 | 83.6 | 80.7 | 244.0 | 32.0 | 59.16 | 19.6 |
YOLOv7 | 78.5 | 81.4 | 85.1 | 74.8 | 37.6 | 106.5 | 60.2 |
YOLOv7-Tiny | 76.8 | 76.5 | 81.7 | 12.3 | 6.0 | 13.2 | 66.2 |
YOLOv8-N | 76.7 | 76.8 | 82.4 | 6.2 | 3.0 | 8.1 | 80.0 |
YOLOv8-S | 77.9 | 79.2 | 84.4 | 22.5 | 11.1 | 28.4 | 77.5 |
YOLOv8-M | 79.9 | 79.6 | 84.9 | 52.0 | 25.8 | 78.7 | 57.8 |
YOLOv8-L | 80.9 | 79.4 | 85.2 | 87.6 | 43.6 | 164.8 | 50.5 |
YOLOv8-X | 79.7 | 81.3 | 85.5 | 136.7 | 68.1 | 257.4 | 43.1 |
YOLOv9-C | 81.4 | 80.5 | 87.0 | 102.7 | 50.7 | 236.6 | 15.7 |
YOLOv9-E | 80.0 | 80.8 | 87.0 | 139.9 | 69.4 | 244.8 | 15.5 |
HLTS-Model | 81.5 | 81.3 | 87.8 | 8.9 | 4.2 | 15.8 | 44.5 |
Existing Study | Dataset Size (Pictures) | Detected Object | Model Size (MB) | Parameters (M) | FLOPs (G) | P (%) | R (%) | AP (%) |
---|---|---|---|---|---|---|---|---|
Zhang et al. [4] | 1692 | BOL | 71.3 | 32.7 | 105.1 | 87.3 | 81.2 | 87.1 |
Li et at. [42] | 7723 | B, BOL | —— | 11.4 | 6.6 | —— | —— | 85.2 |
Zhang et al. [44] | 2417 | BOL | 11.8 | —— | —— | 85.4 | 78.4 | 82.1 |
Liu et al. [72] | 2576 | —— | —— | 41.27 | 167.9 | 79.3 | 82.6 | 87.0 |
Wang et al. [73] | 945 | BOL, BTL | —— | 62.7 | —— | —— | 83.9 | 89.1 |
Yang et al. [74] | 513 | BOL, BTL | 6.7 | —— | —— | 82.5 | 74.4 | 81.7 |
Fang et al. [75] | 6242 | —— | —— | 2.6 | 4.5 | 87.5 | 74.4 | 85.0 |
Li et al. [76] | 4100 | B, BOL, BTL | —— | 7.2 | 14.8 | 84.5 | 74.1 | 83.7 |
Bai et al. [77] | 1368 | B | —— | 11.3 | 17.2 | —— | —— | 84.1 |
Ours | 1862 | BOL | 8.9 | 4.2 | 15.8 | 81.5 | 81.3 | 87.8 |
Models | P (%) | R (%) | AP (%) | Model Size (MB) | Parameters (M) | FLOPs (G) |
---|---|---|---|---|---|---|
YOLOv5-L | 87.9 | 79.8 | 89.1 | 94.8 | 46.1 | 107.6 |
Tomato-YOLO | 88.1 | 83.2 | 90.3 | 7.6 | 3.6 | 15.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Lu, Y.; Peng, Y.; Yang, M.; Hu, Y. A Lightweight and High-Performance YOLOv5-Based Model for Tea Shoot Detection in Field Conditions. Agronomy 2025, 15, 1122. https://doi.org/10.3390/agronomy15051122
Zhang Z, Lu Y, Peng Y, Yang M, Hu Y. A Lightweight and High-Performance YOLOv5-Based Model for Tea Shoot Detection in Field Conditions. Agronomy. 2025; 15(5):1122. https://doi.org/10.3390/agronomy15051122
Chicago/Turabian StyleZhang, Zhi, Yongzong Lu, Yun Peng, Mengying Yang, and Yongguang Hu. 2025. "A Lightweight and High-Performance YOLOv5-Based Model for Tea Shoot Detection in Field Conditions" Agronomy 15, no. 5: 1122. https://doi.org/10.3390/agronomy15051122
APA StyleZhang, Z., Lu, Y., Peng, Y., Yang, M., & Hu, Y. (2025). A Lightweight and High-Performance YOLOv5-Based Model for Tea Shoot Detection in Field Conditions. Agronomy, 15(5), 1122. https://doi.org/10.3390/agronomy15051122