Advances in Understanding Wheat Grain Color: Genetic, Nutritional, and Agronomic Perspectives
Abstract
:1. Introduction
2. Genetic Basis of Wheat Grain Color
2.1. Key Genes Associated with Grain Color
2.1.1. Transcription Factors
2.1.2. Additional Genes and Biosynthetic Pathway Components
2.1.3. Pathway Regulators and Signaling Molecules
2.2. Genomic Approaches and Marker Development
2.2.1. Marker-Assisted Selection (MAS)
2.2.2. Genome-Wide Association Studies (GWAS)
2.2.3. Integration of Omics Technologies in Breeding
2.2.4. Metabolic Engineering
3. Biochemical Mechanisms of Pigment Production
3.1. Biosynthesis Pathway Overview
3.2. Expression and Regulation of Genes Related to Flavonoid Biosynthesis
3.2.1. Structural Genes
3.2.2. The MYB-bHLH-WD40 Ternary Complex (MBW)
4. Nutritional Quality and Health Implications
4.1. The Relationship Between Grain Color and Nutritional Quality
4.1.1. Types of Anthocyanins in Colored Wheat
4.1.2. Other Beneficial Compounds in Colored Wheat
4.2. Antioxidant Properties and Health Benefits
4.3. Market Trends and Consumer Preferences
4.3.1. Health Consciousness and Nutritional Awareness
4.3.2. Marketing Strategies and Product Innovation
4.3.3. Culinary Versatility and Consumer Engagement
4.3.4. Sustainability and Ethical Considerations
5. Environmental Influences on Grain Color
5.1. Impact of Environmental Variables
5.2. Agricultural Practices for Optimal Color Development
6. Implications for Breeding Programs
6.1. Innovative Breeding Techniques
6.2. Addressing Challenges in Breeding Programs
7. Future Research Directions
7.1. Understanding Consumer Preferences
7.2. Holistic Approaches to Breeding
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaur, S.; Kumari, A.; Sharma, N.; Pandey, A.K.; Garg, M. Physiological and Molecular Response of Colored Wheat Seedlings against Phosphate Deficiency Is Linked to Accumulation of Distinct Anthocyanins. Plant Physiol. Biochem. 2022, 170, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Padhy, A.K.; Kaur, P.; Singh, S.; Kashyap, L.; Sharma, A. Colored Wheat and Derived Products: Key to Global Nutritional Security. Crit. Rev. Food Sci. Nutr. 2024, 64, 1894–1910. [Google Scholar] [CrossRef]
- Saini, P.; Kumar, N.; Kumar, S.; Mwaurah, P.W.; Panghal, A.; Attkan, A.K.; Singh, V.K.; Garg, M.K.; Singh, V. Bioactive Compounds, Nutritional Benefits and Food Applications of Colored Wheat: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 3197–3210. [Google Scholar] [CrossRef]
- Priscilla, K.; Sharma, V.; Gautam, A.; Gupta, P.; Dagar, R.; Kishore, V.; Kumar, R. Carotenoid Extraction from Plant Tissues. In Plant Functional Genomics: Methods and Protocols, Volume 2; Maghuly, F., Ed.; Springer: New York, NY, USA, 2024; pp. 3–18. ISBN 978-1-0716-3782-1. [Google Scholar]
- Chen, S.; Wang, X.; Cheng, Y.; Gao, H.; Chen, X. A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules 2023, 28, 4982. [Google Scholar] [CrossRef]
- Francavilla, A.; Joye, I.J. Anthocyanins in Whole Grain Cereals and Their Potential Effect on Health. Nutrients 2020, 12, 2922. [Google Scholar] [CrossRef] [PubMed]
- Pu, Z.; Wei, G.; Liu, Z.; Chen, L.; Guo, H.; Li, Y.; Li, Y.; Dai, S.; Wang, J.; Li, W.; et al. Selenium and Anthocyanins Share the Same Transcription Factors R2R3MYB and bHLH in Wheat. Food Chem. 2021, 356, 129699. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Anthocyanins in Cereals: Composition and Health Effects. Food Res. Int. 2018, 109, 232–249. [Google Scholar] [CrossRef]
- Shi, L.; Li, X.; Fu, Y.; Li, C. Environmental Stimuli and Phytohormones in Anthocyanin Biosynthesis: A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 16415. [Google Scholar] [CrossRef]
- Shoeva, O.Y.; Glagoleva, A.Y.; Khlestkina, E.K. The Factors Affecting the Evolution of the Anthocyanin Biosynthesis Pathway Genes in Monocot and Dicot Plant Species. BMC Plant Biol. 2017, 17, 256. [Google Scholar] [CrossRef]
- Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K.; et al. Transfer of Grain Colors to Elite Wheat Cultivars and Their Characterization. J. Cereal Sci. 2016, 71, 138–144. [Google Scholar] [CrossRef]
- Gamel, T.H.; Saeed, S.M.G.; Ali, R.; Abdel-Aal, E.-S.M. Purple Wheat: Food Development, Anthocyanin Stability, and Potential Health Benefits. Foods 2023, 12, 1358. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Kaur, S.; Sharma, A.; Kumari, A.; Tiwari, V.; Sharma, S.; Kapoor, P.; Sheoran, B.; Goyal, A.; Krishania, M. Rising Demand for Healthy Foods-Anthocyanin Biofortified Colored Wheat is a New Research Trend. Front. Nutr. 2022, 9, 878221. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Huang, W.; Yan, J.; Fang, Z.; Ren, M. The GzMYB-7D1 Gene of Guizimai No.1 Wheat Is Essential for Seed Anthocyanins Accumulation and Yield Regulation. Plant Sci. 2022, 320, 111293. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kumar, A.; Singh, D.; Kumari, A.; Kapoor, P.; Kaur, S.; Sheoran, B.; Garg, M. Integrated Transcriptional and Metabolomics Signature Pattern of Pigmented Wheat to Insight the Seed Pigmentation and Other Associated Features. Plant Physiol. Biochem. 2022, 189, 59–70. [Google Scholar] [CrossRef]
- Shoeva, O.Y.; Gordeeva, E.I.; Khlestkina, E.K. The Regulation of Anthocyanin Synthesis in the Wheat Pericarp. Molecules 2014, 19, 20266–20279. [Google Scholar] [CrossRef]
- Liu, D.; Li, S.; Chen, W.; Zhang, B.; Liu, D.; Liu, B.; Zhang, H. Transcriptome Analysis of Purple Pericarps in Common Wheat (Triticum aestivum L.). PLoS ONE 2016, 11, e0155428. [Google Scholar] [CrossRef]
- Fang, Z.; Hou, Z.; Wang, S.; Liu, Z.; Wei, S.; Zhang, Y.; Song, J.; Yin, J. Transcriptome Analysis Reveals the Accumulation Mechanism of Anthocyanins in Buckwheat (Fagopyrum esculentum Moench) Cotyledons and Flowers. Int. J. Mol. Sci. 2019, 20, 1493. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Liu, C.H.; Yan, D.; Wen, X.H.; Liu, Y.L.; Wang, H.J.; Dai, J.Y.; Zhang, Y.J.; Liu, Y.f.; Zhou, B.; et al. MdHB1 down-regulation activates anthocyanin biosynthesis in the white-fleshed apple cultivar ‘Granny Smith’. J. Exp. Bot. 2017, 68, 1055–1069. [Google Scholar] [CrossRef]
- Kaur, S.; Sharma, N.; Kapoor, P.; Chunduri, V.; Pandey, A.K.; Garg, M. Spotlight on the Overlapping Routes and Partners for Anthocyanin Transport in Plants. Physiol. Plant. 2021, 171, 868–881. [Google Scholar] [CrossRef]
- Petroni, K.; Tonelli, C. Recent Advances on the Regulation of Anthocyanin Synthesis in Reproductive Organs. Plant Sci. 2011, 181, 219–229. [Google Scholar] [CrossRef]
- Xu, W.; Grain, D.; Bobet, S.; Le Gourrierec, J.; Thévenin, J.; Kelemen, Z.; Lepiniec, L.; Dubos, C. Complexity and Robustness of the Flavonoid Transcriptional Regulatory Network Revealed by Comprehensive Analyses of MYB–bHLH–WDR Complexes and Their Targets in Arabidopsis Seed. New Phytol. 2014, 202, 132–144. [Google Scholar] [CrossRef]
- Colasuonno, P.; Marcotuli, I.; Blanco, A.; Maccaferri, M.; Condorelli, G.E.; Tuberosa, R.; Parada, R.; de Camargo, A.C.; Schwember, A.R.; Gadaleta, A. Carotenoid Pigment Content in Durum Wheat (Triticum turgidum L. Var Durum): An Overview of Quantitative Trait Loci and Candidate Genes. Front. Plant Sci. 2019, 10, 1347. [Google Scholar] [CrossRef]
- Gordeeva, E.I.; Shoeva, O.Y.; Khlestkina, E.K. Marker-Assisted Development of Bread Wheat near-Isogenic Lines Carrying Various Combinations of Purple Pericarp (Pp) Alleles. Euphytica 2015, 203, 469–476. [Google Scholar] [CrossRef]
- Kapoor, P.; Sharma, S.; Tiwari, A.; Kaur, S.; Kumari, A.; Sonah, H.; Goyal, A.; Krishania, M.; Garg, M. Genome–Transcriptome Transition Approaches to Characterize Anthocyanin Biosynthesis Pathway Genes in Blue, Black and Purple Wheat. Genes 2023, 14, 809. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.M.; Sun, F.L.; Zhang, C.Q.; Zhang, M.T.; Wang, W.W.; Zhang, C.; Xi, Y. Anthocyanin Biosynthesis and a Regulatory Network of Different-Colored Wheat Grains Revealed by Multiomics Analysis. J. Agr. Food Chem. 2022, 70, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cheng, Y.; Ya, H.; Xu, S.; Han, J. Transcriptome Sequencing of Purple Petal Spot Region in Tree Peony Reveals Differentially Expressed Anthocyanin Structural Genes. Front. Plant Sci. 2015, 6, 964. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.M.; Šamec, D.; Tomczyk, M.; Milella, L.; Russo, D.; Habtemariam, S.; Suntar, I.; Rastrelli, L.; Daglia, M.; Xiao, J.; et al. Flavonoid Biosynthetic Pathways in Plants: Versatile Targets for Metabolic Engineering. Biotechnol. Adv. 2020, 38, 107316. [Google Scholar] [CrossRef]
- Jiang, Q.Q.; Jiang, W.H.; Hu, N.; Tang, R.; Dong, Y.X.; Wu, H.Q.; Liu, T.X.; Guan, L.L.; Zhang, H.B.; Hou, J.B.; et al. Light-Induced TaHY5-7A and TaBBX-3B Physically Interact to Promote PURPLE PERICARP-MYB 1 Expression in Purple-Grained Wheat. Plants 2023, 12, 2996. [Google Scholar] [CrossRef]
- Li, C.S.; Zhao, Y.Y.; Qi, Y.T.; Duan, C.H.; Zhang, H.Y.; Zhang, Q. Eutrema EsMYB90 Gene Improves Growth and Antioxidant Capacity of Transgenic Wheat Under Salinity Stress. Front Plant Sci. 2022, 13, 856163. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, H.; Long, Z.; Zhu, W.; Yin, J.; Song, X.; Li, C. DhMYB2 and DhbHLH1 Regulates Anthocyanin Accumulation via Activation of Late Biosynthesis Genes in Phalaenopsis-Type Dendrobium. Front. Plant Sci. 2022, 13, 1046134. [Google Scholar] [CrossRef]
- Xie, J.; Cao, X.; Pan, W.; Du, L. Advances in Plant Flavonoid Transport and Accumulation Mechanism. Chin. Bull. Bot. 2024, 59, 463. [Google Scholar] [CrossRef]
- An, X.-H.; Tian, Y.; Chen, K.-Q.; Wang, X.-F.; Hao, Y.-J. The Apple WD40 Protein MdTTG1 Interacts with bHLH but Not MYB Proteins to Regulate Anthocyanin Accumulation. J. Plant Physiol. 2012, 169, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, X.; Wu, H.; Yao, Y. The Nuclear and Cytoplasmic Colocalization of MdGST12 Regulated by MdWRKY26 and MdHY5 Promotes Anthocyanin Accumulation by Forming Homodimers and Interact with MdUFGT and MdDFR under Light Conditions in Malus. Int. J. Biol. Macromol. 2025, 289, 138666. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, T.; Nan, W.; Jeewani, D.C.; Niu, Y.; Li, C.; Wang, Y.; Shi, X.; Wang, C.; Wang, J.; et al. Two Transcription Factors TaPpm1 and TaPpb1 Co-Regulate Anthocyanin Biosynthesis in Purple Pericarps of Wheat. J. Exp. Bot. 2018, 69, 2555–2567. [Google Scholar] [CrossRef]
- Hu, R.; Xiao, J.; Gu, T.; Yu, X.; Zhang, Y.; Chang, J.; Yang, G.; He, G. Genome-Wide Identification and Analysis of WD40 Proteins in Wheat (Triticum aestivum L.). BMC Genom. 2018, 19, 803. [Google Scholar] [CrossRef]
- Ficco, D.B.M.; Mastrangelo, A.M.; Trono, D.; Borrelli, G.M.; De Vita, P.; Fares, C.; Beleggia, R.; Platani, C.; Papa, R. The Colours of Durum Wheat: A Review. Crop Pasture Sci. 2014, 65, 1. [Google Scholar] [CrossRef]
- Böhmdorfer, S.; Oberlerchner, J.T.; Fuchs, C.; Rosenau, T.; Grausgruber, H. Profiling and Quantification of Grain Anthocyanins in Purple Pericarp × Blue Aleurone Wheat Crosses by High-Performance Thin-Layer Chromatography and Densitometry. Plant Methods 2018, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, Pharmacology and Health Benefits of Anthocyanins. Phytother. Res. PTR 2016, 30, 1265–1286. [Google Scholar] [CrossRef]
- Putta, S.; Yarla, N.S.; Kumar, K.E.; Lakkappa, D.B.; Kamal, M.A.; Scotti, L.; Scotti, M.T.; Ashraf, G.M.; Rao, B.S.B.; Sarala Kumari, D.; et al. Preventive and Therapeutic Potentials of Anthocyanins in Diabetes and Associated Complications. Curr. Med. Chem. 2018, 25, 5347–5371. [Google Scholar] [CrossRef]
- Sharma, A.; Yadav, M.; Tiwari, A.; Ali, U.; Krishania, M.; Bala, M.; Mridula, D.; Sharma, P.; Goudar, G.; Roy, J.K.; et al. A Comparative Study of Colored Wheat Lines across Laboratories for Validation of Their Phytochemicals and Antioxidant Activity. J. Cereal Sci. 2023, 112, 103719. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Hucl, P. Composition and Stability of Anthocyanins in Blue-Grained Wheat. J. Agric. Food Chem. 2003, 51, 2174–2180. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.J.L.; Yu, J.; Zhou, W.; Liu, M.H. Effects of Anthocyanins on Bread Microstructure, and Their Combined Impact on Starch Digestibility. Food Chem. 2022, 374, 131744. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Müller, D.; Richling, E.; Wink, M. Anthocyanin-Rich Purple Wheat Prolongs the Life Span of Caenorhabditis Elegans Probably by Activating the DAF-16/FOXO Transcription Factor. J. Agric. Food Chem. 2013, 61, 3047–3053. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Qiu, Y.; Beta, T. Comparison of Antioxidant Activities of Different Colored Wheat Grains and Analysis of Phenolic Compounds. J. Agric. Food Chem. 2010, 58, 9235–9241. [Google Scholar] [CrossRef]
- Bartl, P.; Albreht, A.; Skrt, M.; Tremlová, B.; Ošťádalová, M.; Šmejkal, K.; Vovk, I.; Ulrih, N.P. Anthocyanins in purple and blue wheat grains and in resulting,; bread: Quantity, composition, and thermal stability. Int. J. Food Sci. Nutr. 2015, 66, 514–519. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, J.; Li, Y.; Wang, C. Quality of Noodles Made from Colour-Grained Wheat. Czech J. Food Sci. 2018, 36, 314–320. [Google Scholar] [CrossRef]
- Guo, Z.F.; Zhang, Z.B.; Xu, P.; Guo, Y.N. Analysis of Nutrient Composition of Purple Wheat. Cereal Res. Commun. 2013, 41, 293–303. [Google Scholar] [CrossRef]
- Sharma, S.; Chunduri, V.; Kumar, A.; Kumar, R.; Khare, P.; Kondepudi, K.K.; Bishnoi, M.; Garg, M. Anthocyanin Bio-Fortified Colored Wheat: Nutritional and Functional Characterization. PLoS ONE 2018, 13, e0194367. [Google Scholar] [CrossRef]
- Masisi, K.; Beta, T.; Moghadasian, M.H. Antioxidant Properties of Diverse Cereal Grains: A Review on in Vitro and in Vivo Studies. Food Chem. 2016, 196, 90–97. [Google Scholar] [CrossRef]
- Burešová, V.; Kopecký, D.; Bartoš, J.; Martinek, P.; Watanabe, N.; Vyhnánek, T.; Doležel, J. Variation in genome composition of blue-aleurone wheat. Theor. Appl. Genet. 2015, 128, 273–282. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Z.; Wang, F.; Feng, B.; Zhou, Q.; Cao, J.; Ji, G.; Yu, Q.; Liu, X.; Liao, S.; et al. Identification of Colored Wheat Genotypes with Suitable Quality and Yield Traits in Response to Low Nitrogen Input. PLoS ONE 2020, 15, e0229535. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Hu, X.; Zhang, X.; He, N.; Wang, X.; Zhang, J.; Xue, X.; Wang, Y.; Xu, S. Advances in Understanding Wheat Grain Color: Genetic, Nutritional, and Agronomic Perspectives. Agronomy 2025, 15, 1108. https://doi.org/10.3390/agronomy15051108
Wu Z, Hu X, Zhang X, He N, Wang X, Zhang J, Xue X, Wang Y, Xu S. Advances in Understanding Wheat Grain Color: Genetic, Nutritional, and Agronomic Perspectives. Agronomy. 2025; 15(5):1108. https://doi.org/10.3390/agronomy15051108
Chicago/Turabian StyleWu, Zhen, Xingyu Hu, Xi Zhang, Nianwu He, Xinjun Wang, Jun Zhang, Xiaodong Xue, Yong Wang, and Shengbao Xu. 2025. "Advances in Understanding Wheat Grain Color: Genetic, Nutritional, and Agronomic Perspectives" Agronomy 15, no. 5: 1108. https://doi.org/10.3390/agronomy15051108
APA StyleWu, Z., Hu, X., Zhang, X., He, N., Wang, X., Zhang, J., Xue, X., Wang, Y., & Xu, S. (2025). Advances in Understanding Wheat Grain Color: Genetic, Nutritional, and Agronomic Perspectives. Agronomy, 15(5), 1108. https://doi.org/10.3390/agronomy15051108