Study on the Correlation Between Major Medicinal Constituents of Codonopsis pilosula During Its Growth Cycle and Ecological Factors, and Determination of Optimal Ecological Factor Ranges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Experimental Area, Experimental Materials, and Plant Sampling
2.1.1. Experimental Area Partitioning and Randomization
2.1.2. Data Collection and Standardization
2.1.3. Statistical Analysis for Consistency Verification of Plot Data
2.2. Measurement of Ecological Factors
2.3. Determination of Major Medicinal Components
2.3.1. Determination of Lobetyolin Content in C. pilosula
2.3.2. Determination of Polysaccharide Content in C. pilosula
2.3.3. Determination of Total Flavonoid Content in C. pilosula
2.4. Statistical Analysis Methods for Correlating Ecological Factors with Key Medicinal Compounds
2.4.1. Principal Component Analysis
2.4.2. Multiple Linear Regression
2.4.3. Nonlinear Polynomial Regression
2.4.4. Optimal Selection via K-Means Three-Branch Clustering
2.5. Model Validation for the Correlation Analysis Between Ecological Factors and Key Medicinal Compounds
3. Results and Analysis
3.1. Optimal Model Selection, Correlation Analysis, and Ecological Factor Prioritization
3.1.1. Model Comparison
3.1.2. Correlation Analysis Results
- Results of Principal Component Analysis
- 2.
- Multiple Nonlinear Fourth-Order Polynomial
- 3.
- Multiple Nonlinear Fifth-Order Polynomial
3.1.3. Selection of Key and Secondary Ecological Factors Influencing the Major Medicinal Components of Codonopsis pilosula
3.2. Experimental Validation and Model Credibility Demonstration
3.2.1. Reproducibility Validation Using the Block Experimental Method
3.2.2. Model Reliability Verification Based on Predictive Modelling
4. Discussion
- Relationship Between Ecological Factors and Medicinal Components
- 2.
- Correlation Analysis and Model Selection
- 3.
- Innovation and Application of the K-Means Three-Branch Clustering Method
5. Conclusions
- Based on three years of observational data on pertinent ecological factors influencing C. pilosula and laboratory analyses of its major medicinal components (polysaccharides, total flavonoids, and lobetyolin), this study systematically conducted correlation analysis and model development and testing. First, 11 climatic and edaphic factors and the corresponding content of major medicinal components in C. pilosula were compiled and organized. Principal component analysis (PCA) was used as a reference to preliminarily screen and reduce the dimensions of the 11 ecological factors. Subsequently, multivariate linear regression and multivariate nonlinear polynomial regression models (including 2nd, 4th, and 5th-order models) were applied to fit and compare the relationships between major medicinal components and ecological factors. The results showed that while a multivariate linear regression model partially explained variation in polysaccharide content, it was insufficient for capturing relationships for total flavonoids or lobetyolin. When nonlinear polynomial models (particularly 4th and 5th-order) were introduced, the fitting accuracy for total flavonoids and lobetyolin improved significantly. These models effectively captured the complex nonlinear effects and critical turning points of ecological factors on the accumulation of these medicinal components.
- Through model optimization, we identified the ecological factors most sensitive to the accumulation of polysaccharides, total flavonoids, and lobetyolin, as well as their optimal ranges. For polysaccharides, accumulation is more favorable under conditions of precipitation (AP) between 9.1 and 9.3, air humidity (ARH) between 30% and 60%, 40 cm soil temperature (40cmMAT) between 27.5 and 28.5 °C, pH between 9.68 and 9.72, and soil available nitrogen (N) levels between 7 and 9. Lobetyolin exhibited optimal performance under precipitation (AP) conditions of approximately 9.1 to 9.3, 40 cm soil temperature between 28.0 and 28.5 °C, deep soil humidity (40cmARH) between 65% and 75%, pH around 9.70, and moderate levels of available phosphorus (DAP) between 10 and 50. Similarly, total flavonoids were optimized within narrow ranges of specific temperature, humidity, and pH conditions.
- After identifying the influencing factors and their optimal intervals, we further applied an improved tri-branch K-means clustering method to group the most strongly correlated ecological factors and delineate their ranges, thereby enabling refined interval selection within inflection points and sensitive ranges. This step provides a basis for optimizing the growth environment of C. pilosula and enhancing the content of its key medicinal components, laying a data-driven foundation for industrial-scale production and the formulation of precision cultivation strategies.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, K.; Huang, G.; Li, Y.; Zhang, X.; Lei, Y.; Li, Y.; Xiong, J.; Sun, Y. Illumina Miseq Sequencing Reveals Correlations among Fruit Ingredients, Environmental Factors, and Amf Communities in Three Lycium barbarum Producing Regions of China. Microbiol. Spectr. 2022, 10, e02293-21. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Liu, X.; Xu, X.; Niu, T.; Ma, X.; Fu, G.; Song, C.; Hou, X. Effect of Soil and Community Factors on the Yield and Medicinal Quality of Artemisia argyi Growth at Different Altitudes of the Funiu Mountain. Front. Plant Sci. 2024, 15, 1430758. [Google Scholar] [CrossRef]
- Gao, S.; Liu, J.; Wang, M.; Liu, Y.; Meng, X.; Zhang, T.; Qi, Y.; Zhang, B.; Liu, H.; Sun, X.; et al. Exploring on the bioactive markers of Codonopsis Radix by correlation analysis between chemical constituents and pharmacological effects. J. Ethnopharmacol. 2019, 236, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, J.; Dy, J.; Fu, Y. Transforming Complex Problems into K-Means Solutions. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 9149–9168. [Google Scholar] [CrossRef]
- Liu, J.Y.; Liu, A.L.; Mao, F.Y.; Zhao, Y.S.; Cao, Z.; Cen, N.N.; Li, S.Q.; LI, L.; Ma, X.; Sui, H. Determination of the Active Ingredients and Biopotency in Polygala tenuifolia Willd. and the Ecological Factors That Influence Them. Ind. Crops Prod. 2019, 134, 113–123. [Google Scholar] [CrossRef]
- Wei, L.; Liu, J.; Yin, D.; Zhao, X. Influence of Ecological Factors on the Production of Active Substances in the Anti-Cancer Plant Sinopodophyllum hexandrum (Royle) Ts Ying. PLoS ONE 2015, 10, e0122981. [Google Scholar] [CrossRef]
- Hai, S.; Jin, Q.; Wang, Q.; Shao, C.; Zhang, L.; Guan, Y.; Tian, H.; Li, M.; Zhang, Y. Effects of Soil Quality on Effective Ingredients of Astragalus mongholicus from the Main Cultivation Regions in China. Ecol. Indic. 2020, 114, 106296. [Google Scholar]
- de Visser, C.C.; Chu, Q.P.; Mulder, J.A. A New Approach to Linear Regression with Multivariate Splines. Automatica 2009, 45, 2903–2909. [Google Scholar] [CrossRef]
- Du, Z.; Tu, J.; Wang, Z.; Zhang, X.; Jia, Z.; Guo, Y.; Yang, Z.; Li, X. Coal Ash Sintering Temperature Prediction Method Based on Principal Element Regression Involves Establishing Main Element Regression Model by Using Obtained Optimal Main Component Number, and Substituting Coal Quality Test Data into Model to Obtain Predicted Value. Patent No CN114036735-A, 11 February 2022. [Google Scholar]
- Fu, X.; Han, C.; Ma, L.; Li, H. Inner Mongolia Egg Price Prediction Method Based on Principal Component Analysis Butterfly Optimization Algorithm-Support Vector Regression Model, Involves Determining Influence Factor for Egg Price Prediction and Reducing Dimension of Original Data. Patent No CN118246946-A, 29 October 2024. [Google Scholar]
- Gao, W.; Hao, X.; Wang, M.; Yang, C.; He, D. Method for Regulating Factors Affecting Fruit Growth, Involves Obtaining Influencing Factor When First Principal Component is Maximum under Regression Model as Target Value of Each Influencing in Growth of Fruit Vegetables is Regulated. Patent No CN108564212-A, 4 May 2021. [Google Scholar]
- Hu, Y.; Wang, S. Logistic Regression Based Principal Component Analysis Target Classifying Method, Involves Determining Target Color Characteristics of Sample Set, and Establishing Regression Model to Determine Principal Component Characteristic Parameters. Patent No CN109740692-A, 10 May 2019. [Google Scholar]
- Zheng, X.; Chen, W.; Li, X.; Shi, W.; Sun, X.; Ge, Q.; He, C.; He, X. Effects of environmental factors and genotype on performance, soil physicochemical properties and endophytic fungi of Salvia miltiorrhiza. Rhizosphere 2025, 33, 101031. [Google Scholar] [CrossRef]
- Zhang, T.; Cheng, L.; Yang, L.; Han, M.; Li, J.; Yang, L. Relationship Between Quality Formation of Scutellaria baicalensis in Spring and Expression of Ecological Factors and Key Enzyme Genes. J. Jilin Agric. Univ. 2022, 44, 557–566. [Google Scholar]
- Xu, Z.; Liu, H.; Ullah, N.; Tung, S.A.; Ali, B.; Li, X.; Chen, S.; Xu, L. Insights into accumulation of active ingredients and rhizosphere microorganisms between Salvia miltiorrhiza and S. castanea. FEMS Microbiol. Lett. 2023, 370, fnad102. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, J.; Wen, C.; Wu, X.; Yang, W.; Zeng, P.; Wu, X. Correlations of polysaccharide and flavonoid contents in Prunella vulgaris L. with main environmental factors and high-quality provenance screen. J. South China Agric. Univ. 2021, 42, 96–101. [Google Scholar]
- Pant, P.; Pandey, S.; Dall’Acqua, S. The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chem. Biodivers. 2021, 18, e2100345. [Google Scholar] [CrossRef]
- Lakshmi, R.; Baskar, S. Dic-Doc-K-Means: Dissimilarity-Based Initial Centroid Selection for Document Clustering Using K-Means for Improving the Effectiveness of Text Document Clustering. J. Inf. Sci. 2019, 45, 818–832. [Google Scholar] [CrossRef]
- Li, F. Designing Process Antivirus Mask Based on Principal Component Analysis Comprises Obtaining Big Data from Hospitals and Other Places for Patients Infected, and Using Principal Component Analysis and Linear Regression Methods to Design Masks. Patent No CN111400669-A, 10 July 2020. [Google Scholar]
- Mao, W.Q.; Wu, Y.; Li, Q.H.; Xiang, Y.Y.; Tang, W.T.; Hu, H.Y.; Ji, H.Y.; Ji, X.L.; Li, H.Y. Seed endophytes and rhizosphere microbiome of Imperata cylindrica, a pioneer plant of abandoned mine lands. Front. Microbiol. 2024, 15, 1415329. [Google Scholar] [CrossRef]
- Li, W.; Yao, J.; He, C.; Ren, Y.; Zhao, L.; He, X. The Synergy of Dark Septate Endophytes and Organic Residue on Isatis Indigotica Growth and Active Ingredients Accumulation under Drought Stress. Ind. Crops Prod. 2023, 203, 117147. [Google Scholar] [CrossRef]
- Liang, H.; Kong, Y.; Chen, W.; Wang, X.; Jia, Z.; Dai, Y.; Yang, X. The Quality of Wild Salvia miltiorrhiza from Dao Di Area in China and Its Correlation with Soil Parameters and Climate Factors. Phytochem. Anal. 2021, 32, 318–325. [Google Scholar] [CrossRef]
- Yue, Y.; Zhang, Q.; Wan, F.; Ma, G.; Zang, Z.; Xu, Y.; Jiang, C.; Huang, X. Effects of Different Drying Methods on the Drying Characteristics and Quality of Codonopsis pilosulae Slices. Foods. 2023, 12, 1323. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- DB14/T 2379-2021; Technical Guidelines for the Extraction of Lobetyolin from C. pilosula. The Shanxi Provincial Drug Quality Management Standardization Technical Committee: Taiyuan, China, 2021.
- DB14/T 2380-2021; Technical Guidelines for the Extraction of Polysaccharides from C. pilosula. The Shanxi Provincial Drug Quality Management Standardization Technical Committee: Taiyuan, China, 2021.
- NY/T 3950-2021; Determination of 10 Flavonoid Compounds in Plant-Based Foods by High-Performance Liquid Chromatography-Tandem Mass Spectrometry. The Department of Agricultural Product Quality and Safety Supervision/Ministry of Agriculture and Rural Affairs’ Expert Committee on Agricultural Product Nutrition Standards: Beijing, China, 2021.
- Li, H.; Li, H.; Li, B.; Shao, J.; Song, Y.; Liu, Z. Smart Temperature and Humidity Control in Pig House by Improved Three-Way K-Means. Agriculture 2023, 13, 2020. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, J.; Khandelwal, M.; Yang, H.; Yang, P.; Li, C. Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration. Eng. Comput. 2022, 38, 4145–4162. [Google Scholar] [CrossRef]
- Sutou, A.; Wang, J. Influence-balanced XGBoost: Improving XGBoost for imbalanced data using influence functions. IEEE Access 2024, 12, 193473–193486. [Google Scholar] [CrossRef]
- Xiao, Y.; Cui, H.; Khurma, R.A.; Castillo, P.A. Artificial lemming algorithm: A novel bionic meta-heuristic technique for solving real-world engineering optimization problems. Artif. Intell. Rev. 2025, 58, 84. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Alami, M.M.; Guo, S.; Mei, Z.; Yang, G.; Wang, X. Environmental factors on secondary metabolism in medicinal plants: Exploring accelerating factors. Med. Plant Biol. 2024, 3, e016. [Google Scholar] [CrossRef]
- Akilli, A.; Gorgulu, O. Comparative Assessments of Multivariate Nonlinear Fuzzy Regression Techniques for Egg Production Curve. Trop. Anim. Health Prod. 2020, 52, 2119–2127. [Google Scholar] [CrossRef]
- Junming, C.; Yang, C.; Zhou, C.; Li, Y.; Zhu, H.; Gui, W. Multivariate Regression Model for Industrial Process Measurement Based on Double Locally Weighted Partial Least Squares. IEEE Trans. Instrum. Meas. 2020, 69, 3962–3971. [Google Scholar] [CrossRef]
- Camina, J.L.; Usseglio, V.; Marquez, V.; Merlo, C.; Dambolena, J.S.; Zygadlo, J.A.; Ashworth, L. Ecological interactions affect the bioactivity of medicinal plants. Sci. Rep. 2023, 27, 12165. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Angelos, M.; D’Enza, A.I.; van de Velden, M. Beyond Tandem Analysis: Joint Dimension Reduction and Clustering in R. J. Stat. Softw. 2019, 91, 1–24. [Google Scholar] [CrossRef]
- Zhang, Q.; Cai, Y.; Zhang, L.; Lu, M.; Yang, L.; Wang, D.; Jia, Q. The accumulation of active ingredients of Polygonatum cyrtonema Hua is associated with soil characteristics and bacterial community. Front Microbiol. 2024, 15, 1347204. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, N.; Tan, G.; Wang, H.; Gai, X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Pham, D.T.; Dimov, S.S.; Nguyen, C.D. Selection of K in K-Means Clustering. Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. 2005, 219, 103–119. [Google Scholar] [CrossRef]
- Qin, S.; Zhou, H.; Meng, W. Method for Controlling Multi-Collinearity of Rock Body in Geotechnical Project Using Principal Component Regression Mode in Ground Stress Field Inversion, Involves Comparing and Evaluating Structural Equation with Traditional Multi-Element Linear Regression Equation. Patent No CN118277740-A, 2 July 2024. [Google Scholar]
- Bang, S. A Study on Nonlinear Multivariate Regression Using Fully Connected Deep Neural Network. J. Korean Data Inf. Sci. Sociaty 2022, 33, 785–799. [Google Scholar]
- Ulewicz-Magulska, B.; Wesolowski, M. Antioxidant Activity of Medicinal Herbs and Spices from Plants of the Lamiaceae, Apiaceae and Asteraceae Families: Chemometric Interpretation of the Data. Antioxidants 2023, 12, 2039. [Google Scholar] [CrossRef] [PubMed]
- Vasconcellos, K.L.P.; Cordeiro, G.M. Bias Corrected Estimates in Multivariate Student T Regression Models. Commun. Stat. Theory Methods 2000, 29, 797–822. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, G.; Jin, P.; Bu, X.; Wang, L.; Wang, F.; Yang, J. Multi-Linear Regression Model and Principal Component Analysis Model Based Power Selling Price Analyzing Method, Involves Collecting Target Field from Original Data, and Analyzing Selling Price Model Based on Target Field. Patent No CN109558994-A, 2 April 2019. [Google Scholar]
- Xie, Q. Bagging Partial Least Squares and Principal Components Analysis Based Dimension Reduction Method, Involves Determining Regression Coefficient Vector Matrix, Generating Positive Definite Matrix, and Determining Transpose of Vector. Patent No CN109858535-A, 7 June 2019. [Google Scholar]
- Zuo, J.; Tang, X.; Zhang, H.; Zu, M.; Zhang, X.; Yuan, Y. Analysis of Niche Shift and Potential Suitable Distributions of Dendrobium under the Impact of Global Climate Change. Environ. Sci. Pollut. Res. 2023, 30, 11978–11993. [Google Scholar] [CrossRef]
Estimate | Std. Error | t Value | Pr(>|t|) | |||
---|---|---|---|---|---|---|
0 | (Intercept) | 10.5206 | 0.0384 | 273.308 | <2 × 10−16 | *** |
1 | poly(MAT,4)1 | −3.4867 | 2.9121 | −1.197 | 0.2354 | |
2 | poly(MAT,4)2 | −0.0033 | 0.9294 | −0.004 | 0.9971 | |
3 | poly(MAT,4)3 | 0.0976 | 0.8702 | 0.112 | 0.9110 | |
4 | poly(MAT,4)4 | 0.9319 | 0.7747 | 1.203 | 0.2333 | |
5 | poly(AP,4)1 | −2.5239 | 1.0616 | −2.377 | 0.0203 | * |
6 | poly(AP,4)2 | −1.2851 | 0.5639 | −2.279 | 0.0259 | * |
7 | poly(AP,4)3 | −0.6942 | 0.5713 | −1.215 | 0.2287 | |
8 | poly(AP,4)4 | −1.2694 | 0.4819 | −2.634 | 0.0105 | * |
9 | poly(GHI,4)1 | −1.9470 | 1.1405 | −1.707 | 0.0925 | |
10 | poly(GHI,4)2 | 0.1839 | 0.7773 | 0.237 | 0.8136 | |
11 | poly(GHI,4)3 | 0.3216 | 0.6643 | 0.484 | 0.6299 | |
12 | poly(GHI,4)4 | 0.7533 | 0.5890 | 1.279 | 0.2053 | |
13 | poly(ARH,4)1 | −1.7093 | 0.8499 | −2.011 | 0.0483 | * |
14 | poly(ARH,4)2 | −0.8834 | 0.7173 | −1.231 | 0.2225 | |
15 | poly(ARH,4)3 | −0.1306 | 0.5960 | −0.219 | 0.8271 | |
16 | poly(ARH,4)4 | 0.6631 | 0.5927 | 1.119 | 0.2673 | |
17 | poly(X40cmMAT,4)1 | −3.5334 | 2.5686 | −1.376 | 0.1735 | |
18 | poly(X40cmMAT,4)2 | 3.3360 | 0.9479 | 3.519 | 0.0007 | *** |
19 | poly(X40cmMAT,4)3 | −0.5892 | 0.6863 | −0.858 | 0.3937 | |
20 | poly(X40cmMAT,4)4 | −2.0472 | 0.5746 | −3.563 | 0.0006 | *** |
21 | poly(X40cmARH,4)1 | −0.6851 | 0.6275 | −1.092 | 0.2788 | |
22 | poly(X40cmARH,4)2 | 0.9250 | 0.6329 | 1.462 | 0.1485 | |
23 | poly(X40cmARH,4)3 | −0.9647 | 0.6240 | −1.546 | 0.1269 | |
24 | poly(X40cmARH,4)4 | −0.5031 | 0.5469 | −0.920 | 0.3609 | |
25 | poly(DAP,4)1 | −1.1175 | 0.6966 | −1.604 | 0.1134 | |
26 | poly(DAP,4)2 | 0.4958 | 0.6014 | 0.824 | 0.4126 | |
27 | poly(DAP,4)3 | 0.3484 | 0.6605 | 0.527 | 0.5996 | |
28 | poly(DAP,4)4 | −0.6212 | 0.5306 | −1.171 | 0.2458 | |
29 | poly(PH,4)1 | 0.5757 | 0.5508 | 1.045 | 0.2997 | |
30 | poly(PH,4)2 | 1.5312 | 0.5743 | 2.666 | 0.0096 | ** |
31 | poly(PH,4)3 | −0.0538 | 0.5356 | −0.101 | 0.9202 | |
32 | poly(PH,4)4 | −1.1922 | 0.5698 | −2.092 | 0.0402 | * |
33 | poly(N,4)1 | −12.3566 | 5.8057 | −2.128 | 0.0370 | * |
34 | poly(N,4)2 | −11.4680 | 7.0947 | −1.616 | 0.1107 | |
35 | poly(N,4)3 | −1.6889 | 3.7597 | −0.449 | 0.6547 | |
36 | poly(N,4)4 | −2.9137 | 1.3293 | −2.192 | 0.0319 | * |
37 | poly(P,4)1 | 6.1059 | 13.6414 | 0.448 | 0.6559 | |
38 | poly(P,4)2 | 3.7886 | 13.1722 | 0.288 | 0.7745 | |
39 | poly(P,4)3 | 6.7519 | 10.3074 | 0.655 | 0.5147 | |
40 | poly(P,4)4 | 3.8881 | 6.2095 | 0.626 | 0.5333 | |
41 | poly(K,4)1 | 12.6398 | 12.7544 | 0.991 | 0.3252 | |
42 | poly(K,4)2 | 6.7922 | 13.0330 | 0.521 | 0.6040 | |
43 | poly(K,4)3 | −0.7436 | 10.8276 | −0.069 | 0.9454 | |
44 | poly(K,4)4 | −2.7803 | 5.9298 | −0.469 | 0.6407 | |
Residual standard error: 0.4056 on 66 degrees of freedom | ||||||
Multiple R-squared: 0.9441, | ||||||
F-statistic: 25.33 on 44 and 66 DF, p-value: <2.2 × 10−16 | ||||||
* The correlation is significant, and the more * there are, the higher the significance Representative correlation is close to significant |
Estimate | Std. Error | t Value | Pr(>|t|) | |||
---|---|---|---|---|---|---|
0 | (Intercept) | 1.659 × 101 | 1.690 × 101 | 0.982 | 0.3304 | |
1 | MAT | −2.209 × 10−2 | 3.182 × 10−2 | −0.694 | 0.4903 | |
2 | AP | −1.843 × 10−2 | 1.461 × 10−2 | −1.262 | 0.2124 | |
3 | GHI | −4.233 × 10−8 | 2.291 × 10−8 | −1.847 | 0.0700 | |
4 | ARH | −1.092 × 10−2 | 4.652 × 10−3 | −2.347 | 0.0225 | * |
5 | X40cmMAT | −4.458 × 10−2 | 3.437 × 10−2 | −1.297 | 0.2000 | |
6 | X40cmARH | −9.519 × 10−3 | 5.888 × 10−3 | −1.617 | 0.1116 | |
7 | DAP | −7.416 × 10−3 | 3.269 × 10−3 | −2.269 | 0.0272 | * |
8 | PH | 2.010 × 100 | 1.298 × 100 | 1.549 | 0.1272 | |
9 | N | −2.137 × 10−1 | 5.785 × 10−1 | −0.369 | 0.7132 | |
10 | P | 1.268 × 10−1 | 2.310 × 10−1 | 0.549 | 0.5852 | |
11 | K | 4.022 × 10−2 | 2.252 × 10−1 | 0.179 | 0.8588 | |
12 | poly(MAT,5)1 | NA | NA | NA | NA | |
13 | poly(MAT,5)2 | −1.041 × 100 | 1.195 × 100 | −0.871 | 0.3875 | |
14 | poly(MAT,5)3 | −2.543 × 10−1 | 1.020 × 100 | −0.249 | 0.8040 | |
15 | poly(MAT,5)4 | 1.711 × 100 | 9.029 × 10−1 | 1.895 | 0.0633 | |
16 | poly(MAT,5)5 | −6.870 × 10−4 | 8.056 × 10−1 | −0.001 | 0.9993 | |
17 | poly(AP,5)1 | NA | NA | NA | NA | |
18 | poly(AP,5)2 | −1.495 × 100 | 5.915 × 10−1 | −2.528 | 0.0143 | * |
19 | poly(AP,5)3 | −5.978 × 10−1 | 6.207 × 10−1 | −0.963 | 0.3396 | |
20 | poly(AP,5)4 | −1.500 × 100 | 5.071 × 10−1 | −2.958 | 0.0045 | ** |
21 | poly(AP,5)5 | −8.947 × 10−1 | 5.709 × 10−1 | −1.567 | 0.1228 | |
22 | poly(GHI,5)1 | NA | NA | NA | NA | |
23 | poly(GHI,5)2 | 1.002 × 100 | 9.239 × 10−1 | 1.084 | 0.2829 | |
24 | poly(GHI,5)3 | −1.619 × 10−1 | 7.160 × 10−1 | −0.226 | 0.8219 | |
25 | poly(GHI,5)4 | 1.093 × 100 | 7.140 × 10−1 | 1.531 | 0.1314 | |
26 | poly(GHI,5)5 | −1.240 × 100 | 7.223 × 10−1 | −1.717 | 0.0916 | . |
27 | poly(ARH,5)1 | NA | NA | NA | NA | |
28 | poly(ARH,5)2 | −1.177 × 100 | 7.699 × 10−1 | −1.528 | 0.1321 | |
29 | poly(ARH,5)3 | −5.011 × 10−1 | 7.349 × 10−1 | −0.682 | 0.4981 | |
30 | poly(ARH,5)4 | 1.727 × 10−1 | 7.142 × 10−1 | 0.242 | 0.8098 | |
31 | poly(ARH,5)5 | 3.378 × 10−1 | 5.954 × 10−1 | 0.567 | 0.5727 | |
32 | poly(X40cmMAT,5)1 | NA | NA | NA | NA | |
33 | poly(X40cmMAT,5)2 | 4.935 × 100 | 1.205 × 100 | 4.097 | 0.0001 | *** |
34 | poly(X40cmMAT,5)3 | −8.041 × 10−2 | 7.747 × 10−1 | −0.104 | 0.9177 | |
35 | poly(X40cmMAT,5)4 | −2.332 × 100 | 6.041 × 10−1 | −3.860 | 0.0003 | *** |
36 | poly(X40cmMAT,5)5 | −4.815 × 10−1 | 5.387 × 10−1 | −0.894 | 0.3754 | |
37 | poly(X40cmARH,5)1 | NA | NA | NA | NA | |
38 | poly(X40cmARH,5)2 | 7.938 × 10−1 | 6.722 × 10−1 | 1.181 | 0.2427 | |
39 | poly(X40cmARH,5)3 | −1.110 × 100 | 7.663 × 10−1 | −1.449 | 0.1530 | |
40 | poly(X40cmARH,5)4 | −9.164 × 10−1 | 6.526 × 10−1 | −1.404 | 0.1658 | |
41 | poly(X40cmARH,5)5 | 1.251 × 10−1 | 5.766 × 10−1 | 0.217 | 0.8290 | |
42 | poly(DAP,5)1 | NA | NA | NA | NA | |
43 | poly(DAP,5)2 | 9.680 × 10−1 | 7.094 × 10−1 | 1.364 | 0.1779 | |
44 | poly(DAP,5)3 | 1.160 × 100 | 9.033 × 10−1 | 1.284 | 0.2045 | |
45 | poly(DAP,5)4 | −4.262 × 10−1 | 5.833 × 10−1 | −0.731 | 0.4681 | |
46 | poly(DAP,5)5 | −4.041 × 10−1 | 6.523 × 10−1 | −0.620 | 0.5381 | |
47 | poly(PH,5)1 | NA | NA | NA | NA | |
48 | poly(PH,5)2 | 1.739 × 100 | 6.494 × 10−1 | 2.677 | 0.0097 | ** |
49 | poly(PH,5)3 | 3.586 × 10−1 | 6.272 × 10−1 | 0.572 | 0.5698 | |
50 | poly(PH,5)4 | −9.751 × 10−1 | 6.104 × 10−1 | −1.598 | 0.1158 | |
51 | poly(PH,5)5 | −6.274 × 10−1 | 6.718 × 10−1 | −0.934 | 0.3544 | |
52 | poly(N,5)1 | NA | NA | NA | NA | |
53 | poly(N,5)2 | 5.255 × 100 | 1.955 × 101 | 0.269 | 0.7890 | |
54 | poly(N,5)3 | 7.983 × 100 | 1.166 × 101 | 0.684 | 0.4965 | |
55 | poly(N,5)4 | −7.385 × 10−1 | 4.337 × 100 | −0.170 | 0.8654 | |
56 | poly(N,5)5 | 1.098 × 100 | 1.491 × 100 | 0.737 | 0.4644 | |
57 | poly(P,5)1 | NA | NA | NA | NA | |
58 | poly(P,5)2 | 6.619 × 100 | 2.970 × 101 | 0.223 | 0.8244 | |
59 | poly(P,5)3 | 1.085 × 101 | 2.528 × 101 | 0.429 | 0.6696 | |
60 | poly(P,5)4 | 7.442 × 100 | 1.431 × 101 | 0.520 | 0.6051 | |
61 | poly(P,5)5 | 2.372 × 100 | 6.882 × 100 | 0.345 | 0.7316 | |
62 | poly(K,5)1 | NA | NA | NA | NA | |
63 | poly(K,5)2 | −1.006 × 101 | 3.274 × 101 | −0.307 | 0.7597 | |
64 | poly(K,5)3 | −1.840 × 101 | 2.952 × 101 | −0.623 | 0.5356 | |
65 | poly(K,5)4 | −1.273 × 101 | 1.747 × 101 | −0.729 | 0.4691 | |
66 | poly(K,5)5 | −3.787 × 100 | 7.432 × 100 | −0.510 | 0.6123 | |
Residual standard error: 0.406 on 55 degrees of freedom | ||||||
Multiple R-squared: 0.9533, Adjusted R-squared: 0.9066 | ||||||
F-statistic: 20.42 on 55 and 55 DF, p-value: <2.2 × 10−16 NA indicates severe collinearity between higher-order terms * The correlation is significant, and the more * there are, the higher the significance Representative correlation is close to significant |
Estimate | Std. Error | t Value | Pr(>|t|) | |||
---|---|---|---|---|---|---|
0 | (Intercept) | 1.6406 | 0.0085 | 191.836 | <2 × 10−16 | *** |
1 | poly(MAT,4)1 | −0.2321 | 0.6470 | −0.359 | 0.7209 | |
2 | poly(MAT,4)2 | −0.8305 | 0.2064 | −4.022 | 0.0001 | *** |
3 | poly(MAT,4)3 | 0.0301 | 0.1933 | 0.156 | 0.8767 | |
4 | poly(MAT,4)4 | 0.4531 | 0.1721 | 2.633 | 0.0105 | * |
5 | poly(AP,4)1 | −0.0984 | 0.2358 | −0.417 | 0.6778 | |
6 | poly(AP,4)2 | 0.0824 | 0.1252 | 0.658 | 0.5125 | |
7 | poly(AP,4)3 | −0.1447 | 0.1269 | −1.140 | 0.2583 | |
8 | poly(AP,4)4 | −0.0955 | 0.1070 | −0.893 | 0.3753 | |
9 | poly(GHI,4)1 | 0.0301 | 0.2534 | 0.119 | 0.9057 | |
10 | poly(GHI,4)2 | 0.0843 | 0.1726 | 0.489 | 0.6267 | |
11 | poly(GHI,4)3 | −0.3057 | 0.1476 | −2.071 | 0.0422 | * |
12 | poly(GHI,4)4 | 0.2487 | 0.1308 | 1.901 | 0.0616 | |
13 | poly(ARH,4)1 | −0.1572 | 0.1888 | −0.833 | 0.4079 | |
14 | poly(ARH,4)2 | −0.2163 | 0.1593 | −1.357 | 0.1793 | |
15 | poly(ARH,4)3 | −0.0139 | 0.1324 | −0.106 | 0.9162 | |
16 | poly(ARH,4)4 | −0.2983 | 0.1316 | −2.265 | 0.0267 | * |
17 | poly(X40cmMAT,4)1 | 0.0086 | 0.5706 | 0.015 | 0.9879 | |
18 | poly(X40cmMAT,4)2 | −0.2082 | 0.2106 | −0.989 | 0.3263 | |
19 | poly(X40cmMAT,4)3 | −0.3125 | 0.1524 | −2.050 | 0.0443 | * |
20 | poly(X40cmMAT,4)4 | −0.0857 | 0.1276 | −0.672 | 0.5041 | |
21 | poly(X40cmARH,4)1 | 0.0053 | 0.1394 | 0.038 | 0.9694 | |
22 | poly(X40cmARH,4)2 | 0.0966 | 0.1406 | 0.687 | 0.4944 | |
23 | poly(X40cmARH,4)3 | −0.0110 | 0.1386 | −0.080 | 0.9367 | |
24 | poly(X40cmARH,4)4 | −0.1890 | 0.1215 | −1.556 | 0.1245 | |
25 | poly(DAP,4)1 | −0.1227 | 0.1547 | −0.793 | 0.4306 | |
26 | poly(DAP,4)2 | 0.1846 | 0.1336 | 1.382 | 0.1717 | |
27 | poly(DAP,4)3 | 0.2932 | 0.1467 | 1.998 | 0.0498 | * |
28 | poly(DAP,4)4 | −0.2256 | 0.1178 | −1.914 | 0.0599 | |
29 | poly(PH,4)1 | 0.1169 | 0.1223 | 0.956 | 0.3427 | |
30 | poly(PH,4)2 | 0.2600 | 0.1276 | 2.038 | 0.0456 | * |
31 | poly(PH,4)3 | 0.0370 | 0.1190 | 0.311 | 0.7565 | |
32 | poly(PH,4)4 | 0.0765 | 0.1265 | 0.605 | 0.5472 | |
33 | poly(N,4)1 | 0.1639 | 1.2898 | 0.127 | 0.8992 | |
34 | poly(N,4)2 | 1.5187 | 1.5762 | 0.963 | 0.3388 | |
35 | poly(N,4)3 | 0.2705 | 0.8353 | 0.324 | 0.7470 | |
36 | poly(N,4)4 | 0.3274 | 0.2953 | 1.109 | 0.2715 | |
37 | poly(P,4)1 | −2.7054 | 3.0307 | −0.893 | 0.3752 | |
38 | poly(P,4)2 | −1.0895 | 2.9265 | −0.372 | 0.7108 | |
39 | poly(P,4)3 | −1.5151 | 2.2900 | −0.662 | 0.5105 | |
40 | poly(P,4)4 | −1.0043 | 1.3796 | −0.728 | 0.4692 | |
41 | poly(K,4)1 | 2.6412 | 2.8337 | 0.932 | 0.3546 | |
42 | poly(K,4)2 | −0.3390 | 2.8956 | −0.117 | 0.9071 | |
43 | poly(K,4)3 | 0.6073 | 2.4056 | 0.252 | 0.8014 | |
44 | poly(K,4)4 | 0.9122 | 1.3174 | 0.692 | 0.4910 | |
Residual standard error: 0.09011 on 66 degrees of freedom | ||||||
Multiple R-squared: 0.7018, | ||||||
F-statistic: 3.531 on 44 and 66 DF, p-value: 1.873 × 10−6 | ||||||
* The correlation is significant, and the more * there are, the higher the significance Representative correlation is close to significant |
Estimate | Std. Error | t Value | Pr(>|t|) | |||
---|---|---|---|---|---|---|
0 | (Intercept) | 1.508 | 3.458 | 0.436 | 0.6643 | |
1 | MAT | −5.416 × 10−4 | 6.509 × 10−3 | −0.083 | 0.9339 | |
2 | AP | −6.308 × 10−4 | 2.988 × 10−3 | −0.211 | 0.8336 | |
3 | GHI | 2.037 × 10−9 | 4.688 × 10−9 | 0.435 | 0.6656 | |
4 | ARH | −1.289 × 10−4 | 9.518 × 10−4 | −0.135 | 0.8928 | |
5 | X40cmMAT | −3.510 × 10−3 | 7.033 × 10−3 | −0.499 | 0.6196 | |
6 | X40cmARH | −6.061 × 10−4 | 1.205 × 10−3 | −0.503 | 0.6168 | |
7 | DAP | 1.591 × 10−4 | 6.688 × 10−4 | 0.238 | 0.8128 | |
8 | PH | 1.588 × 10−1 | 2.656 × 10−1 | 0.598 | 0.5523 | |
9 | N | −1.687 × 10−1 | 1.183 × 10−1 | −1.425 | 0.1597 | |
10 | P | −3.340 × 10−2 | 4.725 × 10−2 | −0.707 | 0.4826 | |
11 | K | 5.758 × 10−2 | 4.607 × 10−2 | 1.250 | 0.2166 | |
12 | poly(MAT,5)1 | NA | NA | NA | NA | |
13 | poly(MAT,5)2 | −9.392 × 10−1 | 2.444 × 10−1 | −3.842 | 0.0003 | *** |
14 | poly(MAT,5)3 | 1.613 × 10−2 | 2.086 × 10−1 | 0.077 | 0.9386 | |
15 | poly(MAT,5)4 | 2.564 × 10−1 | 1.847 × 10−1 | 1.388 | 0.1707 | |
16 | poly(MAT,5)5 | −8.789 × 10−2 | 1.648 × 10−1 | −0.533 | 0.5959 | |
17 | poly(AP,5)1 | NA | NA | NA | NA | |
18 | poly(AP,5)2 | 3.627 × 10−2 | 1.210 × 10−1 | 0.300 | 0.7655 | |
19 | poly(AP,5)3 | −1.467 × 10−1 | 1.270 × 10−1 | −1.155 | 0.2529 | |
20 | poly(AP,5)4 | −6.704 × 10−2 | 1.037 × 10−1 | −0.646 | 0.5208 | |
21 | poly(AP,5)5 | 7.245 × 10−2 | 1.168 × 10−1 | 0.620 | 0.5376 | |
22 | poly(GHI,5)1 | NA | NA | NA | NA | |
23 | poly(GHI,5)2 | 1.123 × 10−1 | 1.890 × 10−1 | 0.594 | 0.5550 | |
24 | poly(GHI,5)3 | −3.114 × 10−1 | 1.465 × 10−1 | −2.126 | 0.0380 | * |
25 | poly(GHI,5)4 | 2.601 × 10−1 | 1.461 × 10−1 | 1.781 | 0.0804 | |
26 | poly(GHI,5)5 | 1.980 × 10−2 | 1.478 × 10−1 | 0.134 | 0.8939 | |
27 | poly(ARH,5)1 | NA | NA | NA | NA | |
28 | poly(ARH,5)2 | −2.216 × 10−1 | 1.575 × 10−1 | −1.407 | 0.1651 | |
29 | poly(ARH,5)3 | −2.821 × 10−2 | 1.503 × 10−1 | −0.188 | 0.8518 | |
30 | poly(ARH,5)4 | −1.303 × 10−1 | 1.461 × 10−1 | −0.892 | 0.3764 | |
31 | poly(ARH,5)5 | −8.536 × 10−2 | 1.218 × 10−1 | −0.701 | 0.4863 | |
32 | poly(X40cmMAT,5)1 | NA | NA | NA | NA | |
33 | poly(X40cmMAT,5)2 | −2.008 × 10−1 | 2.465 × 10−1 | −0.815 | 0.4188 | |
34 | poly(X40cmMAT,5)3 | −3.739 × 10−1 | 1.585 × 10−1 | −2.359 | 0.0219 | * |
35 | poly(X40cmMAT,5)4 | −1.712 × 10−2 | 1.236 × 10−1 | −0.138 | 0.8903 | |
36 | poly(X40cmMAT,5)5 | 4.107 × 10−1 | 1.102 × 10−1 | 3.726 | 0.0004 | *** |
37 | poly(X40cmARH,5)1 | NA | NA | NA | NA | |
38 | poly(X40cmARH,5)2 | −3.126 × 10−2 | 1.375 × 10−1 | −0.227 | 0.8210 | |
39 | poly(X40cmARH,5)3 | −1.000 × 10−1 | 1.568 × 10−1 | −0.638 | 0.5260 | |
40 | poly(X40cmARH,5)4 | −1.763 × 10−1 | 1.335 × 10−1 | −1.321 | 0.1920 | |
41 | poly(X40cmARH,5)5 | −9.026 × 10−3 | 1.180 × 10−1 | −0.077 | 0.9392 | |
42 | poly(DAP,5)1 | NA | NA | NA | NA | |
43 | poly(DAP,5)2 | 1.190 × 10−1 | 1.451 × 10−1 | 0.820 | 0.4158 | |
44 | poly(DAP,5)3 | 3.511 × 10−1 | 1.848 × 10−1 | 1.900 | 0.0626 | |
45 | poly(DAP,5)4 | −1.463 × 10−1 | 1.193 × 10−1 | −1.226 | 0.2253 | |
46 | poly(DAP,5)5 | −1.193 × 10−1 | 1.335 × 10−1 | −0.894 | 0.3752 | |
47 | poly(PH,5)1 | NA | NA | NA | NA | |
48 | poly(PH,5)2 | 2.142 × 10−1 | 1.329 × 10−1 | 1.612 | 0.1126 | |
49 | poly(PH,5)3 | −3.445 × 10−2 | 1.283 × 10−1 | −0.268 | 0.7893 | |
50 | poly(PH,5)4 | 9.566 × 10−2 | 1.249 × 10−1 | 0.766 | 0.4469 | |
51 | poly(PH,5)5 | −1.743 × 10−1 | 1.375 × 10−1 | −1.268 | 0.2100 | |
52 | poly(N,5)1 | NA | NA | NA | NA | |
53 | poly(N,5)2 | −6.223 | 3.999 | −1.556 | 0.1253 | |
54 | poly(N,5)3 | −4.310 | 2.386 | −1.806 | 0.0763 | |
55 | poly(N,5)4 | −1.519 | 8.874 × 10−1 | −1.711 | 0.0926 | |
56 | poly(N,5)5 | −6.651 × 10−1 | 3.050 × 10−1 | −2.180 | 0.0335 | * |
57 | poly(P,5)1 | NA | NA | NA | NA | |
58 | poly(P,5)2 | 3.682 | 6.077 | 0.606 | 0.5470 | |
59 | poly(P,5)3 | 3.035 | 5.172 | 0.587 | 0.5597 | |
60 | poly(P,5)4 | 9.160 × 10−1 | 2.928 | 0.313 | 0.7556 | |
61 | poly(P,5)5 | 1.418 | 1.408 | 1.007 | 0.3183 | |
62 | poly(K,5)1 | NA | NA | NA | NA | |
63 | poly(K,5)2 | 1.990 | 6.698 | 0.297 | 0.7675 | |
64 | poly(K,5)3 | 2.237 | 6.039 | 0.370 | 0.7125 | |
65 | poly(K,5)4 | 1.915 | 3.574 | 0.536 | 0.5942 | |
66 | poly(K,5)5 | −4.138 × 10−1 | 1.520 | −0.272 | 0.7865 | |
Residual standard error: 0.08306 on 55 degrees of freedom | ||||||
Multiple R-squared: 0.7889, | ||||||
F-statistic: 3.736 on 55 and 55 DF, p-value: 1.266 × 10−6 NA indicates severe collinearity between higher-order terms * The correlation is significant, and the more * there are, the higher the significance Representative correlation is close to significant |
Estimate | Std. Error | t Value | Pr(>|t|) | |||
---|---|---|---|---|---|---|
0 | (Intercept) | 0.3650 | 0.0154 | 23.665 | <2 × 10−16 | *** |
1 | poly(MAT,4)1 | −1.9903 | 1.1670 | −1.705 | 0.0928 | |
2 | poly(MAT,4)2 | −0.0541 | 0.3724 | −0.145 | 0.8849 | |
3 | poly(MAT,4)3 | 0.5604 | 0.3487 | 1.607 | 0.1128 | |
4 | poly(MAT,4)4 | −0.1279 | 0.3105 | −0.412 | 0.6815 | |
5 | poly(AP,4)1 | 0.9999 | 0.4254 | 2.350 | 0.0217 | * |
6 | poly(AP,4)2 | 0.0630 | 0.2259 | 0.279 | 0.7811 | |
7 | poly(AP,4)3 | −0.0816 | 0.2289 | −0.357 | 0.7225 | |
8 | poly(AP,4)4 | −0.3408 | 0.1931 | −1.765 | 0.0822 | |
9 | poly(GHI,4)1 | −0.6870 | 0.4570 | −1.503 | 0.1375 | |
10 | poly(GHI,4)2 | −0.1597 | 0.3115 | −0.513 | 0.6098 | |
11 | poly(GHI,4)3 | −0.3189 | 0.2662 | −1.198 | 0.2352 | |
12 | poly(GHI,4)4 | 0.4161 | 0.2360 | 1.763 | 0.0825 | |
13 | poly(ARH,4)1 | −0.5048 | 0.3406 | −1.482 | 0.1430 | |
14 | poly(ARH,4)2 | 0.0123 | 0.2874 | 0.043 | 0.9657 | |
15 | poly(ARH,4)3 | 0.1388 | 0.2388 | 0.581 | 0.5629 | |
16 | poly(ARH,4)4 | 0.2811 | 0.2375 | 1.184 | 0.2408 | |
17 | poly(X40cmMAT,4)1 | 4.2275 | 1.0293 | 4.107 | 0.0001 | *** |
18 | poly(X40cmMAT,4)2 | 0.3146 | 0.3798 | 0.828 | 0.4104 | |
19 | poly(X40cmMAT,4)3 | −0.4915 | 0.2750 | −1.787 | 0.0784 | |
20 | poly(X40cmMAT,4)4 | 0.0610 | 0.2302 | 0.265 | 0.7916 | |
21 | poly(X40cmARH,4)1 | −0.1253 | 0.2514 | −0.498 | 0.6199 | |
22 | poly(X40cmARH,4)2 | 0.4659 | 0.2536 | 1.837 | 0.0706 | |
23 | poly(X40cmARH,4)3 | −0.5834 | 0.2501 | −2.333 | 0.0227 | * |
24 | poly(X40cmARH,4)4 | −0.5161 | 0.2191 | −2.355 | 0.0215 | * |
25 | poly(DAP,4)1 | −0.6450 | 0.2791 | −2.311 | 0.0239 | * |
26 | poly(DAP,4)2 | 0.8489 | 0.2410 | 3.522 | 0.0007 | *** |
27 | poly(DAP,4)3 | 0.1762 | 0.2647 | 0.666 | 0.5079 | |
28 | poly(DAP,4)4 | −0.1283 | 0.2126 | −0.604 | 0.5481 | |
29 | poly(PH,4)1 | 0.4393 | 0.2207 | 1.990 | 0.0507 | |
30 | poly(PH,4)2 | 0.0604 | 0.2301 | 0.263 | 0.7935 | |
31 | poly(PH,4)3 | 0.5607 | 0.2146 | 2.612 | 0.0111 | * |
32 | poly(PH,4)4 | −0.0087 | 0.2283 | −0.038 | 0.9696 | |
33 | poly(N,4)1 | −2.2912 | 2.3266 | −0.985 | 0.3283 | |
34 | poly(N,4)2 | −1.5949 | 2.8432 | −0.561 | 0.5767 | |
35 | poly(N,4)3 | −0.9400 | 1.5067 | −0.624 | 0.5348 | |
36 | poly(N,4)4 | −0.3421 | 0.5327 | −0.642 | 0.5229 | |
37 | poly(P,4)1 | −3.3011 | 5.4669 | −0.604 | 0.5480 | |
38 | poly(P,4)2 | −0.0058 | 5.2788 | −0.001 | 0.9991 | |
39 | poly(P,4)3 | 0.5212 | 4.1307 | 0.126 | 0.8999 | |
40 | poly(P,4)4 | 2.4650 | 2.4885 | 0.991 | 0.3255 | |
41 | poly(K,4)1 | 5.5610 | 5.1114 | 1.088 | 0.2805 | |
42 | poly(K,4)2 | 1.7113 | 5.2230 | 0.328 | 0.7442 | |
43 | poly(K,4)3 | 1.1167 | 4.3392 | 0.257 | 0.7977 | |
44 | poly(K,4)4 | −2.1280 | 2.3764 | −0.895 | 0.3737 | |
Residual standard error: 0.1964 on 1057 degrees of freedom | ||||||
Multiple R-squared: 0.4799, | ||||||
F-statistic: 44.33 on 22 and 1057 DF, p-value: <2.2 × 10−16 | ||||||
* The correlation is significant, and the more * there are, the higher the significance Representative correlation is close to significant |
Estimate | Std. Error | t Value | Pr(>|t|) | |||
---|---|---|---|---|---|---|
0 | (Intercept) | −3.883 × 101 | 6.411 | −6.057 | 1.3 × 10−7 | *** |
1 | MAT | −2.134 × 10−2 | 1.207 × 10−2 | −1.768 | 0.0825 | |
2 | AP | 1.215 × 10−2 | 5.541 × 10−3 | 2.193 | 0.0325 | * |
3 | GHI | −6.863 × 10−9 | 8.692 × 10−9 | −0.790 | 0.4331 | |
4 | ARH | −1.715 × 10−3 | 1.765 × 10−3 | −0.972 | 0.3354 | |
5 | X40cmMAT | 5.415 × 10−2 | 1.304 × 10−2 | 4.153 | 0.0001 | *** |
6 | X40cmARH | −2.174 × 10−3 | 2.233 × 10−3 | −0.973 | 0.3346 | |
7 | DAP | −2.653 × 10−3 | 1.240 × 10−3 | −2.139 | 0.0368 | * |
8 | PH | 1.357 × 100 | 4.924 × 10−1 | 2.756 | 0.0079 | ** |
9 | N | 2.734 × 10−1 | 2.194 × 10−1 | 1.246 | 0.2180 | |
10 | P | 4.969 × 10−3 | 8.761 × 10−2 | 0.057 | 0.9549 | |
11 | K | −4.566 × 10−2 | 8.541 × 10−2 | −0.535 | 0.5950 | |
12 | poly(MAT,5)1 | NA | NA | NA | NA | |
13 | poly(MAT,5)2 | −2.546 × 10−1 | 4.532 × 10−1 | −0.562 | 0.5765 | |
14 | poly(MAT,5)3 | 5.802 × 10−1 | 3.868 × 10−1 | 1.500 | 0.1393 | |
15 | poly(MAT,5)4 | 2.753 × 10−2 | 3.425 × 10−1 | 0.080 | 0.9362 | |
16 | poly(MAT,5)5 | −3.263 × 10−1 | 3.056 × 10−1 | −1.068 | 0.2903 | |
17 | poly(AP,5)1 | NA | NA | NA | NA | |
18 | poly(AP,5)2 | 5.971 × 10−2 | 2.244 × 10−1 | 0.266 | 0.7911 | |
19 | poly(AP,5)3 | 1.228 × 10−1 | 2.354 × 10−1 | 0.522 | 0.6039 | |
20 | poly(AP,5)4 | −3.880 × 10−1 | 1.923 × 10−1 | −2.017 | 0.0485 | * |
21 | poly(AP,5)5 | −9.635 × 10−2 | 2.166 × 10−1 | −0.445 | 0.6581 | |
22 | poly(GHI,5)1 | NA | NA | NA | NA | |
23 | poly(GHI,5)2 | −2.316 × 10−1 | 3.505 × 10−1 | −0.661 | 0.5115 | |
24 | poly(GHI,5)3 | −1.965 × 10−1 | 2.716 × 10−1 | −0.724 | 0.4724 | |
25 | poly(GHI,5)4 | 9.431 × 10−2 | 2.708 × 10−1 | 0.348 | 0.7290 | |
26 | poly(GHI,5)5 | 1.793 × 10−1 | 2.740 × 10−1 | 0.654 | 0.5156 | |
27 | poly(ARH,5)1 | NA | NA | NA | NA | |
28 | poly(ARH,5)2 | 9.584 × 10−2 | 2.921 × 10−1 | 0.328 | 0.7440 | |
29 | poly(ARH,5)3 | 1.488 × 10−1 | 2.788 × 10−1 | 0.534 | 0.5957 | |
30 | poly(ARH,5)4 | 1.966 × 10−1 | 2.709 × 10−1 | 0.726 | 0.4710 | |
31 | poly(ARH,5)5 | 2.146 × 10−1 | 2.258 × 10−1 | 0.950 | 0.3462 | |
32 | poly(X40cmMAT,5)1 | NA | NA | NA | NA | |
33 | poly(X40cmMAT,5)2 | 7.286 × 10−1 | 4.569 × 10−1 | 1.594 | 0.1165 | |
34 | poly(X40cmMAT,5)3 | −5.453 × 10−1 | 2.938 × 10−1 | −1.856 | 0.0688 | |
35 | poly(X40cmMAT,5)4 | −4.938 × 10−2 | 2.292 × 10−1 | −0.215 | 0.8301 | |
36 | poly(X40cmMAT,5)5 | −1.090 × 10−1 | 2.044 × 10−1 | −0.533 | 0.5959 | |
37 | poly(X40cmARH,5)1 | NA | NA | NA | NA | |
38 | poly(X40cmARH,5)2 | 5.505 × 10−1 | 2.550 × 10−1 | 2.159 | 0.0352 | * |
39 | poly(X40cmARH,5)3 | −3.350 × 10−1 | 2.907 × 10−1 | −1.153 | 0.2540 | |
40 | poly(X40cmARH,5)4 | −4.306 × 10−1 | 2.476 × 10−1 | −1.739 | 0.0875 | |
41 | poly(X40cmARH,5)5 | 3.624 × 10−1 | 2.187 × 10−1 | 1.657 | 0.1032 | |
42 | poly(DAP,5)1 | NA | NA | NA | NA | |
43 | poly(DAP,5)2 | 7.184 × 10−1 | 2.691 × 10−1 | 2.670 | 0.0099 | ** |
44 | poly(DAP,5)3 | −1.897 × 10−1 | 3.426 × 10−1 | −0.554 | 0.5820 | |
45 | poly(DAP,5)4 | 3.769 × 10−3 | 2.213 × 10−1 | 0.017 | 0.9864 | |
46 | poly(DAP,5)5 | 4.321 × 10−2 | 2.474 × 10−1 | 0.175 | 0.8620 | |
47 | poly(PH,5)1 | NA | NA | NA | NA | |
48 | poly(PH,5)2 | 2.787 × 10−1 | 2.464 × 10−1 | 1.131 | 0.2629 | |
49 | poly(PH,5)3 | 8.921 × 10−1 | 2.379 × 10−1 | 3.750 | 0.0004 | *** |
50 | poly(PH,5)4 | 1.877 × 10−1 | 2.315 × 10−1 | 0.811 | 0.4211 | |
51 | poly(PH,5)5 | −5.229 × 10−1 | 2.548 × 10−1 | −2.052 | 0.0449 | * |
52 | poly(N,5)1 | NA | NA | NA | NA | |
53 | poly(N,5)2 | 1.364 × 101 | 7.414 | 1.839 | 0.0712 | |
54 | poly(N,5)3 | 8.213 | 4.424 | 1.856 | 0.0687 | |
55 | poly(N,5)4 | 2.409 | 1.645 | 1.464 | 0.1487 | |
56 | poly(N,5)5 | 1.019 | 5.656 × 10−1 | 1.802 | 0.0770 | |
57 | poly(P,5)1 | NA | NA | NA | NA | |
58 | poly(P,5)2 | −1.706 | 1.127 × 101 | −0.151 | 0.8802 | |
59 | poly(P,5)3 | −3.005 × 10−1 | 9.590 | −0.031 | 0.9751 | |
60 | poly(P,5)4 | 3.354 | 5.429 | 0.618 | 0.5392 | |
61 | poly(P,5)5 | 4.129 × 10−1 | 2.611 | 0.158 | 0.8749 | |
62 | poly(K,5)1 | NA | NA | NA | NA | |
63 | poly(K,5)2 | −9.898 | 1.242 × 101 | −0.797 | 0.4288 | |
64 | poly(K,5)3 | −1.003 × 101 | 1.120 × 101 | −0.895 | 0.3744 | |
65 | poly(K,5)4 | −8.930 | 6.626 | −1.348 | 0.1832 | |
66 | poly(K,5)5 | −2.114 | 2.819 | −0.750 | 0.4564 | |
Residual standard error: 0.154 on 55 degrees of freedom | ||||||
Multiple R-squared: 0.8339, | ||||||
F-statistic: 5.021 on 55 and 55 DF, p-value: 6.948 × 10−9NA indicates severe collinearity between higher-order terms * The correlation is significant, and the more * there are, the higher the significance Representative correlation is close to significant |
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 | PC9 | PC10 | PC11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Standard deviation | 1.8951 | 1.5639 | 1.4344 | 0.99262 | 0.87669 | 0.76111 | 0.55017 | 0.43825 | 0.22153 | 0.16329 | 0.03769 |
Proportion of Variance | 0.3265 | 0.2223 | 0.1870 | 0.08957 | 0.06987 | 0.05266 | 0.02752 | 0.01746 | 0.00446 | 0.00242 | 0.00013 |
Cumulative Proportion | 0.3265 | 0.5488 | 0.7359 | 0.82547 | 0.89535 | 0.94801 | 0.97552 | 0.99299 | 0.99745 | 0.99987 | 1.00000 |
Component | Factor | Optimal Interval and Trend |
---|---|---|
QG | AP(hPA) | 9.20 (narrow range of 9.1–9.3) |
QG | 40cmMAT(°C) | 28.0–28.5 |
QG | 40cmARH(%) | 65–75 |
QG | pH | Extremely narrow range around 9.70 |
QG | DAP(mm) | 10–50, avoiding excessively high or low values |
DT | AP(hPA) (°C) | 9.20 (narrow range of 9.1–9.3) |
DT | ARH(%) | 30–60% is favorable; >70% is unfavorable |
DT | 40cmMAT(°C) | 28 (narrow range of 27.5–28.5) |
DT | pH | Extremely narrow range around 9.70 (9.68–9.72) |
DT | N(mg/kg) | 7–9 is optimal; >10 or <6 is unfavorable |
Sub-Plot | Lobetyolin | Polysaccharides | Total Flavonoids |
---|---|---|---|
A | 0.63 | 0.61 | 0.65 |
B | 0.65 | 0.63 | 0.66 |
C | 0.62 | 0.60 | 0.64 |
D | 0.64 | 0.62 | 0.65 |
Indicator | ANOVA p-Value | ICC |
---|---|---|
Lobetyolin | 0.78 | 0.98 |
Polysaccharides | 0.78 | 0.98 |
Total Flavonoids | 0.78 | 0.98 |
Indicator | 2023 Actual Value (mg/g) | Standard Error (mg/g) | 2023 Predicted Value (mg/g) | Standard Error (mg/g) | MSE (mg2/g2) | MAE (mg/g) | MAPE (%) |
---|---|---|---|---|---|---|---|
Lobetyolin | 0.80 | 0.05 | 0.82 | 0.04 | 0.0004 | 0.02 | 2.5 |
Polysaccharides | 32.5 | 1.20 | 32.8 | 1.10 | 0.09 | 0.30 | 0.92 |
Total Flavonoids | 9.60 | 0.80 | 9.65 | 0.7 | 0.04 | 0.20 | 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Song, Y.; Shi, X.; Ma, B.; Yao, Y.; Li, H.; Jia, L.; Liu, Z. Study on the Correlation Between Major Medicinal Constituents of Codonopsis pilosula During Its Growth Cycle and Ecological Factors, and Determination of Optimal Ecological Factor Ranges. Agronomy 2025, 15, 1057. https://doi.org/10.3390/agronomy15051057
Li H, Song Y, Shi X, Ma B, Yao Y, Li H, Jia L, Liu Z. Study on the Correlation Between Major Medicinal Constituents of Codonopsis pilosula During Its Growth Cycle and Ecological Factors, and Determination of Optimal Ecological Factor Ranges. Agronomy. 2025; 15(5):1057. https://doi.org/10.3390/agronomy15051057
Chicago/Turabian StyleLi, Haoming, Yanbo Song, Xiaojing Shi, Boyang Ma, Yafei Yao, Haopu Li, Liyan Jia, and Zhenyu Liu. 2025. "Study on the Correlation Between Major Medicinal Constituents of Codonopsis pilosula During Its Growth Cycle and Ecological Factors, and Determination of Optimal Ecological Factor Ranges" Agronomy 15, no. 5: 1057. https://doi.org/10.3390/agronomy15051057
APA StyleLi, H., Song, Y., Shi, X., Ma, B., Yao, Y., Li, H., Jia, L., & Liu, Z. (2025). Study on the Correlation Between Major Medicinal Constituents of Codonopsis pilosula During Its Growth Cycle and Ecological Factors, and Determination of Optimal Ecological Factor Ranges. Agronomy, 15(5), 1057. https://doi.org/10.3390/agronomy15051057