Combining Ability of Maize Landraces for Yield and Basic Chemical Composition of Grain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Field Experiment
2.3. Chemical Composition Analysis
2.4. Statistical Analysis
3. Results
3.1. General Combining Ability (GCA)
3.2. Specific Combining Ability (SCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AN | Accession Number |
CA | Combining ability |
GCA | General combining ability |
SCA | Specific combining ability |
AGD-R | Analysis of Genetic Designs in R for Windows; software Version 5.1 |
NIR | Near Infrared Reflectance; spectroscopy |
References
- Popović, A.; Kravić, N.; Prodanović, S.; Filipović, M.; Sečanski, M.; Babić, V.; Miriţescu, M. Characterisation and evaluation towards selection of maize landraces with the best per se performances. Rom. Agric. Res. 2020, 37, 49–58. [Google Scholar] [CrossRef]
- Mut, Z.; Kardeş, Y.M.; Köse, Ö.D.E. Determining the grain yield and nutritional composition of maize cultivars in different growing groups. Turk. J. Field Crops 2022, 27, 158–166. [Google Scholar] [CrossRef]
- Redaelli, R.; Bassolino, L.; Balconi, C.; Terracciano, I.; Torri, A.; Nicoletti, F.; Benedetti, G.; Iacoponi, V.; Rea, R.; Taviani, P. Morpho-phenological, chemical, and genetic characterization of Italian maize landraces from the Lazio region. Plants 2024, 13, 3249. [Google Scholar] [CrossRef]
- Golijan, J.; Milinčić, D.D.; Petronijević, R.; Pešić, M.B.; Barać, M.B.; Sečanski, M.; Lekić, S.; Kostić, A.Z. The fatty acid and triacylglycerol profiles of conventionally and organically produced grains of maize, spelt, and buckwheat. J. Cereal Sci. 2019, 90, 102845. [Google Scholar] [CrossRef]
- Balconi, C.; Galaretto, A.; Malvar, R.A.; Nicolas, S.D.; Redaelli, R.; Andjelkovic, V.; Revilla, P.; Bauland, C.; Gouesnard, B.; Butron, A.; et al. Genetic and phenotypic evaluation of European maize landraces as a tool for conservation and valorization of agrobiodiversity. Biology 2024, 13, 454. [Google Scholar] [CrossRef] [PubMed]
- Andorf, C.; Beavis, W.D.; Huford, M.; Smith, S.; Suza, W.P.; Wang, K.; Woodhouse, M.; Yu, J.; Lübberstedt, T. Technological advances in maize breeding: Past, present and future. Theor. Appl. Genet. 2019, 132, 817–849. [Google Scholar] [CrossRef]
- Osorno, M.; Carena, M.J. Creating groups of maize genetic diversity for grain quality: Implications for breeding. Maydica 2008, 53, 131–141. [Google Scholar]
- Dong, N.; Laude, T.; Carena, M.J. The NDSU early QPM program: The next generation of healthier short-season products [Paper presentation]. In Proceedings of the Corn Utilization and Technology Conference, Indianapolis, IN, USA, 4–6 June 2012. [Google Scholar]
- Sharma, S.; Carena, M.J. NDSU EarlyGEM: Incorporating tropical and temperate elite exotic germplasm to increase the genetic diversity of short-season maize. Maydica 2012, 57, 34–42. [Google Scholar]
- Vaz Patto, M.C.; Moreira, P.M.; Carvalho, V.; Pego, S. Collecting maize (Zea mays L. convar. mays) with potential technological ability for bread making in Portugal. Genet. Resour. Crop Evol. 2007, 54, 1555–1563. [Google Scholar] [CrossRef]
- Brites, C.; Trigo, M.J.; Santos, C.; Collar, C.; Rosell, C.M. Maize-based gluten-free bread: Influence of processing parameters on sensory and instrumental quality. Food Bioprocess Technol. 2010, 3, 707–715. [Google Scholar] [CrossRef]
- Babić, V.; Nikolić, V.; Babić, M.; Kravić, N.; Pavlov, J.; Žilić, S.; Čamdžija, Z.; Filipović, M. Elite maize lines having variability in quality parameters—A valuable starting material for grain quality-oriented breeding programs. Agriculture 2024, 14, 2122. [Google Scholar] [CrossRef]
- Cook, J.P.; McMullen, M.D.; Holland, J.B.; Tian, F.; Bradbury, P.; Ross-Ibarra, J.; Flint-Garcia, S.A. Genetic architecture of maize kernel composition in the Nested Association Mapping and Inbred Association Panels. Plant Physiol. 2011, 158, 824–834. [Google Scholar] [CrossRef]
- Gorjanc, G.; Jenko, J.; Hearne, S.J.; Hickey, J.M. Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations. BMC Genom. 2016, 17, 1–15. [Google Scholar] [CrossRef]
- Varshney, R.K.; Singh, V.K.; Hickey, J.M.; Xun, X.; Marshall, D.F.; Wang, J.; Edwards, D.; Ribaut, J.M. Analytical and decision support tools for genomics assisted breeding. Trends Plant Sci. 2016, 21, 354–363. [Google Scholar] [CrossRef]
- Vančetović, J.; Božinović, S.; Ignjatović-Micić, D.; Delić, N.; Kravić, N.; Nikolić, A. A diallel cross among drought tolerant maize populations. Euphytica 2015, 205, 1–16. [Google Scholar] [CrossRef]
- Čamdžija, Z. Kombinacione Sposobnosti za Prinos Zrna i Agronomska Svojstva ZP Inbred Linija Kukuruza [Combining Abilities for Grain Yield and Agronomic Traits of ZP Maize Inbred Lines]. Ph.D. Dissertation, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia, 2014. Available online: https://hdl.handle.net/21.15107/rcub_nardus_5291 (accessed on 19 June 2019).
- Begna, T. Combining ability and heterosis in plant improvement. Open J. Plant Sci. 2021, 6, 108–117. [Google Scholar] [CrossRef]
- Carena, M.J.; Hallauer, A.R.; Miranda-Filho, J.B. Quantitative Genetics in Maize Breeding, 3rd ed.; Iowa State University Press: Ames, IA, USA, 2010; Volume XVI, p. 664. [Google Scholar]
- Arellano-Vázquez, J.L.; Gutiérrez-Hernández, G.F.; Ceja-Torres, L.F.; Flores-Gómez, E.; García-Ramírez, E.; Quiroz-Figueroa, F.R.; Vázquez-Lozano, P. Combining ability and reciprocal effects for the yield of elite blue corn lines from the Central Highlands of Mexico. Plants 2023, 12, 3861. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.N.M.S.; Ahmed, S.; Akhi, A.H.; Talukder, M.Z.A.; Mujahidi, T.A. Combining ability and heterosis study in maize (Zea mays L.) hybrids at different environments in Bangladesh. Bangladesh J. Agric. Res. 2018, 43, 125–134. [Google Scholar] [CrossRef]
- Singh, S.B.; Kumar, P.; Kasana, R.K.; Choudhary, M.; Kumar, S.; Kumar, R.; Karjagi, C.G.; Kumar, B.; Rakshit, S. Unveiling combining ability and heterotic grouping of newly developed winter maize (Zea mays) inbreds. Indian J. Agric. Sci. 2021, 91, 1586–1591. [Google Scholar] [CrossRef]
- Yehia, W.M.B.; El-Hashash, E.F. Combining ability effects and heterosis estimates through line × tester analysis for yield, yield components and fiber traits in Egyptian cotton. J. Agron. Technol. Eng. Manag. 2019, 2, 53238–53246. [Google Scholar]
- Al-Naggar, A.M.; Atta, M.; Mahjabeen, A.; Abd El-Samad, Y. Heterosis and combining ability of maize (Zea mays L.) grain protein, oil, and starch content and yield as affected by water stress. Arch. Curr. Res. Int. 2016, 4, 1–15. [Google Scholar] [CrossRef]
- Amegbor, I.K.; van Biljon, A.; Shargie, N.G.; Tarekegne, A.; Labuschagne, M.T. Combining ability estimates for quality and non-quality protein maize inbred lines for grain yield, agronomic, and quality traits. Front. Sustain. Food Syst. 2023, 7, 1123224. [Google Scholar] [CrossRef]
- Dermail, A.; Lübberstedt, T.; Suwarno, W.B.; Chankaew, S.; Lertrat, K.; Ruanjaichon, V.; Suriharn, K. Combining ability of tropical × temperate maize inducers for haploid induction rate, R1-nj seed set, and agronomic traits. Front. Plant Sci. 2023, 14, 1154905. [Google Scholar] [CrossRef]
- Prai-anun, K.; Jirakiattikul, Y.; Suriharn, K.; Harakotr, B. The combining ability and heterosis analysis of sweet–waxy corn hybrids for yield-related traits and carotenoids. Plants 2024, 13, 296. [Google Scholar] [CrossRef] [PubMed]
- Esteve Agelet, L.; Hurburgh, C.R., Jr. Limitations and current applications of near infrared spectroscopy for single seed analysis. Talanta 2014, 121, 288–299. [Google Scholar] [CrossRef]
- Gürbüz, B.; Aras, E.; Güz, A.M.; Kahriman, F. Prediction performance of NIR calibration models developed with different chemometric techniques to predict oil content in a single kernel of maize. Vib. Spectrosc. 2023, 126, 103528. [Google Scholar] [CrossRef]
- Kahriman, F.; Sütal, A.; Topçakıl, M.; Gezer, Ö. Prototype near-infrared (NIR) reflectance spectrometer for the analysis of maize flour. Instrum. Sci. Technol. 2021, 49, 521–531. [Google Scholar] [CrossRef]
- Popović, A.; Kravić, N.; Babić, M.; Prodanović, S.; Sečanski, M.; Babić, V. Breeding potential of maize landraces evaluated by their testcross performance. Zemdirb.-Agric. 2020, 107, 153–160. [Google Scholar] [CrossRef]
- Ghosh, D.K.; Divecha, J. Two associate class partially balanced incomplete block designs and partial diallel crosses. Biometrika 1997, 84, 245–248. Available online: http://www.jstor.org/stable/233757 (accessed on 5 September 2018). [CrossRef]
- Metzger, M.J.; Brus, D.J.; Bunce, R.G.H.; Carey, P.D.; Gonçalves, J.; Honrado, J.P.; Jongman, R.H.G.; Trabucco, A.; Zomer, R. Environmental stratifications as the basis for national, European, and global ecological monitoring. Ecol. Indic. 2013, 33, 26–35. [Google Scholar] [CrossRef]
- Franco, J.; Crossa, J.; Taba, S.; Shands, H. A sampling strategy for conserving genetic diversity when forming core subsets. Crop Sci. 2005, 45, 1035–1044. [Google Scholar] [CrossRef]
- Paulsen, M.R.; Pordesimo, L.O.; Singh, M.; Mbuvi, S.W.; Ye, B. Maize starch yield calibrations with near infrared reflectance. Biosyst. Eng. 2003, 85, 455–460. [Google Scholar] [CrossRef]
- Rodríguez, F.; Alvarado, G.; Pacheco, Á.; Crossa, J.; Burgueño, J. AGD-R (Analysis of Genetic Designs with R for Windows) Version 5.0. CIMMYT Research Data & Software Repository Network V15. 2015. Available online: https://hdl.handle.net/11529/10202 (accessed on 3 August 2022).
- Muluneh, N.A.; Odong, T.L. Combining ability analysis and determination of controlling gene action for yield and other key traits of open-pollinated maize (Zea mays L.) varieties and their topcrosses with inbred line testers in Uganda. Glob. J. Agric. Res. 2020, 8, 39–47. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Zhu, Y.J.; Wei, L.M.; Dai, J.R.; Song, T.M.; Yan, Y.L.; Chen, S.J. Analysis of protein, starch and oil content of single intact kernels by near infrared reflectance spectroscopy (NIRS) in maize (Zea mays L.). Plant Breed. 2007, 126, 492–497. [Google Scholar] [CrossRef]
- Tefera, A.A.; Beyene, L.W.; Abtew, W.G. Combining Ability Analysis of Maize Inbred Lines in Ethiopia. Agric. Food Sci. 2020, 7, 113–114. [Google Scholar] [CrossRef]
- Dodiya, N.S.; Joshi, V.N. Heterosis and combining ability for quality and yield in early maturing single cross hybrids of maize (Zea mays L.). Crop Res. Hisar 2003, 26, 114–118. [Google Scholar]
- Huang, Y.; Wang, H.; Zhu, Y.; Huang, X.; Li, S.; Wu, X.; Zhao, Y.; Bao, Z.; Qin, L.; Jin, Y.; et al. THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature 2022, 612, 292–300. [Google Scholar] [CrossRef]
- Semenčenko, V.; Mojović, L.; Đukić-Vuković, A.; Radosavljević, M.; Terzić, D.; Milašinović Šeremešić, M. Suitability of some selected maize hybrids from Serbia for the production of bioethanol and dried distillers’ grains with solubles. J. Sci. Food Agric. 2013, 93, 811–818. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, M.; Guan, H.; Wen, H.; Zhang, C.; Dai, C.; Wang, J.; Pan, B.; Li, J.; Liao, H. Genetic dissection of QTLs for oil content in four maize DH populations. Front. Plant Sci. 2023, 14, 1174985. [Google Scholar] [CrossRef]
- Kumar, P.; Kumari, A.; Prasad, S.K. Combining ability analysis for oil and related traits in maize (Zea mays L.). RAU J. Res. 2004, 14, 21–25. [Google Scholar]
- Sharma, S.; Carena, M.J. Grain quality in maize (Zea mays L.): Breeding implications for short-season drought environments. Euphytica 2016, 212, 247–260. [Google Scholar] [CrossRef]
- Bari, M.A.A.; Carena, M.J. Can expired proprietary maize (Zea mays L.) industry lines be useful for short-season breeding programs? I. Grain quality and nutritional traits. Euphytica 2015, 202, 157–171. [Google Scholar] [CrossRef]
- Győri, Z. Corn: Grain-quality characteristics and management of quality requirements. In Cereal Grains: Assessing and Managing Quality; Wrigley, C., Batey, I., Miskelly, D., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 257–290. [Google Scholar] [CrossRef]
- Ben Mariem, S.; Soba, D.; Zhou, B.; Loladze, I.; Morales, F.; Aranjuelo, I. Climate change, crop yields, and grain quality of C3 cereals: A meta-analysis of [CO2], temperature, and drought effects. Plants 2021, 10, 1052. [Google Scholar] [CrossRef] [PubMed]
- Carena, M.J. Germplasm enhancement and cultivar development: The need for sustainable breeding. Crop Breed. Appl. Biotechnol. 2021, 21, e385621S4. [Google Scholar] [CrossRef]
- Ivy, N.A.; Hawlader, M.S. Combining ability in maize. Bangladesh J. Agric. Res. 2000, 25, 385–392. [Google Scholar]
- Joshi, V.N.; Dubey, R.B.; Marker, S. Combining ability for polygenic traits in early maturity hybrids of maize (Zea mays L). Indian J. Genet. Plant Breed. 2002, 62, 141–145. [Google Scholar]
- Meseka, S.K.; Menkir, A.; Ibrahim, A.E.S.; Ajala, S. Genetic analysis of performance of maize inbred lines selected for tolerance to drought under low soil nitrogen. Maydica 2006, 51, 487–495. [Google Scholar]
No. | Accession Number | Domestic Name | Country of Origin | Protein (%) | Starch (%) | Lipid (%) | Yield 1 (t ha−1) |
---|---|---|---|---|---|---|---|
1 | 1890 | Domaći kukuruz | HR | 11.606 | 64.703 | 3.537 | 4.27 |
2 | 2144 | Domaći kukuruz | HR | 11.102 | 66.627 | 3.399 | 3.41 |
3 | 467 | Žuti tvrdunac | BA | 12.075 | 63.818 | 3.895 | 3.68 |
4 | 1960 | Domaći crveni | BA | 10.775 | 66.983 | 3.386 | 4.84 |
5 | 13 | Žuti jarik | ME | 12.166 | 64.992 | 4.207 | 3.14 |
6 | 1895 | Domaći kukuruz | HR | 11.311 | 65.590 | 3.378 | 5.14 |
7 | 1267 | Belo seme | ME | 11.181 | 65.363 | 4.114 | 4.53 |
8 | 1276 | Selarsko seme | ME | 11.365 | 65.387 | 3.543 | 4.97 |
9 | 773 | Žuti osmak | RS | 10.007 | 69.449 | 3.818 | 4.23 |
10 | 1384 | Domaći kukuruz | BA | 10.841 | 67.390 | 3.315 | 3.99 |
11 | 594 | Crvena pčenka | MK | 11.199 | 68.275 | 2.642 | 3.04 |
12 | 871 | Brzica skorovno seme | MK | 11.822 | 64.903 | 3.629 | 3.55 |
13 | 846 | Žuti polutvrdunac | BA | 12.470 | 64.530 | 3.436 | 3.35 |
14 | 642 | Žuti osmak | RS | 11.703 | 64.711 | 3.643 | 4.29 |
15 | 1798 | Žuti tvrdunac—vragati | RS | 10.899 | 66.419 | 3.706 | 5.36 |
16 | 2033 | Domaći kukuruz | HR | 11.054 | 66.572 | 3.359 | 5.47 |
17 | 2006 | Domaći tvrdunac | BA | 12.068 | 63.660 | 3.621 | 5.48 |
18 | 2036 | Bosanac | BA | 11.162 | 65.386 | 3.622 | 5.98 |
19 | 1945 | Domaći tvrdunac—žuti | BA | 11.268 | 65.817 | 3.235 | 4.45 |
20 | 1346 | Srednje belo seme | ME | 9.4790 | 68.528 | 4.329 | 5.88 |
21 | 1665 | Žuti zuban | MK | 11.153 | 66.051 | 3.322 | 5.79 |
22 | 1509 | Avguštana | SI | 10.489 | 66.596 | 4.060 | 6.92 |
23 | 1534 | Domaći beli | RS | 11.564 | 65.751 | 3.647 | 5.44 |
24 | 2249 | Muratovača | BA | 10.434 | 68.076 | 3.271 | 7.74 |
25 | 2047 | Domaći kukuruz | HR | 11.244 | 65.594 | 3.586 | 4.69 |
26 | 1450 | Domaći kukuruz | HR | 10.588 | 67.285 | 3.516 | 5.73 |
27 | 632 | Žuti zuban | RS | 10.224 | 67.637 | 4.439 | 5.34 |
28 | 877 | Čađo | BA | 11.590 | 66.204 | 2.853 | 5.36 |
29 | 197 | Brdska zobanka | SI | 11.622 | 64.344 | 3.924 | 4.65 |
30 | 288 | Žuti zuban | RS | 11.494 | 65.198 | 3.468 | 5.23 |
31 | 1569 | Zobačka | SI | 10.602 | 66.993 | 4.117 | 5.92 |
Testers | Protein (%) | Starch (%) | Lipid (%) | Yield 1 (t ha−1) |
---|---|---|---|---|
ZPL217 | 12.29 | 65.07 | 2.68 | 3.20 |
ZPL-255/75-5 | 11.64 | 66.41 | 3.13 | 2.96 |
Location | Latitude | Longitude | Altitude (m) |
---|---|---|---|
Zemun Polje | N44°51′ | E20°18′ | 73 |
Pančevo | N44°88′ | E20°77′ | 78 |
Sremska Mitrovica | N45°02′ | E19°64′ | 88 |
Bečej | N45°69′ | E19°91′ | 80 |
Soil Properties | Zemun Polje | Pančevo | Sremska Mitrovica | Bečej |
---|---|---|---|---|
pH in H2O | 7.43 | 7.59 | 7.79 | 7.86 |
pH in KCl | 6.96 | 7.02 | 7.08 | 7.08 |
Total N (%) | 0.24 | 0.21 | 0.28 | 0.31 |
P2O5 (mg/100 g) | 14.53 | 12.20 | 18.89 | 22.15 |
K2O (mg/100 g) | 30.26 | 23.95 | 31.92 | 33.12 |
Organic matter (%) | 3.89 | 3.68 | 4.12 | 4.43 |
Soil Type | Slightly calcareous chernozem | Silty chernozem | Calcareous chernozem | Humus-accumulative chernozem |
Humus-accumulative horizon | Profile: Ah-AhC-C | |||
Tillage | Deep tillage (at 30 cm in the autumn) and pre-sowing soil preparation (in the spring) | |||
Fertilization | 120 kg ha−1 of NPK (10:52:0) in the autumn 280–300 kg ha−1 of urea in the spring before sowing | |||
Weed control | Pre-emergence application with terbuthylazine and S-metolachlor Post-emergence application with nicosulfuron and mesotrion |
Accession Number | Protein | Starch | Lipid | Grain Yield | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Line Mean | GCA | Rank | Line Mean | GCA | Rank | Line Mean | GCA | Rank | Line Mean | GCA | Rank | |
AN 1895 | 9.38 | −0.02 | 15 | 69.26 | 0.12 | 15 | 4.03 | −0.08 | 24 | 7.43 | 0.09 | 12 |
AN 1267 | 9.27 | −0.14 | 21 | 69.15 | 0.01 | 19 | 4.31 | 0.20 | 2 | 8.20 | 0.87 * | 1 |
AN1276 | 9.49 | 0.08 | 10 | 68.70 | −0.44 | 25 | 4.22 | 0.11 | 5 | 7.66 | 0.32 | 8 |
AN 773 | 9.25 | −0.16 | 25 | 69.54 | 0.39 | 7 | 4.10 | 0.00 | 16 | 7.25 | −0.09 | 21 |
AN1384 | 9.27 | −0.14 | 23 | 69.55 | 0.41 | 6 | 3.92 | −0.19 | 30 | 7.35 | 0.01 | 14 |
AN 594 | 9.05 | −0.36 | 31 | 70.39 | 1.25 * | 1 | 3.92 | −0.19 | 29 | 7.53 | 0.19 | 10 |
AN 871 | 9.28 | −0.13 | 20 | 69.48 | 0.34 | 8 | 4.13 | 0.03 | 12 | 7.32 | −0.02 | 15 |
AN 846 | 9.52 | 0.12 | 9 | 68.64 | −0.50 | 26 | 4.13 | 0.02 | 13 | 6.99 | −0.35 | 27 |
AN 642 | 9.61 | 0.20 | 6 | 68.84 | −0.30 | 24 | 4.05 | −0.05 | 22 | 7.29 | −0.05 | 19 |
AN 1798 | 9.60 | 0.19 | 7 | 68.88 | −0.26 | 22 | 4.03 | −0.08 | 23 | 7.71 | 0.37 | 7 |
AN 2033 | 9.31 | −0.10 | 18 | 69.36 | 0.22 | 13 | 4.02 | −0.08 | 25 | 7.14 | −0.20 | 24 |
AN 2006 | 9.62 | 0.21 | 5 | 68.63 | −0.51 | 27 | 4.19 | 0.09 | 8 | 6.95 | −0.39 | 28 |
AN 2036 | 9.42 | 0.02 | 12 | 69.08 | −0.06 | 20 | 4.17 | 0.06 | 10 | 7.94 | 0.60 | 3 |
AN 1945 | 9.26 | −0.14 | 24 | 69.66 | 0.52 | 3 | 3.98 | −0.13 | 28 | 7.40 | 0.06 | 13 |
AN 1346 | 9.20 | −0.21 | 27 | 69.45 | 0.30 | 10 | 4.27 | 0.16 | 3 | 7.95 | 0.62 | 2 |
AN 1665 | 9.32 | −0.09 | 17 | 69.47 | 0.33 | 9 | 4.07 | −0.03 | 18 | 7.64 | 0.30 | 9 |
AN 1890 | 9.24 | −0.17 | 26 | 69.43 | 0.29 | 11 | 4.09 | −0.02 | 17 | 6.08 | −1.26 ** | 31 |
AN 1509 | 9.11 | −0.29 | 30 | 69.57 | 0.43 | 5 | 4.23 | 0.13 | 4 | 7.77 | 0.43 | 5 |
AN 1534 | 9.78 | 0.38 | 3 | 68.32 | −0.82 | 28 | 4.06 | −0.04 | 21 | 7.01 | −0.33 | 26 |
AN 2249 | 9.15 | −0.26 | 28 | 69.61 | 0.47 | 4 | 4.01 | −0.10 | 26 | 7.30 | −0.04 | 16 |
AN 2047 | 9.59 | 0.18 | 8 | 68.87 | −0.27 | 23 | 4.07 | −0.04 | 19 | 7.25 | −0.08 | 20 |
AN 1450 | 9.41 | 0.01 | 14 | 69.19 | 0.05 | 17 | 4.14 | 0.03 | 11 | 7.17 | −0.16 | 22 |
AN 632 | 9.27 | −0.14 | 22 | 69.16 | 0.02 | 18 | 4.38 | 0.28 * | 1 | 7.08 | −0.26 | 25 |
AN 877 | 9.14 | −0.27 | 29 | 70.09 | 0.95 | 2 | 3.88 | −0.23 | 31 | 7.73 | 0.39 | 6 |
AN 197 | 9.88 | 0.47 * | 2 | 68.08 | −1.07 | 30 | 4.11 | 0.01 | 15 | 7.82 | 0.48 | 4 |
AN 288 | 9.42 | 0.02 | 13 | 69.07 | −0.07 | 21 | 4.12 | 0.01 | 14 | 7.29 | −0.05 | 18 |
AN 2144 | 9.43 | 0.03 | 11 | 69.23 | 0.09 | 16 | 4.00 | −0.11 | 27 | 7.48 | 0.14 | 11 |
AN 1569 | 9.34 | −0.07 | 16 | 69.27 | 0.13 | 14 | 4.21 | 0.10 | 6 | 7.30 | −0.04 | 17 |
AN 467 | 9.76 | 0.36 | 4 | 68.15 | −0.99 | 29 | 4.19 | 0.09 | 9 | 6.76 | −0.58 | 29 |
AN 1960 | 9.28 | −0.13 | 19 | 69.38 | 0.24 | 12 | 4.06 | −0.04 | 20 | 7.14 | −0.20 | 23 |
AN 13 | 9.95 | 0.54 * | 1 | 67.87 | −1.27 * | 31 | 4.20 | 0.09 | 7 | 6.56 | −0.78 | 30 |
Grand Mean | 9.41 | 69.14 | 4.11 | 7.34 | ||||||||
Standard Error | 0.22 | 0.55 | 0.11 | 0.42 |
Source | Basic Chemical Composition of Grain | Grain Yield (t ha−1) | ||||||
---|---|---|---|---|---|---|---|---|
Protein (%) | Starch (%) | Lipid (%) | ||||||
Tester | 1 T | 2 T | 1 T | 2 T | 2 T | 1 T | 1 T | 2 T |
Tester Mean | 9.44 | 9.38 | 69.18 | 69.10 | 4.30 | 3.91 | 7.69 | 6.99 |
Grand Mean | 9.41 | 69.14 | 4.11 | 7.34 | ||||
GCA Value | 0.03 | −0.03 | 0.04 | −0.04 | 0.19 | −0.19 | 0.35 | −0.35 |
Standard Error | 0.03 | 0.04 | 0.19 | 0.35 |
Source | df | Sum Sq | |||
---|---|---|---|---|---|
Protein | Starch | Lipid | Grain Yield | ||
ENVIRONMENT (E) | 6 | 197.12 ** | 383.04 ** | 35.07 ** | 2504.39 ** |
REP (E) | 7 | 37.39 ** | 86.35 ** | 4.05 ** | 5.21 ** |
GENOTYPE (G) | 61 | 52.27 ** | 311.01 ** | 45.82 ** | 350.13 ** |
LINE (L) | 30 | 43.28 ** | 261.12 ** | 11.25 ** | 155.71 ** |
TESTER (T) | 1 | 0.70 | 1.14 | 31.91** | 108.21 ** |
L × T | 30 | 8.29 | 48.75 ** | 2.66 ** | 86.22 ** |
E × G | 366 | 95.66 * | 408.10 ** | 18.59 ** | 615.30 |
E × L | 180 | 41.28 | 206.76 ** | 10.98 ** | 206.44 |
E × T | 6 | 17.30 ** | 31.23 ** | 2.47 ** | 65.60 ** |
E × L × T | 180 | 37.09 | 170.11 | 5.14 | 343.26* |
Residuals | 427 | 91.52 | 357.07 | 15.38 | 631.17 |
% GCA SS | 83.93 | 84.27 | 82.24 | 64.89 | |
% SCA SS | 16.07 | 15.73 | 17.76 | 35.11 |
Rank | SCA Protein | SCA Starch | SCA Lipid | SCA Grain Yield | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Line | T | L × T (%) | SCA | Line | T | L × T (%) | SCA | Line | T | L × T (%) | SCA | Line | T | L × T (t ha−1) | SCA | |
1 | AN 877 | 2 T | 9.30 | 0.19 * | AN 877 | 1 T | 70.73 | 0.60 * | AN 1890 | 1 T | 4.04 | 0.14 * | AN 13 | 2 T | 7.05 | 0.84 ** |
2 | AN2036 | 1 T | 9.64 | 0.18 | AN 2036 | 2 T | 69.56 | 0.52 * | AN 13 | 1 T | 4.11 | 0.11 * | AN 1569 | 2 T | 7.53 | 0.58 |
3 | AN 288 | 2 T | 9.57 | 0.17 | AN 632 | 2 T | 69.57 | 0.44 | AN 846 | 1 T | 4.04 | 0.10 | AN 2033 | 1 T | 8.01 | 0.52 |
4 | AN 2249 | 2 T | 9.29 | 0.17 | AN 1945 | 2 T | 70.03 | 0.41 | AN 2249 | 2 T | 4.30 | 0.10 | AN 594 | 1 T | 8.34 | 0.46 |
5 | AN 1945 | 1 T | 9.44 | 0.15 | AN 1534 | 2 T | 68.58 | 0.29 | AN 877 | 2 T | 4.15 | 0.08 | AN 1665 | 2 T | 7.73 | 0.45 |
6 | AN 197 | 2 T | 9.97 | 0.12 | AN 1384 | 1 T | 69.86 | 0.27 | AN 2033 | 2 T | 4.29 | 0.07 | AN 1450 | 1 T | 7.94 | 0.41 |
7 | AN 13 | 1 T | 10.10 | 0.12 | AN 288 | 1 T | 69.37 | 0.26 | AN 467 | 1 T | 4.07 | 0.07 | AN 1276 | 1 T | 8.41 | 0.40 |
8 | AN 1450 | 1 T | 9.55 | 0.11 | AN 197 | 1 T | 68.36 | 0.25 | AN 632 | 1 T | 4.26 | 0.07 | AN 642 | 1 T | 7.98 | 0.34 |
9 | AN 1895 | 2 T | 9.47 | 0.11 | AN 2006 | 1 T | 68.91 | 0.23 | AN 1384 | 2 T | 4.17 | 0.06 | AN 467 | 2 T | 6.74 | 0.33 |
10 | AN 1384 | 2 T | 9.35 | 0.11 | AN 1895 | 1 T | 69.53 | 0.23 | AN 1895 | 2 T | 4.27 | 0.05 | AN 1945 | 2 T | 7.37 | 0.32 |
11 | AN 1346 | 1 T | 9.33 | 0.10 | AN 642 | 1 T | 69.10 | 0.22 | AN 642 | 2 T | 4.29 | 0.05 | AN 2047 | 2 T | 7.20 | 0.30 |
12 | AN 1569 | 1 T | 9.47 | 0.10 | AN 1267 | 2 T | 69.31 | 0.19 | AN 1534 | 1 T | 3.92 | 0.05 | AN 2144 | 1 T | 8.13 | 0.30 |
13 | AN 1267 | 1 T | 9.40 | 0.10 | AN 13 | 2 T | 68.02 | 0.18 | AN 1960 | 2 T | 4.30 | 0.05 | AN 1798 | 2 T | 7.63 | 0.27 |
14 | AN 632 | 1 T | 9.39 | 0.09 | AN 1569 | 2 T | 69.40 | 0.17 | AN 2047 | 2 T | 4.30 | 0.04 | AN 197 | 1 T | 8.44 | 0.26 |
15 | AN 871 | 2 T | 9.33 | 0.08 | AN 2047 | 2 T | 68.99 | 0.16 | AN 1346 | 2 T | 4.50 | 0.04 | AN 1267 | 1 T | 8.80 | 0.24 |
16 | AN 1534 | 1 T | 9.87 | 0.06 | AN 871 | 1 T | 69.67 | 0.15 | AN 288 | 1 T | 3.96 | 0.04 | AN 1890 | 1 T | 6.67 | 0.24 |
17 | AN 2006 | 2 T | 9.65 | 0.06 | AN 773 | 1 T | 69.72 | 0.15 | AN 1509 | 1 T | 4.07 | 0.03 | AN 632 | 1 T | 7.65 | 0.22 |
18 | AN 2047 | 1 T | 9.67 | 0.06 | AN 2249 | 1 T | 69.79 | 0.14 | AN 1945 | 2 T | 4.20 | 0.03 | AN 1895 | 2 T | 7.29 | 0.21 |
19 | AN 846 | 2 T | 9.55 | 0.06 | AN 1346 | 2 T | 69.54 | 0.13 | AN 1798 | 2 T | 4.25 | 0.03 | AN 1509 | 2 T | 7.60 | 0.18 |
20 | AN 594 | 2 T | 9.07 | 0.05 | AN 1798 | 2 T | 68.97 | 0.13 | AN 594 | 2 T | 4.14 | 0.03 | AN 877 | 1 T | 8.25 | 0.17 |
21 | AN 642 | 2 T | 9.64 | 0.05 | AN 1450 | 2 T | 69.27 | 0.12 | AN 2036 | 2 T | 4.38 | 0.02 | AN 846 | 2 T | 6.80 | 0.16 |
22 | AN 1798 | 1 T | 9.67 | 0.05 | AN 2033 | 1 T | 69.51 | 0.11 | AN 871 | 1 T | 3.96 | 0.02 | AN 1346 | 1 T | 8.45 | 0.14 |
23 | AN 1665 | 2 T | 9.34 | 0.05 | AN 846 | 1 T | 68.79 | 0.11 | AN 773 | 1 T | 3.93 | 0.02 | AN 1384 | 2 T | 7.14 | 0.14 |
24 | AN 1960 | 1 T | 9.35 | 0.04 | AN 2144 | 2 T | 69.29 | 0.10 | AN 1450 | 1 T | 3.96 | 0.01 | AN 773 | 2 T | 7.00 | 0.10 |
25 | AN 1276 | 1 T | 9.55 | 0.04 | AN 594 | 1 T | 70.53 | 0.10 | AN 2006 | 1 T | 4.01 | 0.01 | AN 2249 | 1 T | 7.74 | 0.08 |
26 | AN 1890 | 2 T | 9.25 | 0.04 | AN 1665 | 1 T | 69.58 | 0.07 | AN 1569 | 2 T | 4.41 | 0.01 | AN 1534 | 1 T | 7.45 | 0.08 |
27 | AN 2144 | 1 T | 9.49 | 0.03 | AN 1890 | 2 T | 69.44 | 0.05 | AN 197 | 2 T | 4.31 | 0.00 | AN 1960 | 1 T | 7.56 | 0.07 |
28 | AN 1509 | 1 T | 9.16 | 0.02 | AN 1276 | 2 T | 68.67 | 0.01 | AN 1267 | 1 T | 4.12 | 0.00 | AN 871 | 2 T | 7.01 | 0.04 |
29 | AN 467 | 2 T | 9.76 | 0.02 | AN 1960 | 2 T | 69.35 | 0.01 | AN 2144 | 2 T | 4.19 | 0.00 | AN 288 | 2 T | 6.97 | 0.04 |
30 | AN 773 | 1 T | 9.29 | 0.01 | AN 1509 | 2 T | 69.54 | 0.00 | AN 1276 | 1 T | 4.03 | 0.00 | AN 2006 | 1 T | 7.34 | 0.03 |
31 | AN 2033 | 2 T | 9.29 | 0.01 | AN 467 | 2 T | 68.12 | 0.00 | AN 1665 | 1 T | 3.88 | 0.00 | AN 2036 | 1 T | 8.30 | 0.01 |
32 | AN 2033 | 1 T | 9.33 | −0.01 | AN 467 | 1 T | 69.60 | 0.00 | AN 1665 | 2 T | 4.26 | 0.00 | AN 2036 | 2 T | 7.58 | −0.01 |
33 | AN 773 | 2 T | 9.21 | −0.01 | AN 1509 | 1 T | 68.19 | 0.00 | AN 1276 | 2 T | 4.41 | 0.00 | AN 2006 | 2 T | 6.57 | −0.03 |
34 | AN 467 | 1 T | 9.77 | −0.02 | AN 1960 | 1 T | 69.41 | −0.01 | AN 2144 | 1 T | 3.81 | 0.00 | AN 288 | 1 T | 7.61 | −0.04 |
35 | AN 1509 | 2 T | 9.06 | −0.02 | AN 1276 | 1 T | 68.72 | −0.01 | AN 1267 | 2 T | 4.49 | 0.00 | AN 871 | 1 T | 7.63 | −0.04 |
36 | AN 2144 | 2 T | 9.37 | −0.03 | AN 1890 | 1 T | 69.42 | −0.05 | AN 197 | 1 T | 3.92 | 0.00 | AN 1960 | 2 T | 6.72 | −0.07 |
37 | AN 1890 | 1 T | 9.23 | −0.04 | AN 1665 | 2 T | 69.36 | −0.07 | AN 1569 | 1 T | 4.01 | −0.01 | AN 1534 | 2 T | 6.58 | −0.08 |
38 | AN 1276 | 2 T | 9.42 | −0.04 | AN 594 | 2 T | 70.25 | −0.10 | AN 2006 | 2 T | 4.38 | −0.01 | AN 2249 | 2 T | 6.87 | −0.08 |
39 | AN 1960 | 2 T | 9.21 | −0.04 | AN 2144 | 1 T | 69.16 | −0.10 | AN 1450 | 2 T | 4.32 | −0.01 | AN 773 | 1 T | 7.50 | −0.10 |
40 | AN 1665 | 1 T | 9.30 | −0.05 | AN 846 | 2 T | 68.50 | −0.11 | AN 773 | 2 T | 4.28 | −0.02 | AN 1384 | 1 T | 7.56 | −0.14 |
41 | AN 1798 | 2 T | 9.52 | −0.05 | AN 2033 | 2 T | 69.21 | −0.11 | AN 871 | 2 T | 4.31 | −0.02 | AN 1346 | 2 T | 7.46 | −0.14 |
42 | AN 642 | 1 T | 9.59 | −0.05 | AN 1450 | 1 T | 69.11 | −0.12 | AN 2036 | 1 T | 3.95 | −0.02 | AN 846 | 1 T | 7.18 | −0.16 |
43 | AN 594 | 1 T | 9.02 | −0.05 | AN 1798 | 1 T | 68.79 | −0.13 | AN 594 | 1 T | 3.70 | −0.03 | AN 877 | 2 T | 7.20 | −0.17 |
44 | AN 846 | 1 T | 9.49 | −0.06 | AN 1346 | 1 T | 69.35 | −0.13 | AN 1798 | 1 T | 3.81 | −0.03 | AN 1509 | 1 T | 7.94 | −0.18 |
45 | AN 2047 | 2 T | 9.50 | −0.06 | AN 2249 | 2 T | 69.43 | −0.14 | AN 1945 | 1 T | 3.76 | −0.03 | AN 1895 | 1 T | 7.57 | −0.21 |
46 | AN 2006 | 1 T | 9.58 | −0.06 | AN 773 | 2 T | 69.35 | −0.15 | AN 1509 | 2 T | 4.39 | −0.03 | AN 632 | 2 T | 6.51 | −0.22 |
47 | AN 1534 | 2 T | 9.69 | −0.06 | AN 871 | 2 T | 69.29 | −0.15 | AN 288 | 2 T | 4.27 | −0.04 | AN 1890 | 2 T | 5.49 | −0.24 |
48 | AN 871 | 1 T | 9.23 | −0.08 | AN 2047 | 1 T | 68.75 | −0.16 | AN 1346 | 1 T | 4.04 | −0.04 | AN 1267 | 2 T | 7.61 | −0.24 |
49 | AN 632 | 2 T | 9.15 | −0.09 | AN 1569 | 1 T | 69.13 | −0.17 | AN 2047 | 1 T | 3.83 | −0.04 | AN 197 | 2 T | 7.21 | −0.26 |
50 | AN 1267 | 2 T | 9.14 | −0.10 | AN 13 | 1 T | 67.72 | −0.18 | AN 1960 | 1 T | 3.82 | −0.05 | AN 1798 | 1 T | 7.79 | −0.27 |
51 | AN 1569 | 2 T | 9.21 | −0.10 | AN 1267 | 1 T | 68.99 | −0.19 | AN 1534 | 2 T | 4.20 | −0.05 | AN 2144 | 2 T | 6.83 | −0.30 |
52 | AN 1346 | 2 T | 9.07 | −0.10 | AN 642 | 2 T | 68.58 | −0.22 | AN 642 | 1 T | 3.81 | −0.05 | AN 2047 | 1 T | 7.31 | −0.30 |
53 | AN 1384 | 1 T | 9.19 | −0.11 | AN 1895 | 2 T | 68.99 | −0.23 | AN 1895 | 1 T | 3.78 | −0.05 | AN 1945 | 1 T | 7.44 | −0.32 |
54 | AN 1895 | 1 T | 9.30 | −0.11 | AN 2006 | 2 T | 68.36 | −0.23 | AN 1384 | 1 T | 3.66 | −0.06 | AN 467 | 1 T | 6.78 | −0.33 |
55 | AN 1450 | 2 T | 9.27 | −0.11 | AN 197 | 2 T | 67.79 | −0.25 | AN 632 | 2 T | 4.51 | −0.07 | AN 642 | 2 T | 6.59 | −0.34 |
56 | AN 13 | 2 T | 9.80 | −0.12 | AN 288 | 2 T | 68.77 | −0.26 | AN 467 | 2 T | 4.31 | −0.07 | AN 1276 | 2 T | 6.90 | −0.40 |
57 | AN 197 | 1 T | 9.79 | −0.12 | AN 1384 | 2 T | 69.24 | −0.27 | AN 2033 | 1 T | 3.76 | −0.07 | AN 1450 | 2 T | 6.41 | −0.41 |
58 | AN 1945 | 2 T | 9.08 | −0.15 | AN 1534 | 1 T | 68.07 | −0.29 | AN 877 | 1 T | 3.61 | −0.08 | AN 1665 | 1 T | 7.54 | −0.45 |
59 | AN 2249 | 1 T | 9.00 | −0.17 | AN 1945 | 1 T | 69.28 | −0.41 | AN 2249 | 1 T | 3.72 | −0.10 | AN 594 | 2 T | 6.72 | −0.46 |
60 | AN 288 | 1 T | 9.28 | −0.17 | AN 632 | 1 T | 68.75 | −0.44 | AN 846 | 2 T | 4.22 | −0.10 | AN 2033 | 2 T | 6.26 | −0.52 |
61 | AN2036 | 2 T | 9.21 | −0.18 | AN 2036 | 1 T | 68.59 | −0.52 * | AN 13 | 2 T | 4.28 | −0.11 * | AN 1569 | 1 T | 7.07 | −0.58 |
62 | AN 877 | 1 T | 8.98 | −0.19 * | AN 877 | 2 T | 69.46 | −0.60 * | AN 1890 | 2 T | 4.14 | −0.14 * | AN 13 | 1 T | 6.07 | −0.84 ** |
Grand Mean | 9.41 | Grand Mean | 69.14 | Grand Mean | 4.11 | Grand Mean | 7.34 | |||||||||
St. Error | 0.10 | St. Error | 0.24 | St. Error | 0.06 | St. Error | 0.32 |
Proteins | Starch | Lipids | Yield | |
---|---|---|---|---|
PROTEINS | 1 | −0.948 ** | 0.130 | −0.718 ** |
STARCH | −0.948 ** | 1 | −0.368 * | 0.587 ** |
LIPIDS | 0.130 | −0.368 * | 1 | 0.024 |
YIELD | −0.718 ** | 0.587 ** | 0.024 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popović, A.; Babić, V.; Čamdžija, Z.; Živanov, S.; Branković-Radojčić, D.; Golijan Pantović, J.; Perić, V. Combining Ability of Maize Landraces for Yield and Basic Chemical Composition of Grain. Agronomy 2025, 15, 1012. https://doi.org/10.3390/agronomy15051012
Popović A, Babić V, Čamdžija Z, Živanov S, Branković-Radojčić D, Golijan Pantović J, Perić V. Combining Ability of Maize Landraces for Yield and Basic Chemical Composition of Grain. Agronomy. 2025; 15(5):1012. https://doi.org/10.3390/agronomy15051012
Chicago/Turabian StylePopović, Aleksandar, Vojka Babić, Zoran Čamdžija, Srboljub Živanov, Dragana Branković-Radojčić, Jelena Golijan Pantović, and Vesna Perić. 2025. "Combining Ability of Maize Landraces for Yield and Basic Chemical Composition of Grain" Agronomy 15, no. 5: 1012. https://doi.org/10.3390/agronomy15051012
APA StylePopović, A., Babić, V., Čamdžija, Z., Živanov, S., Branković-Radojčić, D., Golijan Pantović, J., & Perić, V. (2025). Combining Ability of Maize Landraces for Yield and Basic Chemical Composition of Grain. Agronomy, 15(5), 1012. https://doi.org/10.3390/agronomy15051012