Prediction of Drought Thresholds Triggering Winter Wheat Yield Losses in the Future Based on the CNN-LSTM Model and Copula Theory: A Case Study of Henan Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Historical Climate Data
2.2.2. Future Climate Data
2.2.3. Soil Data
2.2.4. Yield Data of Winter Wheat
2.3. CNN-LSTM Yield Prediction Model
2.3.1. Models and Inputs
2.3.2. Calibration and Verification
2.4. Calculation of SPEI
2.5. Conditional Probability Framework
2.5.1. Copula Theory
2.5.2. Conditional Probability of Yield Losses
3. Results
3.1. Response of Winter Wheat Yield Loss to SPEI
3.2. Probability of Winter Wheat Yield Losses Under Different Drought Conditions
3.3. Prediction of CNN-LSTMN Model
3.4. Probability of Winter Wheat Under Future Climate Change
3.5. Drought Threshold Under Different Levels of Yield Loss
4. Discussion
4.1. Stability of Triggering Drought Thresholds and Deep Learning Model Within Conditional Probability Framework
4.2. Effects of Soil Properties, Evapotranspiration Rate, and Agronomic Practices on Drought Vulnerability
4.3. Effects of Drought on Wheat Production, Physiology, and Economy
4.4. Research Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bolan, S.; Padhye, L.P.; Jasemizad, T.; Govarthanan, M.; Karmegam, N.; Wijesekara, H.; Amarasiri, D.; Hou, D.; Zhou, P.; Biswal, B.K.; et al. Impacts of Climate Change on the Fate of Contaminants through Extreme Weather Events. Sci. Total Environ. 2024, 909, 168388. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, B.; Wang, J.; Kwek, K. The Impact of Climate Change on China’s Agricultural Green Total Factor Productivity. Technol. Forecast. Soc. Change 2022, 185, 122054. [Google Scholar] [CrossRef]
- Lefèvre, J.; Le Gallic, T.; Fragkos, P.; Mercure, J.-F.; Simsek, Y.; Paroussos, L. Global Socio-Economic and Climate Change Mitigation Scenarios through the Lens of Structural Change. Glob. Environ. Change 2022, 74, 102510. [Google Scholar] [CrossRef]
- Dang, C.; Zhang, H.; Yao, C.; Mu, D.; Lyu, F.; Zhang, Y.; Zhang, S. IWRAM: A Hybrid Model for Irrigation Water Demand Forecasting to Quantify the Impacts of Climate Change. Agric. Water Manag. 2024, 291, 108643. [Google Scholar] [CrossRef]
- Elsadek, E.A.; Zhang, K.; Hamoud, Y.A.; Mousa, A.; Awad, A.; Abdallah, M.; Shaghaleh, H.; Hamad, A.A.A.; Jamil, M.T.; Elbeltagi, A. Impacts of Climate Change on Rice Yields in the Nile River Delta of Egypt: A Large-Scale Projection Analysis Based on CMIP6. Agric. Water Manag. 2024, 292, 108673. [Google Scholar] [CrossRef]
- Radmehr, R.; Brorsen, B.W.; Shayanmehr, S. Adapting to Climate Change in Arid Agricultural Systems: An Optimization Model for Water-Energy-Food Nexus Sustainability. Agric. Water Manag. 2024, 303, 109052. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Zhang, B.; Jiang, T.; Wu, S.; Wu, W.; Li, Y.; He, J.; Liu, D.; Dong, Q.; et al. Explore the Evolution of Winter Wheat Production and Its Response to Climate Change under Varying Precipitation Years in the Loess Plateau of China. Agric. Water Manag. 2025, 309, 109335. [Google Scholar] [CrossRef]
- Zobeidi, T.; Yaghoubi, J.; Yazdanpanah, M. Farmers’ Incremental Adaptation to Water Scarcity: An Application of the Model of Private Proactive Adaptation to Climate Change (MPPACC). Agric. Water Manag. 2022, 264, 107528. [Google Scholar] [CrossRef]
- Nouri, M.; Homaee, M.; Pereira, L.S.; Bybordi, M. Water Management Dilemma in the Agricultural Sector of Iran: A Review Focusing on Water Governance. Agric. Water Manag. 2023, 288, 108480. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, T.; Jiang, W.; Li, P.; Shi, P.; Xu, G.; Cheng, S.; Cheng, Y.; Fan, Z.; Wang, X. Effects of Irrigation and Fertilization on Different Potato Varieties Growth, Yield and Resources Use Efficiency in the Northwest China. Agric. Water Manag. 2022, 261, 107351. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Data-Driven Model Predictive Control for Precision Irrigation Management. Smart Agric. Technol. 2023, 3, 100074. [Google Scholar] [CrossRef]
- Talari, G.; Cummins, E.; McNamara, C.; O’Brien, J. State of the Art Review of Big Data and Web-Based Decision Support Systems (DSS) for Food Safety Risk Assessment with Respect to Climate Change. Trends Food Sci. Technol. 2022, 126, 192–204. [Google Scholar] [CrossRef]
- Lu, B.; Lin, Y.; He, C.; Li, X.; Zhang, W.; He, X. Dark Septate Endophyte Enhances Ammopiptanthus Mongolicus Growth during Drought Stress through the Modulation of Leaf Morphology and Physiology Characteristics. Ind. Crops Prod. 2025, 225, 120544. [Google Scholar] [CrossRef]
- Ru, C.; Hu, X.; Chen, D.; Wang, W. Drought Stimulus Enhanced Stress Tolerance in Winter Wheat (Triticum aestivum L.) by Improving Physiological Characteristics, Growth, and Water Productivity. Plant Physiol. Biochem. 2024, 214, 108906. [Google Scholar] [CrossRef]
- Duan, H.-X.; Luo, C.-L.; Zhu, Y.; Zhao, L.; Wang, J.; Wang, W.; Xiong, Y.-C. Arbuscular Mycorrhizal Fungus Activates Wheat Physiology for Higher Reproductive Allocation under Drought Stress in Primitive and Modern Wheat. Eur. J. Agron. 2024, 161, 127376. [Google Scholar] [CrossRef]
- Shoormij, F.; Mirlohi, A.; Saeidi, G.; Sabzalian, M.R.; Shirvani, M. Zinc Foliar Application May Alleviate Drought Stress in Wheat Species through Physiological Changes. Plant Stress 2024, 13, 100534. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, W.; Wei, X.; Sun, Y.; Dong, S. Molecular Mechanism of Drought Resistance in Soybean Roots Revealed Using Physiological and Multi-Omics Analyses. Plant Physiol. Biochem. 2024, 208, 108451. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Sang, Y.-F.; Sun, S.; Aghakouchak, A.; Hu, S.; Sandeep Dash, S. Development of a Leaf Area Index-Based Relative Threshold Method for Identifying Agricultural Drought Areas. J. Hydrol. 2024, 641, 131846. [Google Scholar] [CrossRef]
- Zhang, R.; Shangguan, W.; Liu, J.; Dong, W.; Wu, D. Assessing Meteorological and Agricultural Drought Characteristics and Drought Propagation in Guangdong, China. J. Hydrol. Reg. Stud. 2024, 51, 101611. [Google Scholar] [CrossRef]
- Khaledi-Alamdari, M.; Majnooni-Heris, A.; Fakheri-Fard, A.; Russo, A. Probabilistic Climate Risk Assessment in Rainfed Wheat Yield: Copula Approach Using Water Requirement Satisfaction Index. Agric. Water Manag. 2023, 289, 108542. [Google Scholar] [CrossRef]
- He, Y.; Xie, Y.; Liu, J.; Hu, Z.; Liu, J.; Cheng, Y.; Zhang, L.; Wang, Z.; Li, M. Generation of 1 Km High Resolution Standardized Precipitation Evapotranspiration Index for Drought Monitoring over China Using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2024, 135, 104296. [Google Scholar] [CrossRef]
- Li, L.; Peng, Q.; Wang, M.; Cao, Y.; Gu, X.; Cai, H. Quantitative Analysis of Vegetation Drought Propagation Process and Uncertainty in the Yellow River Basin. Agric. Water Manag. 2024, 295, 108775. [Google Scholar] [CrossRef]
- Ma, Y.; Ren, J.; Kang, S.; Niu, J.; Tong, L. Spatial-Temporal Dynamics of Meteorological and Agricultural Drought in Northwest China: Propagation, Drivers and Prediction. J. Hydrol. 2025, 650, 132492. [Google Scholar] [CrossRef]
- Pei, W.; Hao, L.; Fu, Q.; Ren, Y.; Li, T. The Standardized Precipitation Evapotranspiration Index Based on Cumulative Effect Attenuation. J. Hydrol. 2024, 635, 131148. [Google Scholar] [CrossRef]
- Fang, D.; Chen, J.; Wang, S.; Chen, B. Can Agricultural Mechanization Enhance the Climate Resilience of Food Production? Evidence from China. Appl. Energy 2024, 373, 123928. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, C.; Deng, J.; Chanussot, J.; Hong, D. Adaptive High-Quality Sampling for Winter Wheat Early Mapping: A Novel Cascade Index and Machine Learning Approach. Smart Agric. Technol. 2025, 10, 100725. [Google Scholar] [CrossRef]
- Cao, J.; Luo, Y.; Zhang, X.; Fan, L.; Tao, J.; Nam, W.-H.; Sur, C.; He, Y.; Gulakhmadov, A.; Niyogi, D. Assessing the Responsiveness of Multiple Microwave Remote Sensing Vegetation Optical Depth Indices to Drought on Crops in Midwest US. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104072. [Google Scholar] [CrossRef]
- Gao, S.; Huang, S.; Singh, V.P.; Deng, X.; Duan, L.; Leng, G.; Guo, W.; Li, Y.; Zhang, L.; Han, Z.; et al. Dynamic Response of Vegetation to Meteorological Drought and Driving Mechanisms in Mongolian Plateau. J. Hydrol. 2025, 650, 132541. [Google Scholar] [CrossRef]
- Geng, G.; Zhang, B.; Gu, Q.; He, Z.; Zheng, R. Drought Propagation Characteristics across China: Time, Probability, and Threshold. J. Hydrol. 2024, 631, 130805. [Google Scholar] [CrossRef]
- Wang, B.; Li, L.; Feng, P.; Chen, C.; Luo, J.-J.; Taschetto, A.S.; Harrison, M.T.; Liu, K.; Liu, D.L.; Yu, Q.; et al. Probabilistic Analysis of Drought Impact on Wheat Yield and Climate Change Implications. Weather Clim. Extrem. 2024, 45, 100708. [Google Scholar] [CrossRef]
- Wei, X.; Huang, S.; Liu, D.; Li, J.; Huang, Q.; Leng, G.; Shi, H.; Peng, J. The Response of Agricultural Drought to Meteorological Drought Modulated by Air Temperature. J. Hydrol. 2024, 639, 131626. [Google Scholar] [CrossRef]
- Feiziasl, V.; Jafarzadeh, J.; Sadeghzadeh, B.; Mousavi Shalmani, M.A. Water Deficit Index to Evaluate Water Stress Status and Drought Tolerance of Rainfed Barley Genotypes in Cold Semi-Arid Area of Iran. Agric. Water Manag. 2022, 262, 107395. [Google Scholar] [CrossRef]
- Li, P.; Huang, Q.; Huang, S.; Leng, G.; Peng, J.; Wang, H.; Zheng, X.; Li, Y.; Fang, W. Various Maize Yield Losses and Their Dynamics Triggered by Drought Thresholds Based on Copula-Bayesian Conditional Probabilities. Agric. Water Manag. 2022, 261, 107391. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, T.; Xu, K.; Chen, C. The Impact of High Temperature and Drought Stress on the Yield of Major Staple Crops in Northern China. J. Environ. Manag. 2022, 314, 115092. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Huang, S.; Huang, Q.; Leng, G.; Mu, Z.; Han, Z.; Wei, X.; She, D.; Wang, H.; Wang, Z.; et al. Drought Trigger Thresholds for Different Levels of Vegetation Loss in China and Their Dynamics. Agric. For. Meteorol. 2023, 331, 109349. [Google Scholar] [CrossRef]
- Veettil, A.V.; Mishra, A.K. Quantifying Thresholds for Advancing Impact-Based Drought Assessment Using Classification and Regression Tree (CART) Models. J. Hydrol. 2023, 625, 129966. [Google Scholar] [CrossRef]
- Ayoub Shaikh, T.; Rasool, T.; Rasheed Lone, F. Towards Leveraging the Role of Machine Learning and Artificial Intelligence in Precision Agriculture and Smart Farming. Comput. Electron. Agric. 2022, 198, 107119. [Google Scholar] [CrossRef]
- Yang, C.; Liu, C.; Liu, Y.; Gao, Y.; Xing, X.; Ma, X. Prediction of Drought Trigger Thresholds for Future Winter Wheat Yield Losses in China Based on the DSSAT-CERES-Wheat Model and Copula Conditional Probabilities. Agric. Water Manag. 2024, 299, 108881. [Google Scholar] [CrossRef]
- Huang, J.; Gómez-Dans, J.L.; Huang, H.; Ma, H.; Wu, Q.; Lewis, P.E.; Liang, S.; Chen, Z.; Xue, J.-H.; Wu, Y.; et al. Assimilation of Remote Sensing into Crop Growth Models: Current Status and Perspectives. Agric. For. Meteorol. 2019, 276–277, 107609. [Google Scholar] [CrossRef]
- Zhang, L.; Li, C.; Wu, X.; Xiang, H.; Jiao, Y.; Chai, H. BO-CNN-BiLSTM Deep Learning Model Integrating Multisource Remote Sensing Data for Improving Winter Wheat Yield Estimation. Front. Plant Sci. 2024, 15, 1500499. [Google Scholar] [CrossRef]
- Li, Y.; Guan, K.; Yu, A.; Peng, B.; Zhao, L.; Li, B.; Peng, J. Toward Building a Transparent Statistical Model for Improving crop Yield Prediction: Modeling Rainfed Corn in the U.S. Field Crops Res. 2019, 234, 55–65. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Srivastava, A.; Ehsan, M.; Sharma, G.; Yu, J.; Khadke, L.; Gautam, V.K.; Awad, A.; Jinsong, D. Advanced Stacked Integration Method for Forecasting Long-Term Drought Severity: CNN with Machine Learning Models. J. Hydrol. Reg. Stud. 2024, 53, 101759. [Google Scholar] [CrossRef]
- Dupuis, A.; Dadouchi, C.; Agard, B. Methodology for Multi-Temporal Prediction of Crop Rotations Using Recurrent Neural Networks. Smart Agric. Technol. 2023, 4, 100152. [Google Scholar] [CrossRef]
- Han, J.; Shi, L.; Yang, Q.; Chen, Z.; Yu, J.; Zha, Y. Rice Yield Estimation Using a CNN-Based Image-Driven Data Assimilation Framework. Field Crops Res. 2022, 288, 108693. [Google Scholar] [CrossRef]
- Tian, H.; Wang, P.; Tansey, K.; Zhang, J.; Zhang, S.; Li, H. An LSTM Neural Network for Improving Wheat Yield Estimates by Integrating Remote Sensing Data and Meteorological Data in the Guanzhong Plain, PR China. Agric. For. Meteorol. 2021, 310, 108629. [Google Scholar] [CrossRef]
- Sagheer, A.; Kotb, M. Time Series Forecasting of Petroleum Production Using Deep LSTM Recurrent Networks. Neurocomputing 2019, 323, 203–213. [Google Scholar] [CrossRef]
- Pan, S.; Yang, B.; Wang, S.; Guo, Z.; Wang, L.; Liu, J.; Wu, S. Oil Well Production Prediction Based on CNN-LSTM Model with Self-Attention Mechanism. Energy 2023, 284, 128701. [Google Scholar] [CrossRef]
- Zha, W.; Liu, Y.; Wan, Y.; Luo, R.; Li, D.; Yang, S.; Xu, Y. Forecasting Monthly Gas Field Production Based on the CNN-LSTM Model. Energy 2022, 260, 124889. [Google Scholar] [CrossRef]
- Agga, A.; Abbou, A.; Labbadi, M.; Houm, Y.E.; Ou Ali, I.H. CNN-LSTM: An Efficient Hybrid Deep Learning Architecture for Predicting Short-Term Photovoltaic Power Production. Electr. Power Syst. Res. 2022, 208, 107908. [Google Scholar] [CrossRef]
- Saini, P.; Nagpal, B.; Garg, P.; Kumar, S. CNN-BI-LSTM-CYP: A Deep Learning Approach for Sugarcane Yield Prediction. Sustain. Energy Technol. Assess. 2023, 57, 103263. [Google Scholar] [CrossRef]
- Galmarini, S.; Solazzo, E.; Ferrise, R.; Srivastava, A.K.; Ahmed, M.; Asseng, S.; Cannon, A.J.; Dentener, F.; De Sanctis, G.; Gaiser, T.; et al. Assessing the Impact on Crop Modelling of Multi- and Uni-Variate Climate Model Bias Adjustments. Agric. Syst. 2024, 215, 103846. [Google Scholar] [CrossRef]
- Shoukat, M.R.; Wang, J.; Habib-ur-Rahman, M.; Hui, X.; Hoogenboom, G.; Yan, H. Adaptation Strategies for Winter Wheat Production at Farmer Fields under a Changing Climate: Employing Crop and Multiple Global Climate Models. Agric. Syst. 2024, 220, 104066. [Google Scholar] [CrossRef]
- Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K.; Zhou, Z.; Zhu, J. A CMIP6-Based Framework for Propagation from Meteorological and Hydrological Droughts to Socioeconomic Drought. J. Hydrol. 2023, 623, 129782. [Google Scholar] [CrossRef]
- Xiang, K.; Wang, B.; Liu, D.L.; Chen, C.; Waters, C.; Huete, A.; Yu, Q. Probabilistic Assessment of Drought Impacts on Wheat Yield in South-Eastern Australia. Agric. Water Manag. 2023, 284, 108359. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, Z.; Wang, D.; Singh, V.P.; Zhang, C.; Fu, X.; Wang, L. A Time-Varying Copula-Based Approach to Quantify the Effects of Antecedent Drought on Hot Extremes. J. Hydrol. 2023, 627, 130418. [Google Scholar] [CrossRef]
- Zha, X.; Sun, H.; Jiang, H.; Cao, L.; Xue, J.; Gui, D.; Yan, D.; Tuo, Y. Coupling Bayesian Network and Copula Theory for Water Shortage Assessment: A Case Study in Source Area of the South-to-North Water Division Project (SNWDP). J. Hydrol. 2023, 620, 129434. [Google Scholar] [CrossRef]
- Long, J.; Xu, C.; Wang, Y.; Zhang, J. From Meteorological to Agricultural Drought: Propagation Time and Influencing Factors over Diverse Underlying Surfaces Based on CNN-LSTM Model. Ecol. Inform. 2024, 82, 102681. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Q.; Ma, Z. Influences of Graupel Microphysics on CMA-GFS Simulation of Summer Regional Precipitation. J. Meteorol. Res. 2024, 38, 27–38. [Google Scholar] [CrossRef]
- Dutta, R.; Chanda, K.; Maity, R. Future of Solar Energy Potential in a Changing Climate Across the World: A CMIP6 Multi-Model Ensemble Analysis. Renew. Energy 2022, 188, 819–829. [Google Scholar] [CrossRef]
- John, A.; Douville, H.; Ribes, A.; Yiou, P. Quantifying CMIP6 Model Uncertainties in Extreme Precipitation Projections. Weather Clim. Extrem. 2022, 36, 100435. [Google Scholar] [CrossRef]
- Eekhout, J.P.C.; Delsman, I.; Baartman, J.E.M.; van Eupen, M.; van Haren, C.; Contreras, S.; Martínez-López, J.; de Vente, J. How Future Changes in Irrigation Water Supply and Demand Affect Water Security in a Mediterranean Catchment. Agric. Water Manag. 2024, 297, 108818. [Google Scholar] [CrossRef]
- Wang, M.; Fu, X.; Zhang, D.; Chen, F.; Liu, M.; Zhou, S.; Su, J.; Tan, S.K. Assessing Urban Flooding Risk in Response to Climate Change and Urbanization Based on Shared Socio-Economic Pathways. Sci. Total Environ. 2023, 880, 163470. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Babovic, V. Multi-Site Multivariate Downscaling of Global Climate Model Outputs: An Integrated Framework Combining Quantile Mapping, Stochastic Weather Generator and Empirical Copula Approaches. Clim. Dyn. 2019, 52, 5775–5799. [Google Scholar] [CrossRef]
- Dai, Y.; Shangguan, W.; Duan, Q.; Liu, B.; Fu, S.; Niu, G. Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling. J. Hydrometeorol. 2013, 14, 869–887. [Google Scholar] [CrossRef]
- Shen, Z.; Fan, X.; Zhang, L.; Yu, H. Wind Speed Prediction of Unmanned Sailboat Based on CNN and LSTM Hybrid Neural Network. Ocean Eng. 2022, 254, 111352. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, Z.; Wang, D.; Wu, J.; Chen, L. An Ensemble CNN-LSTM and GRU Adaptive Weighting Model Based Improved Sparrow Search Algorithm for Predicting Runoff Using Historical Meteorological and Runoff Data as Input. J. Hydrol. 2023, 625, 129977. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Lee, S.; Moriasi, D.N.; Danandeh Mehr, A.; Mirchi, A. Sensitivity of Standardized Precipitation and Evapotranspiration Index (SPEI) to the Choice of SPEI Probability Distribution and Evapotranspiration Method. J. Hydrol. Reg. Stud. 2024, 53, 101761. [Google Scholar] [CrossRef]
- Lingua, L.N.; Carcedo, A.J.P.; Giménez, V.D.; Maddonni, G.A.; Ciampitti, I.A. Environmental Characterization for Rainfed Maize Production in the US Great Plains Region. Agric. For. Meteorol. 2024, 359, 110286. [Google Scholar] [CrossRef]
- Meng, H.; Qian, L. Performances of Different Yield-Detrending Methods in Assessing the Impacts of Agricultural Drought and Flooding: A Case Study in the Middle-and-Lower Reach of the Yangtze River, China. Agric. Water Manag. 2024, 296, 108812. [Google Scholar] [CrossRef]
- Feng, S.; Hao, Z.; Zhang, X.; Hao, F. Changes in Climate-Crop Yield Relationships Affect Risks of Crop Yield Reduction. Agric. For. Meteorol. 2021, 304–305, 108401. [Google Scholar] [CrossRef]
- Meng, H.; Qian, L.; Duan, K. Evaluating the Impacts of Flooding on Crop Yields by Different Meteorological Indices: A Regional Case Study in the Middle-Lower Reach of the Yangtze River, China. Ecol. Indic. 2024, 162, 112068. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, J.; Wei, L.; Wang, G.; Dong, W.; Liu, X. Impact of Soil Textures on Agricultural Drought Evolution and Field Capacity Estimation in Humid Regions. J. Hydrol. 2023, 626, 130257. [Google Scholar] [CrossRef]
- Yang, L.; Feng, Q.; Zhu, M.; Wang, L.; Alizadeh, M.R.; Adamowski, J.F.; Wen, X.; Yin, Z. Variation in Actual Evapotranspiration and Its Ties to Climate Change and Vegetation Dynamics in Northwest China. J. Hydrol. 2022, 607, 127533. [Google Scholar] [CrossRef]
- Tian, H.; Wang, P.; Tansey, K.; Zhang, S.; Zhang, J.; Li, H. An IPSO-BP Neural Network for Estimating Wheat Yield Using Two Remotely Sensed Variables in the Guanzhong Plain, PR China. Comput. Electron. Agric. 2020, 169, 105180. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.-H.; Chen, M.-X.; Zhu, F.-Y.; Song, T. Optimizing Water Conservation and Utilization with a Regulated Deficit Irrigation Strategy in Woody Crops: A Review. Agric. Water Manag. 2023, 289, 108523. [Google Scholar] [CrossRef]
- Li, L.; Li, H.; Liu, N.; Lu, Y.; Shao, L.; Chen, S.; Zhang, X. Water Use Characteristics and Drought Tolerant Ability of Different Winter Wheat Cultivars Assessed under Whole Growth Circle and at Seedling Stage. Agric. Water Manag. 2024, 300, 108921. [Google Scholar] [CrossRef]
- Kelly, T.D.; Foster, T.; Schultz, D.M. Assessing the Value of Adapting Irrigation Strategies Within the Season. Agric. Water Manag. 2023, 275, 107986. [Google Scholar] [CrossRef]
- Yang, H.; Feng, X.; Wang, H.; Yan, H.; Zhao, P.; Gao, F.; Guo, X.; Xie, B. Long Time-Series Variation of Crop Yield under Drought Stress and Drought Vulnerability Curves in Songnen Plain, Northeast China. Ecol. Indic. 2023, 154, 110624. [Google Scholar] [CrossRef]
- Leng, G.; Hall, J. Crop Yield Sensitivity of Global Major Agricultural Countries to Droughts and the Projected Changes in the Future. Sci. Total Environ. 2019, 654, 811–821. [Google Scholar] [CrossRef]
- Mu, Q.; Cai, H.; Sun, S.; Wen, S.; Xu, J.; Dong, M.; Saddique, Q. The Physiological Response of Winter Wheat under Short-Term Drought Conditions and the Sensitivity of Different Indices to Soil Water Changes. Agric. Water Manag. 2021, 243, 106475. [Google Scholar] [CrossRef]
- Wang, X.; Chen, J.; Ge, J.; Huang, M.; Cai, J.; Zhou, Q.; Dai, T.; Mur, L.A.J.; Jiang, D. The Different Root Apex Zones Contribute to Drought Priming Induced Tolerance to a Reoccurring Drought Stress in Wheat. Crop J. 2021, 9, 1088–1097. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Xie, J.; Huang, M.; Cai, J.; Zhou, Q.; Dai, T.; Jiang, D. Abscisic Acid and Jasmonic Acid Are Involved in Drought Priming-Induced Tolerance to Drought in Wheat. Crop J. 2021, 9, 120–132. [Google Scholar] [CrossRef]
- Gómez-Candón, D.; Mathieu, V.; Martinez, S.; Labbé, S.; Delalande, M.; Regnard, J.-L. Unravelling the Responses of Different Apple Varieties to Water Constraints by Continuous Field Thermal Monitoring. Sci. Hortic. 2022, 299, 111013. [Google Scholar] [CrossRef]
- Bao, X.; Hou, X.; Duan, W.; Yin, B.; Ren, J.; Wang, Y.; Liu, X.; Gu, L.; Zhen, W. Screening and Evaluation of Drought Resistance Traits of Winter Wheat in the North China Plain. Front. Plant Sci. 2023, 14, 1194759. [Google Scholar] [CrossRef]
- Mu, Q.; Xu, J.; Yu, M.; Guo, Z.; Dong, M.; Cao, Y.; Zhang, S.; Sun, S.; Cai, H. Physiological Response of Winter Wheat (Triticum aestivum L.) during Vegetative Growth to Gradual, Persistent and Intermittent Drought. Agric. Water Manag. 2022, 274, 107911. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M.; Liu, Y. Crop Yield and Production Responses to Climate Disasters in China. Sci. Total Environ. 2021, 750, 141147. [Google Scholar] [CrossRef]
- Espinosa-Tasón, J.; Berbel, J.; Gutiérrez-Martín, C.; Musolino, D.A. Socioeconomic Impact of 2005–2008 Drought in Andalusian Agriculture. Sci. Total Environ. 2022, 826, 154148. [Google Scholar] [CrossRef]
- Schmitt, J.; Offermann, F.; Söder, M.; Frühauf, C.; Finger, R. Extreme Weather Events Cause Significant Crop Yield Losses at the Farm Level in German Agriculture. Food Policy 2022, 112, 102359. [Google Scholar] [CrossRef]
- Pinke, Z.; Ács, T.; Kalicz, P.; Kern, Z.; Jambor, A. Hotspots in the EU-27 and Economic Consequences of the 2022 Spring-Summer Drought. EuroChoices 2024, 23, 28–33. [Google Scholar] [CrossRef]
- Geng, G.; Yang, R.; Chen, Q.; Deng, T.; Yue, M.; Zhang, B.; Gu, Q. Tracking the Influence of Drought Events on Winter Wheat Using Long-Term Gross Primary Production and Yield in the Wei River Basin, China. Agric. Water Manag. 2023, 275, 108019. [Google Scholar] [CrossRef]
- Zhao, K.; Tao, Y.; Liu, M.; Yang, D.; Zhu, M.; Ding, J.; Zhu, X.; Guo, W.; Zhou, G.; Li, C. Does Temporary Heat Stress or Low Temperature Stress Similarly Affect Yield, Starch, and Protein of Winter Wheat Grain during Grain Filling? J. Cereal Sci. 2022, 103, 103408. [Google Scholar] [CrossRef]
- Chalise, D.P.; Snider, J.L.; Hand, L.C.; Roberts, P.; Vellidis, G.; Ermanis, A.; Collins, G.D.; Lacerda, L.N.; Cohen, Y.; Pokhrel, A.; et al. Cultivar, Irrigation Management, and Mepiquat Chloride Strategy: Effects on Cotton Growth, Maturity, Yield, and Fiber Quality. Field Crops Res. 2022, 286, 108633. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Sun, Y.; Liu, P.; Zhang, Q.; Wang, X.; Wang, R.; Li, J. Long-Term Effects of Optimized Fertilization, Tillage and Crop Rotation on Soil Fertility, Crop Yield and Economic Profit on the Loess Plateau. Eur. J. Agron. 2023, 143, 126731. [Google Scholar] [CrossRef]
- Li, Y.; Huang, G.; Chen, Z.; Xiong, Y.; Huang, Q.; Xu, X.; Huo, Z. Effects of Irrigation and Fertilization on Grain Yield, Water and Nitrogen Dynamics and Their Use Efficiency of Spring Wheat Farmland in an Arid Agricultural Watershed of Northwest China. Agric. Water Manag. 2022, 260, 107277. [Google Scholar] [CrossRef]
- Slamini, M.; Sbaa, M.; Arabi, M.; Darmous, A. Review on Partial Root-Zone Drying Irrigation: Impact on Crop Yield, Soil and Water Pollution. Agric. Water Manag. 2022, 271, 107807. [Google Scholar] [CrossRef]
- Riemens, M.; Sønderskov, M.; Moonen, A.-C.; Storkey, J.; Kudsk, P. An Integrated Weed Management Framework: A Pan-European Perspective. Eur. J. Agron. 2022, 133, 126443. [Google Scholar] [CrossRef]
- Zeng, R.; Lin, X.; Welch, S.M.; Yang, S.; Huang, N.; Sassenrath, G.F.; Yao, F. Impact of Water Deficit and Irrigation Management on Winter Wheat Yield in China. Agric. Water Manag. 2023, 287, 108431. [Google Scholar] [CrossRef]
- Zhou, W.; Li, M.; Achal, V. A comprehensive Review on Environmental and Human Health Impacts of Chemical Pesticide Usage. Emerg. Contam. 2025, 11, 100410. [Google Scholar] [CrossRef]
- Li, E.; Zhao, J.; Pullens, J.W.M.; Yang, X. The Compound Effects of Drought and High Temperature Stresses Will Be the Main Constraints on Maize Yield in Northeast China. Sci. Total Environ. 2022, 812, 152461. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiao, L.; Tang, Y.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Spatio-Temporal Change of Winter Wheat Yield and Its Quantitative Responses to Compound Frost-Dry Events—An Example of the Huang-Huai-Hai Plain of China from 2001 to 2020. Sci. Total Environ. 2024, 940, 173531. [Google Scholar] [CrossRef] [PubMed]
- Delarue, M.; Benhamed, M.; Fragkostefanakis, S. The Role of Epigenetics in Tomato Stress Adaptation. New Crops 2025, 2, 100044. [Google Scholar] [CrossRef]
- Luo, H.; Ou, G.; Yue, C.; Zhu, B.; Wu, Y.; Zhang, X.; Lu, C.; Tang, J. A Framework for Montane Forest Canopy Height Estimation via Integrating Deep Learning and Multi-Source Remote Sensing Data. Int. J. Appl. Earth Obs. Geoinf. 2025, 138, 104474. [Google Scholar] [CrossRef]
- Xu, X.; Liu, L.; Huang, L.; Hu, Y. Combined Use of Multi-Source Satellite Imagery and Deep Learning for Automated Mapping of Glacial Lakes in the Bhutan Himalaya. Sci. Remote Sens. 2024, 10, 100157. [Google Scholar] [CrossRef]
- Cai, S.; Zuo, D.; Wang, H.; Xu, Z.; Wang, G.; Yang, H. Assessment of Agricultural Drought Based on Multi-Source Remote Sensing Data in a Major Grain Producing Area of Northwest China. Agric. Water Manag. 2023, 278, 108142. [Google Scholar] [CrossRef]
- Shi, H.; Li, Z.; Xiang, Y.; Tang, Z.; Sun, T.; Du, R.; Li, W.; Liu, X.; Huang, X.; Liu, Y.; et al. Integrating Multi-Source Remote Sensing and Machine Learning for Root-Zone Soil Moisture and Yield Prediction of Winter Oilseed Rape (Brassica napus L.): A New Perspective from the Temperature-Vegetation Index Feature Space. Agric. Water Manag. 2024, 305, 109129. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, C.; Xu, B.; Zhu, Y.; Zhao, F.; Han, S.; Yang, G.; Yang, H. Predicting Individual Apple Tree Yield Using UAV Multi-Source Remote Sensing Data and Ensemble Learning. Comput. Electron. Agric. 2022, 201, 107275. [Google Scholar] [CrossRef]
Model | Index | Parameter |
---|---|---|
CNN | Layer | 3 |
Filter | 64 | |
Kernel size | 3 × 3 | |
Pooling size | 2 × 2 | |
LSTM | Layer | 3 |
Unit | 128; 128; 128 | |
Activation | ReLu | |
Dropout | 0.2; 0.2; 0.2 | |
Bath-size | 8 | |
Epoch | 100 | |
Optimizer | Adam | |
Learning rate | 0.001 | |
Loss | MSE |
Number | Class | SPEI |
---|---|---|
1 | Extreme humid | [2, +∞) |
2 | Severe humid | (1.5, 2] |
3 | Moderate humid | (1, 1.5] |
4 | Normal | (−0.5, 1] |
5 | Mild drought | (−1, −0.5] |
6 | Moderate drought | (−1.5, −1] |
7 | Severe drought | (−2, −1.5] |
8 | Extreme drought | (−∞, −2] |
Area | National Basic Stations | Scales | Detrended Winter Wheat Yield (Correlation/r) |
---|---|---|---|
Center | Zheng zhou | SPEI8 | 0.29 |
Xu chang | SPEI8 | 0.33 | |
Eastern | Zhou kou | SPEI8 | 0.49 * |
Kai feng | SPEI8 | 0.17 | |
Western | Luo yang | SPEI8 | 0.25 |
San men xia | SPEI8 | 0.43 * | |
Southern | Xin yang | SPEI8 | 0.30 |
Nan yang | SPEI8 | 0.43 * | |
Northern | An yang | SPEI8 | 0.06 |
Xin xiang | SPEI8 | −0.08 |
History (2000–2023) | |||||
---|---|---|---|---|---|
SPEI8 | Yield | ||||
Station | Marginal Distribution | Joint Distribution | |||
Zheng zhou | Norm | GEV | Gumbel | ||
Xu chang | Norm | GEV | Clayton | ||
Zhou kou | Norm | GEV | Gumbel | ||
Kai feng | Norm | GEV | Gumbel | ||
Luo yang | Norm | GEV | Clayton | ||
San men xia | Norm | GEV | Frank | ||
Xin yang | Norm | GEV | Student’s t | ||
Nan yang | Norm | GEV | Student’s t | ||
An yang | Norm | GEV | Student’s t | ||
Xin xiang | Norm | GEV | Student’s t |
Region | Study Periods | Winter Wheat Yield Loss Percentiles | ||
---|---|---|---|---|
30% | 50% | 70% | ||
Zheng zhou | 2000–2023 | −2.00 | −1.43 | −0.50 |
2024–2047 | −2.66 | −1.85 | −0.73 | |
Xu chang | 2000–2023 | −2.75 | −2.59 | −2.44 |
2024–2047 | — | −2.83 | −2.61 | |
Zhou kou | 2000–2023 | −1.47 | −0.97 | 0.69 |
2024–2047 | −2.24 | −1.61 | 0.28 | |
Kai feng | 2000–2023 | −2.18 | −1.80 | −0.75 |
2024–2047 | −2.86 | −2.36 | −1.08 | |
Luo yang | 2000–2023 | −2.06 | −1.38 | −0.43 |
2024–2047 | −2.72 | −1.86 | −0.68 | |
San men xia | 2000–2023 | −1.40 | −0.75 | −0.17 |
2024–2047 | −1.97 | −1.32 | −0.44 | |
Xin yang | 2000–2023 | −1.86 | −0.85 | 0.60 |
2024–2047 | −2.47 | −1.39 | 0.35 | |
Nan yang | 2000–2023 | −1.45 | −0.75 | −0.17 |
2024–2047 | −2.16 | −1.34 | −0.43 | |
An yang | 2000–2023 | — | — | −0.64 |
2024–2047 | — | — | −1.01 | |
Xin xiang | 2000–2023 | — | −2.10 | −0.22 |
2024–2047 | — | −2.59 | −0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Zhao, Y.; Cui, B.; Liu, L.; Ding, Y.; Chen, Y.; Zhang, X. Prediction of Drought Thresholds Triggering Winter Wheat Yield Losses in the Future Based on the CNN-LSTM Model and Copula Theory: A Case Study of Henan Province. Agronomy 2025, 15, 954. https://doi.org/10.3390/agronomy15040954
Ma J, Zhao Y, Cui B, Liu L, Ding Y, Chen Y, Zhang X. Prediction of Drought Thresholds Triggering Winter Wheat Yield Losses in the Future Based on the CNN-LSTM Model and Copula Theory: A Case Study of Henan Province. Agronomy. 2025; 15(4):954. https://doi.org/10.3390/agronomy15040954
Chicago/Turabian StyleMa, Jianqin, Yan Zhao, Bifeng Cui, Lei Liu, Yu Ding, Yijian Chen, and Xinxi Zhang. 2025. "Prediction of Drought Thresholds Triggering Winter Wheat Yield Losses in the Future Based on the CNN-LSTM Model and Copula Theory: A Case Study of Henan Province" Agronomy 15, no. 4: 954. https://doi.org/10.3390/agronomy15040954
APA StyleMa, J., Zhao, Y., Cui, B., Liu, L., Ding, Y., Chen, Y., & Zhang, X. (2025). Prediction of Drought Thresholds Triggering Winter Wheat Yield Losses in the Future Based on the CNN-LSTM Model and Copula Theory: A Case Study of Henan Province. Agronomy, 15(4), 954. https://doi.org/10.3390/agronomy15040954