Regenerative Agronomic Approaches: Technological, Biochemical and Rheological Characterization of Four Perennial Wheat Lines Grown in Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Kernel Physical Analyses
2.3. Chemical Characterization
2.4. Rheological and Technological Tests
2.5. Statistical Analysis
3. Results and Discussion
3.1. Kernel Physical Analyses
3.2. Chemical Characterization
3.3. Rheological and Technological Tests and Analysis of Storage Proteins Composition
3.4. Color Indexes Determination
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glover, J.D. The necessity and possibility of perennial grain production systems. Renew. Agric. Food Syst. 2005, 20, 1–4. [Google Scholar] [CrossRef]
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; et al. Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Soto-Gómez, D.; Pérez-Rodríguez, P. Sustainable agriculture through perennial grains: Wheat, rice, maize, and other species. Agric. Ecosyst. Environ. 2022, 325, 107747. [Google Scholar] [CrossRef]
- United Nation. Available online: https://sdgs.un.org/goals (accessed on 10 December 2024).
- Reddy, P.P. Agro-Ecological Approaches to Pest Management for Sustainable Agriculture; Springer: Singapore, 2017; pp. 295–309. [Google Scholar]
- CHANGE-UP Project. Available online: https://changeupproject.com/ (accessed on 18 December 2024).
- Ryan, M.R.; Crews, T.E.; Culman, S.W.; DeHaan, L.R.; Hayes, R.C.; Jungers, J.M.; Bakker, M.G. Managing for multifunctionality in perennial grain crops. Bioscience 2018, 68, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Royal Society Policy Statements and Reports. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture. Ref 11/09; The Royal Society: London, UK, 2009; Available online: https://royalsociety.org/news-resources/publications/2009/reaping-benefits/ (accessed on 10 October 2024).
- FAO. Achieving Sustainable Rural Development Through Agricultural Innovation: COAG/2016/6; Food and Agriculture Organization of the United Nations, Committee on Agriculture: Italy, Rome, 2019; Available online: http://www.fao.org/3/a-mr236e.pdf (accessed on 10 October 2024).
- Larkin, P.J.; Newell, M.T.; Hayes, R.C.; Aktar, J.; Norton, M.R.; Moroni, S.J.; Wade, L.J. Progress in developing perennial wheat for grain and grazing. Crop Pasture Sci. 2014, 65, 1147–1164. [Google Scholar] [CrossRef]
- Crews, T.E.; Carton, W.; Olsson, L. Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures. Glob. Sustain. 2018, 1, 11. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Botella, J.R.; Zhu, J.K. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J. Integr. Plant Biol. 2018, 60, 369–375. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, L.; Huang, G.; Zhang, J.; Zhang, Y.; Hu, F. Perennial Rice: Sustainable Rice Production System. In Scaling Up Agroecology to Achieve the Sustainable Development Goals, Proceedings of the Second FAO International Symposium, Italy, Rome, 3–5 April 2018; Food and Agriculture Organization of the United Nations: Italy, Rome, 2018; pp. 216–217. [Google Scholar]
- Burmeister, J. Promotion of ground beetles by integrating perennial energy crops into existing agricultural landscapes. Biomass Bioenergy 2021, 146, 105973. [Google Scholar] [CrossRef]
- Sanford, G.R.; Jackson, R.D.; Booth, E.G.; Hedtcke, J.L.; Picasso, V. Perenniality and diversity drive output stability and resilience in a 26-year cropping systems experiment. Field Crops Res. 2021, 263, 108071. [Google Scholar] [CrossRef]
- Bertola, M.; Righetti, L.; Gazza, L.; Ferrarini, A.; Fornasier, F.; Cirlini, M.; Lolli, V.; Galaverna, G.; Visioli, G. Perenniality, more than genotypes, shapes biological and chemical rhizosphere composition of perennial wheat lines. Front. Plant Sci. 2023, 14, 1172857. [Google Scholar] [CrossRef]
- Giannelli, G.; Del Vecchio, L.; Cirlini, M.; Gozzi, M.; Gazza, L.; Galaverna, G.; Potestio, S.; Visioli, G. Exploring the rhizosphere of perennial wheat: Potential for plant growth promotion and biocontrol applications. Sci. Rep. 2024, 14, 22792. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M. Is there a need for a more sustainable agriculture? Crit. Rev. Plant Sci. 2011, 30, 6–23. [Google Scholar] [CrossRef]
- Vico, G.; Brunsell, N.A. Tradeoffs between water requirements and yield stability in annual vs. perennial crops. Adv. Water Resour. 2018, 112, 189–202. [Google Scholar] [CrossRef]
- Snapp, S.; Rogé, P.; Okori, P.; Chikowo, R.; Peter, B.; Messina, J. Perennial grains for africa: Possibility or pipedream? Exp. Agric. 2019, 55, 251–272. [Google Scholar] [CrossRef]
- Hayes, R.C.; Newell, M.T.; DeHaan, L.R.; Murphy, K.M.; Crane, S.; Norton, M.R.; Wade, L.J.; Newberry, M.; Fahim, M.; Jones, S.S.; et al. Perennial cereal crops: An initial evaluation of wheat derivatives. Field Crops Res. 2012, 133, 68–89. [Google Scholar] [CrossRef]
- Baronti, S.; Galassi, E.; Ugolini, F.; Miglietta, F.; Genesio, L.; Vaccari, F.P.; Cacciatori, P.; Gazza, L. Agronomic and ecophysiological evaluation of an early establishment of perennial wheat lines in central Italy. Genet. Resour. Crop Evol. 2022, 69, 619–633. [Google Scholar] [CrossRef]
- Gazza, L.; Galassi, E.; Ciccoritti, R.; Cacciatori, P.; Pogna, N.E. Qualitative traits of perennial wheat lines derived from different Thinopyrum species. Genet. Resour. Crop Evol. 2016, 63, 209–219. [Google Scholar] [CrossRef]
- ISO 520:2010; Cereals and Pulses-Determination of the Mass of 1000 Grains. ISO: Geneva, Switzerland, 2010; p. 10.
- ISO 7971-1:2009; Determination of Bulk Density, Called Mass per Hectolitre-Part 1: Reference: Method. ISO: Geneva, Switzerland, 2009; p. 8.
- American Association of Cereal Chemists. 46–30 Crude Protein-Combustion Method. In Approved Methods of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- American Association of Cereal Chemists. Approved Methods of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2009. [Google Scholar]
- McCleary, B.V.; Gibson, T.S.; Lugford, D.C. Measurement of total starch in cereal products by amyloglucosidase-α-amylase method: Collaborative study. J. AOAC Int. 1997, 80, 571–579. [Google Scholar] [CrossRef]
- Martini, D.; Taddei, F.; Nicoletti, I.; Ciccoritti, R.; Corradini, D.; D’Egidio, M.G. Effects of genotype and environment on phenolic acids content and total antioxidant capacity in durum wheat. Cereal Chem. 2014, 91, 310–317. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis 991, 16th ed.; Cunniff, P., Ed.; AOAC: Gaithersburg, MD, USA, 1995; p. 42. [Google Scholar]
- Pogna, N.E.; Autran, J.C.; Mellini, F.; Lafiandra, D.; Feillet, P. Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat: Genetics and relationship to gluten strength. J. Cereal Sci. 1990, 11, 15–34. [Google Scholar] [CrossRef]
- AACC International. The AACC Approved Methods of Analysis, 11th ed.; per AACC Approved Method 26-70.01 (AACC, 2000); AACC International: Saint Paul, MN, USA, 2010. [Google Scholar]
- American Association of Cereal Chemists. 38-12, Wet Gluten, Dry Gluten, Water-Binding Capacity, and Gluten Index. In Approved Methods of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- American Association of Cereal Chemists. 56-70.01 Sodium Dodecyl Sulfate Sedimentation Test for Durum Wheat. In Approved Methods of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- American Association of Cereal Chemists. Approved Methods, 11th ed.; 56-81B Determination of Falling Number; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- Fox, G.P.; Osborne, B.; Bowman, J.; Kelly, A.; Cakir, M.; Poulsen, D.; Inkerman, A.; Henry, R. Measurement of genetic and environmental variation in barley (Hordeum vulgare) grain hardness. J. Cereal Sci. 2007, 46, 82–92. [Google Scholar] [CrossRef]
- Canadian Grain Commission. Wheat: Export Grade Determinants Tables for Canada Western Amber Durum (CWAD) Wheat 2020. Available online: https://www.grainscanada.gc.ca/en/grain-quality/official-graingrading-guide/04-wheat/export-gradedeterminants/ (accessed on 12 February 2025).
- Tsilo, T.J.; Hareland, G.A.; Chao, S.; Anderson, J.A. Genetic mapping and QTL analysis of flour color and milling yield related traits using recombinant inbred lines in hard red spring wheat. Crop Sci. 2011, 51, 237–246. [Google Scholar] [CrossRef]
- Mahesh, S.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Comparison of partial least squares regression (PLSR) and principal components regression (PCR) methods for protein and hardness predictions using the near-infrared (NIR) hyperspectral images of bulk samples of Canadian wheat. Food Bioprocess Technol. 2005, 8, 31–40. [Google Scholar] [CrossRef]
- Cetiner, B.; Shamanin, V.P.; Tekin-Cakmak, Z.H.; Pototskaya, I.V.; Koksel, F.; Shepelev, S.S.; Amanzhol, N.A.; Bayram, O.; Morgounov, A.I.; Koksel, H. Utilization of intermediate wheatgrass (Thinopyrum intermedium) as an innovative ingredient in bread making. Foods 2023, 12, 2109. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, S.; Koksel, F.; Cetiner, B.; Shamanin, V.P.; Pototskaya, I.V.; Ozdemir, B.; Morgounov, A.I.; Koksel, H. Incorporation of intermediate wheatgrass (Thinopyrum intermedium) into bread wheat doughs: Effects on pasting and rheological properties. Cereal Chem. 2024, 101, 871–883. [Google Scholar] [CrossRef]
- Craine, E.B.; DeHaan, L.R. Nutritional quality of early-generation Kernza perennial grain. Agriculture 2024, 14, 919. [Google Scholar] [CrossRef]
- Norton, V.; Wagstaff, C.; Rodriguez Garcia, J.; Lovegrove, A.; Shewry, P.; Charlton, M.; Gillett, N.; Tindall, M.J.; Lignou, S. “Wait, Do I Need More Fiber?” Exploring UK Consumers’ Dietary Fiber-Related Awareness and White Bread as a Viable Solution to Promote Subsequent Intake. Curr. Develop. Nutr. 2024, 8, 104430. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.; Anderson, F.L.; Blomhoff, R. Wholegrain consumption is associated with a reduced risk of non-cardiovascular, non-cancer death attributed to inflammatory disease in the Iowa Women’s Health Study. Am. J. Clin. Nutr. 2007, 85, 1606–1614. [Google Scholar] [CrossRef]
- Gooding, M.J.; Shewry, P.R. Wheat: Environment, Food and Health; Wiley Online Library: Hoboken, NJ, USA, 2022; p. 432. [Google Scholar]
- UNI10709; Durum Wheat Products for Pasta-Making—Definition, Characteristics and Quality Grades. UNI: Milan, Italy, 1998.
- UNI10940; Durum Wheat Products for Pasta-Making—Definition, Characteristics and Quality Grades. UNI: Milan, Italy, 2001.
- Galassi, E.; Taddei, F.; Ciccoritti, R.; Nocente, F.; Gazza, L. Biochemical and technological characterization of two C4 gluten-free cereals: Sorghum bicolor and Eragrostis tef. Cereal Chem. 2020, 97, 65–73. [Google Scholar] [CrossRef]
- AbuHammad, W.A.; Elias, E.M.; Manthey, F.A.; Alamri, M.S.; Mergoum, M.A. Comparison of methods for assessing dough and gluten strength of durum wheat and their relationship to pasta cooking quality. Int. J. Food Sci. Technol. 2012, 47, 2561–2573. [Google Scholar] [CrossRef]
- Payne, P.I.; Lawrence, G.J. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. Commun. 1983, 11, 29–35. [Google Scholar]
- Payne, P.I.; Nightingale, M.A.; Krattiger, A.F.; Holt, L.M. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food Agric. 1987, 40, 51–65. [Google Scholar] [CrossRef]
- Requena-Ramírez, M.D.; Rodríguez-Suárez, C.; Flores, F.; Hornero-Méndez, D.; Atienza, S.G. Marker-Trait Associations for Total Carotenoid Content and Individual Carotenoids in Durum Wheat Identified by Genome-Wide Association Analysis. Plants 2022, 11, 2065. [Google Scholar] [CrossRef] [PubMed]
Genotype | Pedigree | Origin |
---|---|---|
11955 | T. aestivum/Th. ponticum | (USA) |
20238 | T. durum/Th. elongatum | (MEX) |
CPI147235a | T. aestivum/Th. elongatum//T. aestivum | (USA) |
OK7211542 | T. aestivum/Th. ponticum | (USA) |
Thinopyrum intermedium | Thinopyrum intermedium | (USA) |
Genotype | Thousand Kernel Weight (g) | Test Weight (Kg/hL) | Hardness Index | Milling Yield (%) |
---|---|---|---|---|
20238 | 23.2 ± 0.9 c | 66.5 ± 0.3 c | 47 ± 23 c | 40 |
235a | 13.3 ± 0.2 d | 61.4 ± 0.2 d | 62 ± 23 bc | 40 |
OK72 | 31.2 ± 0.2 b | 70.5 ± 0.5 b | 28 ± 15 d | 48.8 |
11955 | 31.8 ± 0.2 b | 70.7 ± 0.5 b | 36 ± 24 cd | 50 |
Th. intermedium Kernza® | 5.5 ± 0.5 e | 58.5 ± 0.2 e | n.d. | n.d. |
T. durum cv San Carlo | 56.2 ± 0.3 a | 84.3 ± 0.3 a | 84 ± 12 a | 69 |
Genotype | Protein(%) | Total Starch (%) | Total Dietary Fiber (%) | Total Antioxidant Capacity (mmol TEAC/kg) | Ash (%) |
---|---|---|---|---|---|
20238 | 18.28 ± 0.01 b | 59 ± 1 b | 12.8 ± 0.1 b | 51.5 ± 0.9 b | 2.32 ± 0.02 c |
235a | 18.21 ± 0.01 b | 58 ± 5 b | 12.88 ± 0.04 b | 47.5 ± 0.7 c | 2.41 ± 0.01 b |
OK72 | 15.1 ± 0.1 c | 65.5 ± 0.1 a | 11.6 ± 0.2 d | 52.3 ± 0.9 b | 2.63 ± 0.05 a |
11955 | 16.05 ± 0.01 c | 66.5 ± 0.2 a | 12.6 ± 0.2 c | 50 ± 1 bc | 2.13 ± 0.01 d |
Th. intermedium Kernza® | 21.4 ± 0.2 a | 50.9 ± 0.6 c | 15.6 ± 0.2 a | 60 ± 1 a | 2.67 ± 0.01 a |
T. durum cv San Carlo | 14.3 ± 0.5 d | 65.0 ± 0.8 a | 12.3 ± 0.3 c | 44.1 ± 0.3 d | 1.65 ± 0.01 e |
Genotype | Alveograph Parameters | Gluten Index (%) | SDS (mL) | Falling Number (s) | |
---|---|---|---|---|---|
W (10−4 J) | P/L | ||||
20238 | 44 ± 20 e | 2.4 ± 0.4 a | 3 ± 1 e | 33.5 ± 0.7 e | 329 ± 10 d |
235a | 210 ± 13 ab | 1.2 ± 0.2 c | 77 ± 1 b | 54 ± 1 a | 373 ± 6 b |
OK72 | 119 ± 3 c | 0.5 ± 0.1 d | 37 ± 3 d | not determinable | 340 ± 6 c |
11955 | 75 ± 10 d | 2.6 ± 0.5 a | 55 ± 1 c | 50 ± 1 b | 309 ± 1 e |
Th. intermedium Kernza® | 39 ± 17 e | 0.4 ± 0.1 d | not determinable | 35 ± 1 d | 230 ± 5 f |
T. durum cv San Carlo | 227 ± 21 a | 1.8 ± 0.1 b | 93 ± 1 a | 37.5 ± 0.7 c | 483 ± 2 a |
Genotype | HMW-GS | ||
---|---|---|---|
Glu-A1 | Glu-B1 | Glu-D1 | |
235A | 1 | 20 | 2 + 12 |
11955 | 1 | 20 | 2 + 12 |
OK72 | 1 | 20 | 2 + 12 |
20238 | null | 7 + 8 | - |
T. durum cv San Carlo | null | 7 + 8 | - |
Genotype | Color | ||
---|---|---|---|
Yellow Index (b*) | Brown Index (100-L*) | Red Index (a*) | |
20238 | 13.21 ± 0.22 b | 10.28 ± 0.04 c | −2.09 ± 0.02 d |
235a | 13.33 ± 0.07 b | 10.4 ± 0.2 c | −1.78 ± 0.06 c |
Ok72 | 11.07 ± 0.37 c | 5.2 ± 0.2 e | −1.25 ± 0.4 b |
11955 | 11.52 ± 0.11 d | 8.33 ± 0.05 d | −2.34 ± 0.01 e |
Th. intermedium Kernza® | 10.28 ± 0.56 e | 18.5 ± 0.29 a | 0.08 ± 0.14 a |
T. durum cv San Carlo | 22.1 ± 0.2 a | 14.9 ± 0.5 b | −2.3 ± 0.2 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galassi, E.; Natale, C.; Nocente, F.; Taddei, F.; Visioli, G.; Ceccarelli, S.; Galaverna, G.; Gazza, L. Regenerative Agronomic Approaches: Technological, Biochemical and Rheological Characterization of Four Perennial Wheat Lines Grown in Italy. Agronomy 2025, 15, 939. https://doi.org/10.3390/agronomy15040939
Galassi E, Natale C, Nocente F, Taddei F, Visioli G, Ceccarelli S, Galaverna G, Gazza L. Regenerative Agronomic Approaches: Technological, Biochemical and Rheological Characterization of Four Perennial Wheat Lines Grown in Italy. Agronomy. 2025; 15(4):939. https://doi.org/10.3390/agronomy15040939
Chicago/Turabian StyleGalassi, Elena, Chiara Natale, Francesca Nocente, Federica Taddei, Giovanna Visioli, Salvatore Ceccarelli, Gianni Galaverna, and Laura Gazza. 2025. "Regenerative Agronomic Approaches: Technological, Biochemical and Rheological Characterization of Four Perennial Wheat Lines Grown in Italy" Agronomy 15, no. 4: 939. https://doi.org/10.3390/agronomy15040939
APA StyleGalassi, E., Natale, C., Nocente, F., Taddei, F., Visioli, G., Ceccarelli, S., Galaverna, G., & Gazza, L. (2025). Regenerative Agronomic Approaches: Technological, Biochemical and Rheological Characterization of Four Perennial Wheat Lines Grown in Italy. Agronomy, 15(4), 939. https://doi.org/10.3390/agronomy15040939