Interactions Between Seasonal Temperature Changes, Activities of Selected Genes and Fruit Quality in Malus domestica Borkh.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Fruit Maturity and Quality Assessment
2.3. Molecular Assessment
2.3.1. RNA Isolation and Reverse Transcription
2.3.2. Selection of Genes of Interest (GOI)
2.3.3. qPCR Tests and Data Analysis
2.4. Statistical Analyses
3. Results
3.1. Changes in Relative Gene Expression in Different Stages of Apple Fruit Ripening
3.2. Relationship Between the Temperature Variations in Evaluated Growing Seasons
3.3. The Effect of Seasonal Temperature Fluctuations on the Activity of Selected Genes
3.4. The Impact of Seasonal Temperature Changes on Apple Fruit Features
3.5. Correlation Between Gene Activities and the Values of Apple Fruit Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.-C.; Park, Y.-S.; Jeong, H.-N.; Kim, J.-H.; Heo, J.-Y. Temperature changes affected spring phenology and fruit quality of apples grown in high-latitude region of South Korea. Horticulturae 2023, 9, 794. [Google Scholar] [CrossRef]
- Available online: https://300gospodarka.pl/ (accessed on 29 January 2020).
- Łysiak, G.P.; Szot, I. The Use of Temperature Based Indices for Estimation of Fruit Production Conditions and Risks in Temperate Climates. Agriculture 2023, 13, 960. [Google Scholar] [CrossRef]
- Łysiak, G.P. Degree days as a method to estimate the optimum harvest date of ‘Conference’ pears. Agriculture 2022, 12, 1803. [Google Scholar] [CrossRef]
- Łysiak, G. The sum of active temperatures as a method of determining the optimum harvest date of ‘Šampion’ and ‘Ligol’ apple cultivars. Acta Sci. Pol. Hortorum Cultus 2012, 11, 3–13. [Google Scholar]
- Ruchel, Q.; Zandona, R.R.; Fraga, D.S.; Agostinettop, D.; Langaro, A.C. Effect of high temperature and recovery from stress on Crop-Weed interaction. Bragantia 2020, 79, 582–591. [Google Scholar] [CrossRef]
- Warrington, I.J.; Fulton, T.A.; Halligan, E.A.; de Silva, H.N. Apple Fruit Growth and Maturity Are Affected by Early Season Temperatures. J. Am. Soc. Hortic. Sci. 1999, 124, 468–477. [Google Scholar] [CrossRef]
- Keller-Przybyłkowicz, S.; Lewandowski, M.; Korbin, M. Identification of the genome regions correlated with cold hardiness of apple rootstocks by transcriptomic analysis of differentially expressed candidate genes. Biul. Inst. Hod. Aklim. Roślin 2019, 286, 415–418. [Google Scholar]
- Eberhardt, M.V.; Lee, C.Y.; Liu, R.H. Antioxidant activity of fresh apples. Nature 2000, 22, 903–904. [Google Scholar] [CrossRef]
- Hyson, A.D. A Comprehensive Review of Apples and Apple Components and Their Relationship to Human Health. Adv. Nutr. 2011, 2, 408–420. [Google Scholar] [CrossRef]
- Oyenihi, A.B.; Belay, Z.A.; Mditshwa, A.; Caleb, O.J. “An apple a day keeps the doctor away”: The potentials of apple bioactive constituents for chronic disease prevention. J. Food Sci. 2022, 87, 2291–2309. [Google Scholar] [CrossRef]
- Keller-Przybyłkowicz, S.E.; Rutkowski, K.P.; Kruczyńska, D.E.; Pruski, K. Changes in gene expression profile during fruit development determine fruit quality. Hort. Sci. 2016, 49, 1–9. [Google Scholar] [CrossRef]
- Conner, P.; Brown, S.; Weeden, N. Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees. Theor. Appl. Genet. 1998, 96, 1027–1035. [Google Scholar] [CrossRef]
- Cãtãlina, D.; Adriana, S.; Bozdog, C.; Radu, S. Estimation of genetic effects implied in apple inheritance of quantitative traits. J. Hortic. For. Biotechnol. 2015, 19, 85–90. [Google Scholar] [CrossRef]
- Zheng, W.; Shen, F.; Wang, W.; Wu, B.; Wang, X.; Xiao, C.; Tian, Z.; Yang, X.; Yang, J.; Wang, Y.; et al. Quantitative trait loci-based genomics-assisted prediction for the degree of apple fruit cover color. Plant Genome 2020, 13, e20047. [Google Scholar] [CrossRef]
- Sun, X.; Jiao, C.; Schwaninger, H.; Chao, C.T.; Ma, Y.; Duan, N.; Fei, Z. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat. Genet. 2020, 52, 1423–1432. [Google Scholar] [CrossRef]
- Kumar, S.; Molloy, C.; Muñoz, P.; Daetwyler, H.; Chagné, D.; Volz, R. Genome-enabled estimates of additive and nonadditive genetic variances and prediction of apple phenotypes across environments. G3 2015, 5, 2711–2718. [Google Scholar] [CrossRef]
- Cãpraru, F.; Zlati, C. Observations regarding yield phenophases of some diseases genetic resistant apple cultivars, in the conditions of Bistrita Region. Horticulturã 2009, 52, 539–544. [Google Scholar]
- Jansen, B.J.; Thodey, K.; Schaffer, R.J.; Alba, R.; Balakrishman, L.; Bishop, R.; Bowen, J.H.; Crowhurst, R.N.; Gleave, A.P.; Ledger, S.; et al. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol. 2008, 8, 1–29. [Google Scholar] [CrossRef]
- Howell, J.F.; Neven, L.G. Physiological Development Time and Zero Development Temperature of the Codling Moth (Lepidoptera: Tortricidae). Environ. Entomol. 2000, 29, 766–772. [Google Scholar] [CrossRef]
- Spayd, S.E.; Tarara, J.M.; Mee, D.L.; Ferguson, J.C. Separation of Sunlight and temperature Effects on the Composition of Vitis vinifera cv. Merlot Berrie. Am. J. Enol. Vitic. 2002, 53, 171–182. [Google Scholar]
- Menzel, A.; Estrella, N.; Fabian, P. Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Global Change Biol. 2001, 7, 657–666. [Google Scholar] [CrossRef]
- Gian-Reto, W. Plants in a warmer world. Perspectives in Plant Ecology. Evol. Syst. 2003, 6, 169–185. [Google Scholar]
- Yang, S.; Logan, J.; Coffey, D.L. Mathematical formulae for calculation the base temperature for growing degree days. Agric. Forest Meteorol. 1995, 74, 61–74. [Google Scholar] [CrossRef]
- Blanco, A.; Fernández, V.; Val, J. Improving the performance of calcium-containing spray formulations to limit the incidence of bitter pit in apple (Malus × domestica Borkh.). Sci. Hortic. 2010, 127, 23–28. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, T. RNA Isolation from Highly Viscous Samples Rich in Polyphenols and Polysaccharides. Plant. Mol. Biol. Rep. 2002, 20, 417. [Google Scholar] [CrossRef]
- Newcomb, R.D.; Crowhurst, R.N.; Gleave, A.P.; Rikkerink, E.H.; Allan, A.C.; Beuning, L.L.; Bowen, J.H.; Gera, E.; Jamieson, K.R.; Janssen, B.J.; et al. Analyses of expressed sequence tags from apple. Plant Physiol. 2006, 141, 147–166. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)). Methods 2001, 25, 402–408. [Google Scholar]
- Park, S.; Sugimoto, N.; Larson, M.D.; Beaudry, R.; van Nocker, S. Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiol. 2006, 141, 811–824. [Google Scholar] [CrossRef]
- Grab, S.; Craparo, A. Advance of Apple and Pear Tree Full Bloom Dates in Response to Climate Change in the Southwestern Cape, South Africa: 1973–2009. Agric. For. Meteorol. 2011, 151, 406–413. [Google Scholar] [CrossRef]
- Chmielewski, F.M.; Müller, A.; Bruns, E. Climate Changes and Trends in Phenology of Fruit Trees and Field Crops in Germany, 1961–2000. Agric. For. Meteorol. 2004, 121, 69–78. [Google Scholar] [CrossRef]
- Velasco, R.; Zharkikh, A.; Affourtit, J.; Dhingra, A.; Cestaro, A.; Kalyanaraman, A.; Viola, R. The genome of the domesticated apple (Malus × domestica Borkh.). Nat. Genet. 2010, 42, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Antonius-Klemola, K.; Kalendar, R.; Schulman, A.H. TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theor. Appl. Genet. 2006, 112, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Korban, S.S. Spring: A novel family of miniature inverted-repeat transposable elements is associated with genes in apple. Genomics 2007, 90, 195–200. [Google Scholar] [CrossRef]
- Brown, S.K. Pome fruit breeding: Progress and prospects. Acta Hort. 2003, 622, 19–34. [Google Scholar] [CrossRef]
- Telias, A.; Lin-Wang, K.; Stevenson, D.E.; Cooney, J.M.; Hellens, R.P.; Allan, A.C.; Hoover, E.E.; Bradeen, J.M. Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biol. 2011, 11, 93. [Google Scholar] [CrossRef]
- Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev Genet. 2008, 9, 397–405. [Google Scholar] [CrossRef]
- Boudolf, V.; Vlieghe, K.; Beemster, G.T.; Magyar, Z.; Torres Acosta, J.A.; Maes, S.; Van Der Schueren, E.; Inze, D.; De Veylder, L. The plant-specific cyclin-dependent kinase CDKB1;1 and transcription factor E2Fa-DPa control the balance of mitotically dividing and endoreduplicating cells in Arabidopsis. Plant Cell. 2004, 16, 2683–2692. [Google Scholar] [CrossRef]
- Dewitte, W.; Murray, J.A. The plant cell cycle. Annu Rev Plant Biol. 2003, 54, 235–264. [Google Scholar] [CrossRef]
- Spruck, C.; Strohmaier, H.; Watson, M.; Smith, A.P.; Ryan, A.; Krek, T.W.; Reed, S.I. A CDK-independent function of mammalian Cks1, Targeting of SCF(Skp2) to the CDK inhibitor p27Kip1. Mol Cell. 2001, 7, 639–650. [Google Scholar] [CrossRef]
- Li, M.; Feng, F.; Cheng, L. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS ONE 2012, 7, e33055. [Google Scholar] [CrossRef]
- Wu, T.; Wang, Y.; Zheng, Y.; Fei, Z.; Dandekar, A.M.; Xu, K.; Han, K.; Cheng, L. Suppressing Sorbitol Synthesis Substantially Alters the Global Expression Profile of Stress Response Genes in Apple (Malus domestica) Leaves. Plant Cell Physiol. 2015, 56, 1748–1761. [Google Scholar] [CrossRef]
- Abbott, D.L.; Bull, V. The effect of summer temperature on flower initiation and fruit bud development. Annu. Rep. Long Ashton Res. Stn. 1973, 5, 35–36. [Google Scholar]
- Heide, O.M.; Rivero, R.; Sønsteby, A. Temperature control of shoot growth and floral initiation in apple (Malus × domestica Borkh.). CABI Agric. Biosci. 2020, 1, 8. [Google Scholar] [CrossRef]
- Yamada, H.; Ohmura, H.; Arai, C.; Terui, M. Effect of preharvest fruit temperature on ripening sugars, and watercore occurrence in apples. J. Amer. Soc. Hort. Sci. 1994, 119, 1208–1214. [Google Scholar]
- Bai, Y.; Dougherty, L.; Cheng, L.; Xu, K. A co-expression gene network associated with developmental regulation of apple fruit acidity. Mol. Genet. Genom. 2015, 290, 1247–1263. [Google Scholar] [CrossRef]
- Zhang, B.; Han, Y. Genomics of fruit acidity and sugar content in apple. In Apple Genome; Korban, S.S., Ed.; Springer Nature: Cham, Switzerland, 2021; pp. 297–309. [Google Scholar] [CrossRef]
- Ma, D.; Sun, D.; Wang, C.; Li, Y.; Guo, T. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol. Biochem. 2014, 80, 60–66. [Google Scholar]
- Musacchi, S.; Serra, S. Review: Apple fruit quality: Overview on pre-harvest factors. J. Sci. Hortic. 2018, 234, 409–430. [Google Scholar]
- Chagné, D.; Daya Dayatilake, D.; Diack, R.; Murray, O.; Ireland, H.; Watson, A.; Gardiner, S.E.; Johnston, J.W.; Schaffer, R.J.; Tustin, S. Genetic and environmental control of fruit maturation, dry matter and firmness in apple (Malus × domestica Borkh.). Hortic. Res. 2014, 1, 114046. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Z.; Jiang, S.; Wang, Y.; Fang, H.; Zhang, Z.; Chen, X.; Wang, N. Research progress on genetic basis of fruit quality traits in apple (Malus × domestica). Front. Plant Sci. 2022, 13, 918202. [Google Scholar] [CrossRef]
Season/Year 2018 | Season/Year 2019 | Season/Year 2020 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Apple cv. | FB * | I | II | III | IV | FB * | I | II | III | IV | FB * | I | II | III | IV |
‘Ligol’ | 30.04 | 12.09 | 17.09 | 22.09 | 27.09 | 2.05 | 11.09 | 16.09 | 21.09 | 26.09 | 1.05 | 10.09 | 15.09 | 20.09 | 25.09 |
‘Pink Braeburn’ | 2.05 | 17.09 | 21.09 | 26.09 | 01.10 | 3.05 | 16.09 | 20.09 | 25.09 | 30.09 | 3.05 | 16.09 | 20.09 | 25.09 | 30.09 |
‘Pinokio’ | 3.05 | 16.09 | 20.09 | 25.09 | 30.09 | 5.05 | 18.09 | 23.09 | 27.09 | 2.10 | 4.05 | 19.09 | 22.09 | 26.09 | 01.10 |
‘Ligolina’ | 6.05 | 20.09 | 25.09 | 30.09 | 4.10 | 8.05 | 22.09 | 27.09 | 02.10 | 07.10 | 6.05 | 20.09 | 25.09 | 30.09 | 4.10 |
(Library Code)/GOI/Locus | Library Description (BLAST Analysis)/Gen ID | Oligo Forward | Oligo Revers |
---|---|---|---|
StG EE663791 | Starch glucosidase | atctcctcgcatcaacaac | agaagacggagagcagacca |
AAAA1 EE663758 | 020403AAAA006503CR/(AAAA) fruits of Royal Gala, 59 DAFB, seeds removed, M. domestica clone cDNA AAAAA00650, mRNA/ Malus sylvestris wall-associated receptor kinase-like 2 (LOC126611122) | cattcccggcaatcttacaaac | gaccagtcaccatcccaaat |
AAFB EE663789 | 020815AAFB001404CR/(AAFB) Royal Gala, apple skin peel, 150 DAFB M. domestica clone cDNA AAFB 00140, s mRNA/ Malus domestica receptor-like protein 6/cell respiration (LOC103424621) | ggccgtagaatttccacatttc | acaacaatctcacaggtcctatac |
AALA1 ES790083 | 020208AALA001579CR/(AALA) Royal Gala 150 DAFB fruit cortex M. domestica clone cDNA AALAA00157, mRNA/ Malus domestica uncharacterized protein (LOC103431754) | caacaacgggaccagagataa | agcaggtttgagaagaaggg |
AASA EE663762 | 020514AASA003901CO/(AASA) Royal Gala 10 DAFB fruit M. domestica cDNA clone AASAA00390, mRNA/ Malus sylvestris mannose-6-phosphate isomerase 1-like (LOC126582272) | cggcaagaagtcaatgaagaac | tcccagaaccagagttgaaag |
AAYA EE663756 | 020308AAYA001283CR/(AAYA) Royal Gala 126 DAFB fruit cortex M. domestica clone cDNA AAYAA00128, mRNA/ Malus sylvestris glutamate--glyoxylate aminotransferase 2-like (LOC126597621) | gatccatgaactcgtcgttga | cagggttcggacagaaagaa |
AAAA2 EE663824 | 030210AAAA009549CR/(AAAA) Royal Gala fruits 59 DAFB, seeds removed M. domestica clone cDNA AAAAA00954, mRNA Malus sylvestris glycine-tRNA ligase, chloroplastic/mitochondrial 2 (LOC126628508) | ggaagaacaggcttgctttg | aaatgacgtcccttcgctatta |
AAXA EE663809 | 021203AAXA001589CO/(AAXA) Royal Gala 126 DAFB fruit core M. domestica clone cDNA AAXAA00158, mRNA Malus sylvestris pyruvate kinase, cytosolic isozyme (LOC126606939) | ggcgactccaatacgatgaa | actgatgcagaatccacagag |
Analysis of Variance | 2019 vs. 2020 | 2018 vs. 2019 | 2018 vs. 2020 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS | DF | MS | F | p-Value | SS | DF | MS | F | p-Value | SS | DF | MS | F | p-Value | |
Regression | 507.1 | 2 | 253.6 | 17.40 | p = 0.0032 | 263.4 | 2 | 131.7 | 74.59 | p < 0.0001 | 317 | 2 | 158.5 | 70.17 | p < 0.0001 |
R squared (R2) * | 0.853 | 0.9613 | 0.959 | ||||||||||||
Difference between means | 0.9674 | −0.4753 | 0.4921 | ||||||||||||
SE of difference | 0.4649 | 1.254 | 1.319 |
temp −1.6 vs. 14.9 °C | temp −1.6 vs. 19.4 °C | temp −1.6 vs. 17.7 °C | temp 14.9 vs. 19.4 °C | temp 14.9 vs. 17.7 °C | temp 19.4 vs. 17.7 °C | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene | Difference | SE of Difference | Difference | SE of Difference | Difference | SE of Difference | Difference | SE of Difference | Difference | SE of Difference | Difference | SE of Difference | |
Pinokio | STG | 113 | 28.87 | ns | ns | ns | ns | 5.669 | 0.55 | −92 | 8.78 | −97.69 | 8.777 |
AAAA1 | 17.2 | 4.01 | −3.1 | 0.5 | −109 | 4.7 | −3.7 | 0.22 | −110 | 4.68 | 46.97 | 1.844 | |
AAFB | −33 | 0.81 | −36 | 1.3 | −55 | 1.67 | ns | ns | −22 | 1.85 | −18.33 | 2.122 | |
AALA1 | 17.2 | 4.01 | ns | ns | −646 | 19.07 | −35 | 1.32 | −664 | 18.6 | −628.7 | 18.69 | |
AASA | 23.6 | 2.18 | 21.2 | 2.2 | −640 | 6.6 | −2.36 | 0.35 | −664 | 6.23 | −661.5 | 6.235 | |
AAYA | −1.4 | 0.054 | ns | ns | −1.2 | 0.044 | 0.895 | 0.22 | ns | ns | −0.687 | 0.2166 | |
AAAA2 | 1.78 | 0.26 | ns | ns | 2.02 | 0.176 | ns | ns | ns | ns | ns | ns | |
AAXA | 19.8 | 3.46 | 17.2 | 3.5 | ns | ns | −2.64 | 0.18 | −19 | 1.03 | −16.36 | 1.043 | |
Ligolina | STG | 22.8 | 0.985 | −199 | 11 | 22.8 | 0.986 | −222 | 11.1 | 221.7 | 11.12 | ||
AAAA1 | 54.2 | 0.155 | 7.57 | 1.8 | 54.5 | 0.162 | −46.6 | 1.84 | 0.4 | 0.08 | 23.63 | 1.896 | |
AAFB | −95 | 2.297 | −21 | 1.9 | 73.93 | 2.96 | 96 | 2.28 | 22.17 | 1.896 | |||
AALA1 | −3.7 | 0.39 | −23 | 1.9 | 0.94 | 0.034 | −19 | 1.93 | 4.6 | 0.39 | 23.63 | 1.896 | |
AASA | 684 | 29.43 | 616 | 32 | 689 | 29.43 | −68.7 | 12.2 | ns | ns | 73.24 | 12.24 | |
AAYA | 1.49 | 0.09 | ns | ns | ns | ns | −1.92 | 0.14 | ns | ns | ns | ns | |
AAAA2 | ns | ns | ns | ns | ns | ns | ns | ns | −0.7 | 0.15 | ns | ns | |
AAXA | 257 | 6.56 | 202 | 10 | 258 | 6.561 | −54.4 | 8.02 | 0.9 | 0.13 | 55.32 | 8.023 | |
Ligol | STG | 26.3 | 3.84 | 40.9 | 3.7 | 36.7 | 3.674 | 14.59 | 1.12 | 10 | 1.12 | −4.145 | 0.0372 |
AAAA1 | ns | ns | ns | ns | ns | ns | −1.09 | 0.05 | −1.1 | 0.01 | ns | ns | |
AAFB | −1.1 | 0.07 | −1 | 0 | −10 | 1.45 | ns | ns | −9 | 1.45 | −9.154 | 1.45 | |
AALA1 | 136 | 29.45 | 136 | 29 | 136 | 29.45 | ns | ns | ns | ns | ns | ns | |
AASA | ns | ns | ns | ns | −2.1 | 0.25 | ns | ns | −1.3 | 0.25 | −1.501 | 0.139 | |
AAYA | 1.28 | 0.23 | −5.3 | 0.3 | 1.68 | 0.17 | −6.55 | 0.32 | ns | ns | 6.945 | 0.285 | |
AAAA2 | −0.8 | 0.06 | −3.5 | 0.5 | −2.8 | 0.19 | −2.75 | 0.53 | −2 | 0.2 | ns | ns | |
AAXA | 257 | 6.56 | 202 | 10 | 258 | 6.561 | −54.4 | 8.02 | 0.9 | 0.13 | 55.32 | 8.023 | |
Pink Braeburn | STG | −28 | 2.364 | −1.3 | 0.2 | −62 | 1.009 | 26.41 | 2.37 | −34 | 2.57 | −60.7 | 1.03 |
AAAA1 | −51 | 6.137 | −27 | 1.8 | −1 | 0.035 | 23.61 | 6.41 | 50 | 6.14 | 26.14 | 1.84 | |
AAFB | −223 | 34.7 | −2.2 | 0.1 | −1.2 | 0.082 | 221.2 | 34.7 | 222 | 34.7 | 1.019 | 0.103 | |
AALA1 | 179 | 2.884 | 178 | 2.9 | 176 | 2.89 | −1.11 | 0.08 | −3 | 0.17 | −1.931 | 0.177 | |
AASA | −151 | 4.321 | −3.8 | 0.1 | −1 | 0.092 | 146.8 | 4.32 | 150 | 4.32 | 2.88 | 0.16 | |
AAYA | 4.86 | 0.13 | 6.07 | 0 | 6.17 | 0.061 | 1.217 | 0.12 | 1.3 | 0.13 | ns | ns | |
AAAA2 | 0.56 | 0.085 | 1.48 | 0.1 | 1.44 | 0.091 | 0.912 | 0.01 | 0.9 | 0.03 | ns | ns | |
AAXA | −40 | 5.26 | −5.1 | 0.2 | −2.3 | 0.107 | 35.34 | 5.26 | 38 | 5.26 | 2.741 | 0.207 |
cv. | Trait Assessment | 2018 vs. 2019 | 2018 vs. 2020 | 2019 vs. 2020 | |||
---|---|---|---|---|---|---|---|
Effect | SE | Effect | SE | Effect | SE | ||
Ligol | FW | ns | ns | −65.85 | 11.85 | −95.79 | 10.75 |
IEC | ns | ns | ns | ns | ns | ns | |
TSS | −1.51 | 0.4013 | ns | ns | ns | ns | |
TA | −0.1912 | 0.03057 | −0.1123 | 0.01942 | ns | ns | |
FF | −16.24 | 2.407 | −7.331 | 2.13 | ns | ns | |
Pink Braeburn | FW | 46.36 | 4.687 | −58.89 | 17.7 | −105.3 | 18.26 |
IEC | −9.873 | 2.374 | ns | ns | ns | ns | |
TSS | −1.535 | 0.2852 | ns | ns | ns | ns | |
TA | ns | ns | ns | ns | ns | ns | |
FF | −10.53 | 2.364 | −7.884 | 1.801 | |||
Pinokio | FW | 91.55 | 15.47 | ns | ns | −99.17 | 10.84 |
IEC | −12.25 | 1.626 | ns | ns | 11.02 | 2.039 | |
TSS | −1.338 | 0.4316 | ns | ns | ns | ns | |
TA | ns | ns | ns | ns | ns | ns | |
FF | ns | ns | ns | ns | ns | ns | |
Ligolina | FW | 76.29 | 14.03 | ns | ns | −90.64 | 12.99 |
IEC | ns | ns | ns | ns | ns | ns | |
TSS | 0.8107 | 0.228 | 0.7883 | 0.1998 | ns | ns | |
TA | ns | ns | ns | ns | ns | ns | |
FF | ns | ns | ns | ns | ns | ns |
Apple cv. | Trait | StG | AAAA1 | AAFB | AALA1 | AASA | AAYA | AAAA2 | AAXA |
---|---|---|---|---|---|---|---|---|---|
Ligol | FW | 0.93 **** | 0.94 **** | 0.94 **** | 0.79 **** | 0.94 **** | 0.94 **** | 0.94 **** | 0.94 **** |
IEC | 0.32 ** | 0.08 | 0.15 | 0.13 | 0.22 * | 0.52 **** | 0.46 *** | 0.12 | |
TSS | 0.04 | 0.97 **** | 0.65 **** | 0.07 | 0.97 **** | 0.72 **** | 0.93 **** | 0.93 **** | |
TA | 0.32 ** | 0.15 | 0.15 | 0.13 | 0.42 *** | 0.55 **** | 0.55 **** | 0.16 | |
FF | 0.78 **** | 0.97 **** | 0.96 **** | 0.09 | 0.97 **** | 0.97 **** | 0.97 **** | 0.97 **** | |
Pink Braeburn | FW | 0.84 **** | 0.85 **** | 0.44 *** | 0.58 **** | 0.66 **** | 0.90 **** | 0.90 **** | 0.87 **** |
IEC | 0.20 * | 0.17* | 0.12 | 0.13 | 0.12 | 0.08 | 0.19 * | 0.07 | |
TSS | 0.10 | 0.06 | 0.09 | 0.09 | 0.08 | 0.85 **** | 0.98 **** | 0.0003 | |
TA | 0.29 ** | 0.28** | 0.14 | 0.15 | 0.15 | 0.30 ** | 0.61 **** | 0.19 * | |
FF | 0.59 **** | 0.70 **** | 0.006 | 0.035 | 0.09 | 0.98 **** | 0.99 **** | 0.83 **** | |
Pinokio | FW | 0.53 **** | 0.02 | 0.78 **** | 0.0006 | 0.0001 | 0.86 **** | 0.86 **** | 0.84 **** |
IEC | 0.31 ** | 0.14 | 0.46 *** | 0.17 * | 0.15 | 0.12 | 0.09 | 0.15 | |
TSS | 0.25 * | 0.13 | 0.33 ** | 0.15 | 0.14 | 0.98 **** | 0.97 **** | 0.003 | |
TA | 0.34 ** | 0.14 | 0.56 **** | 0.17 * | 0.16 | 0.74 **** | 0.65 **** | 0.40 *** | |
FF | 0.002 | 0.088 | 0.52 **** | 0.082 | 0.073 | 0.98 **** | 0.98 **** | 0.91 **** | |
Ligolina | FW | 0.31 ** | 0.78 **** | 0.71 **** | 0.86 **** | 0.007 | 0.87 **** | 0.87 **** | 0.20 * |
IEC | 0.18 * | 0.34 ** | 0.24 * | 0.21 * | 0.18 * | 0.71 **** | 0.86 **** | 0.22 * | |
TSS | 0.12 | 0.13 | 0.11 | 0.12 | 0.16 * | 0.98 **** | 0.99 **** | 0.17 * | |
TA | 0.18 * | 0.34 ** | 0.24 * | 0.20 * | 0.18 * | 0.65 **** | 0.82 **** | 0.22 * | |
FF | 0.001 * | 0.54 **** | 0.27 ** | 0.94 **** | 0.09 | 0.99 **** | 0.99 **** | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keller-Przybyłkowicz, S.; Lewandowski, M.; Kuras, A.; Strączyńska, K.; Czarnecka, R.; Idczak, B.; Rutkowski, K.P.; Skorupinska, A. Interactions Between Seasonal Temperature Changes, Activities of Selected Genes and Fruit Quality in Malus domestica Borkh. Agronomy 2025, 15, 908. https://doi.org/10.3390/agronomy15040908
Keller-Przybyłkowicz S, Lewandowski M, Kuras A, Strączyńska K, Czarnecka R, Idczak B, Rutkowski KP, Skorupinska A. Interactions Between Seasonal Temperature Changes, Activities of Selected Genes and Fruit Quality in Malus domestica Borkh. Agronomy. 2025; 15(4):908. https://doi.org/10.3390/agronomy15040908
Chicago/Turabian StyleKeller-Przybyłkowicz, Sylwia, Mariusz Lewandowski, Anita Kuras, Krystyna Strączyńska, Renata Czarnecka, Bogusława Idczak, Krzysztof P. Rutkowski, and Anna Skorupinska. 2025. "Interactions Between Seasonal Temperature Changes, Activities of Selected Genes and Fruit Quality in Malus domestica Borkh." Agronomy 15, no. 4: 908. https://doi.org/10.3390/agronomy15040908
APA StyleKeller-Przybyłkowicz, S., Lewandowski, M., Kuras, A., Strączyńska, K., Czarnecka, R., Idczak, B., Rutkowski, K. P., & Skorupinska, A. (2025). Interactions Between Seasonal Temperature Changes, Activities of Selected Genes and Fruit Quality in Malus domestica Borkh. Agronomy, 15(4), 908. https://doi.org/10.3390/agronomy15040908