Biochar: A Valid Additive to Enhance Kiwifruit In Vitro Proliferation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and In Vitro Culture Establishment
2.2. Experimental Design and Data Collection
2.3. Evaluation of Total (Poly)phenolic Content and Antioxidant Capacity
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, S.Z.; Naseer, B.; Qadri, T.; Fatima, T.; Bhat, T.A. Kiwifruit (Actinidia chinensis var. deliciosa)—Morphology, taxonomy, composition and health benefits. In Fruits Grown in Highland Regions of the Himalayas: Nutritional and Health Benefits; Springer International Publishing: Cham, Switzerland, 2021; pp. 145–156. [Google Scholar] [CrossRef]
- Di Primio, C.; Costa, G.; Ozudogru, A.; Lambardi, M. Innovazione nella propagazione in vitro di Actinidia chinensis var. deliciosa mediante coltura liquida in immersione temporanea. Acta Italus Hortus 2017, 21, 96–97. [Google Scholar]
- Tanimoto, G. Propagation. In Kiwifruit Growing and Handling; University of California, Division of Agriculture and Natural Resources: Davis, CA, USA, 1994; Volume 3344, pp. 21–24. [Google Scholar]
- Sivritepe, N.; Tuğ, Y. Hayward ve Matua kivi çeşitlerinde mikro çoğaltım. Uludağ Üniversitesi Ziraat Fakültesi Derg. 2011, 25, 97–108. [Google Scholar]
- Zhong, W.; Zhou, J.; Tang, D.; Huang, Y.; Liu, F.; Zhang, M.; Wang, G.; Wu, S.; He, Y.; Tang, J. Establishment of tissue culture system of Actinidia chinensis var. deliciosa cultivar “Guichang”. J. Chem. 2021, 1, 9951949. [Google Scholar] [CrossRef]
- Harada, H. In vitro organ culture of Actinidia chinensis PL as a technique for vegetative multiplication. J. Hortic. Sci. 1975, 50, 81–83. [Google Scholar]
- Gui, Y.L. Callus induction from stem segments and plantlet regeneration of Chinese gooseberry. Acta Bot. Sin. 1981, 21, 339–344. [Google Scholar]
- Kim, M.; Kim, S.C.; Moon, D.Y.; Song, K.J. Rapid shoot propagation from micro-cross sections of kiwifruit (Actinidia chinensis var. deliciosa cv. ‘Hayward’). J. Plant Biol. 2007, 50, 681–686. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, D.R. Review Article In vitro propagation of kiwifruit. Hortic. Biotechnol. 2002, 77, 503–508. [Google Scholar] [CrossRef]
- Lin, Q.L.; Chen, Z.Q.; Wu, J.S. Propagation in vitro of some excellent clones of kiwifruit. J. Fujian Agric. Univ. 1994, 23, 271–274. [Google Scholar]
- Monette, P.L. Micropropagation of kiwifruit using non-axenic shoot tips. Plant Cell Tiss. Org. Cult. 1986, 6, 73–82. [Google Scholar] [CrossRef]
- Bhojwani, S.S.; Razdan, M.K. Plant Tissue Culture: Theory and Practice; Elsevier: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Li, Y.; Zhang, D.; Xing, L.; Zhang, S.; Zhao, C.; Han, M. Effect of exogenous 6-benzylaminopurine (6-BA) on branch type, floral induction and initiation, and related gene expression in ‘Fuji’ apple (Malus domestica Borkh). Plant Growth Regul. 2016, 79, 65–70. [Google Scholar] [CrossRef]
- Khatoon, S.; Liu, W.; Ding, C.; Liu, X.; Zheng, Y.; Zhang, Y.; Chen, X.; Rauf, M.; Alghabari, F.; Shah, Z.H. In vitro evaluation of the effects of bap concentration and pre-cooling treatments on morphological, physiological, and biochemical traits of different olive (Olea euorpaea L.) cultivars. Horticulturae 2022, 8, 1108. [Google Scholar] [CrossRef]
- Hamdeni, I.; Louhaichi, M.; Slim, S.; Boulila, A.; Bettaieb, T. Incorporation of organic growth additives to enhance in vitro tissue culture for producing genetically stable plants. Plants 2022, 11, 3087. [Google Scholar] [CrossRef] [PubMed]
- Nimavat, N.; Parikh, P. Innovations in Date palm (Phoenix dactylifera L.) micropropagation: Detailed review of in vitro culture methods and plant growth regulator applications. Plant Cell Tiss. Org. Cult. 2024, 159, 6. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A.; Ji, S.; Bian, R.; Li, L.; Pan, G.; Paz-Ferreiro, J. Biochar’s effect on crop productivity and the dependence on experimental conditions—A meta-analysis of literature data. Plant Soil 2013, 373, 583–594. [Google Scholar] [CrossRef]
- Liu, Z.; Demisie, W.; Zhang, M. Simulated degradation of biochar and its potential environmental implications. Environ. Pollut. 2013, 179, 146–152. [Google Scholar] [CrossRef]
- Wiszniewska, A.; Dziurka, K.; Dziurka, M.; Rodrigues, A.F.; Latawiec, A.E. Biochars as culture medium additives influence organogenic potential of plant explants through changes in endogenous phytohormone and carbohydrate contents in Daphne species. Plant Cell Tiss. Org. Cult. 2023, 152, 45–66. [Google Scholar] [CrossRef]
- Kisvarga, S.; Farkas, D.; Boronkay, G.; Neményi, A.; Orlóci, L. Effects of biostimulants in horticulture, with emphasis on ornamental plant production. Agronomy 2022, 12, 1043. [Google Scholar] [CrossRef]
- Medic, A.; Hudina, M.; Veberic, R. The effect of cane vigour on the kiwifruit (Actinidia chinensis) and kiwiberry (Actinidia arguta) quality. Sci. Rep. 2021, 11, 12749. [Google Scholar] [CrossRef]
- Mezzetti, B.; Conte, L.S.; Rosati, P. Actinidia chinensis var. deliciosa in vitro II. Growth and exogenous carbohydrates utilization by explants. Plant Cell Tiss. Org. Cult. 1991, 26, 153–160. [Google Scholar] [CrossRef]
- Mezzetti, B.; Rosati, P.; Casalicchio, G. Actinidia chinensis var. deliciosa CF Liang In vitro growth and mineral uptake by explants. Plant Cell Tiss. Org. Cult. 1991, 25, 91–98. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays of tobacco tissue cultures. Plant Physiol. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Moncalean, P.; Rodriguez, A.; Fernandez, P. In vitro response of Actinidia deliciosa explants to different BA incubation periods. Plant Cell Tiss. Org. Cult. 2001, 67, 257–266. [Google Scholar] [CrossRef]
- Chiancone, B.; Guarrasi, V.; Leto, L.; Del Vecchio, L.; Calani, L.; Ganino, T.; Galaverni, M.; Cirlini, M. Vitro-derived hop (Humulus lupulus L.) leaves and roots as source of bioactive compounds: Antioxidant activity and polyphenolic profile. Plant Cell Tiss. Org. Cult. 2023, 153, 295–306. [Google Scholar] [CrossRef]
- Hammer, E.C.; Forstreuter, M.; Rilliga, M.C.; Kohlera, J. Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Appl Soil Ecol. 2015, 96, 114–121. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Di Lonardo, S.; Vaccari, F.P.; Baronti, S.; Capuana, M.; Bacci, L.; Sabatini, F.; Lambardi, M.; Miglietta, F. Biochar successfully replaces activated charcoal for in vitro culture of two white poplar clones reducing ethylene concentration. J. Plant Growth Regul. 2013, 69, 43–50. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Torabian, S. Biochar Increased Plant Growth-Promoting Hormones and Helped to Alleviates Salt Stress in Common Bean Seedlings. J. Plant Growth Regul. 2015, 37, 591–601. [Google Scholar] [CrossRef]
- Pedroso, M.C.; Oliveira, M.M.; Pais, M.S.S. Micropropagation and simultaneous rooting of Actinidia chinensis var. deliciosa var. deliciosa Hayward’. HortScience 1992, 27, 443–445. [Google Scholar] [CrossRef]
- Akbaş, F.A.; Işikalan, C.; Namli, S.; Başaran, D. Micropropagation of kiwifruit (Actinidia deliciosa). Int. J. Agric. Biol. 2007, 9, 489–493. [Google Scholar]
- Nartop, P.; Şener, S.O.; Gök, S.B. Biochar-supported in vitro cultures of Lavandula officinalis L. Estusci. Life 2024, 13, 133–142. [Google Scholar] [CrossRef]
- Santos, L.S.; Nunes, C.E.F.; Sanglard, D.A.; Damião, E.F.; Reis, M.M.; Frazão, L.A.; Fernandes, L.A. Biochar as an alternative to improve the in vitro environment for Pitaya (Hylocereus undatus Haw) and strawberry (Fragaria x ananassa Duch) growing. Afr. J. Agric. Res. 2023, 19, 226–234. [Google Scholar] [CrossRef]
- Viger, M.; Hancock, R.D.; Miglietta, F.; Taylor, G. More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. Glob. Change Biol. Bioenergy 2015, 7, 658–672. [Google Scholar] [CrossRef]
- Xiang, Y.; Deng, Q.; Duan, H.; Guo, Y. Effects of biochar application on root traits: A meta-analysis. Glob Change Biol. Bioenergy 2017, 9, 1563–1572. [Google Scholar] [CrossRef]
- Marino, G.; Bertazza, G. Micropropagation of Actinidia chinensis var. deliciosa cvs. ‘Hayward’ and ‘Tomuri’. Sci. Hortic. 1990, 45, 65–74. [Google Scholar] [CrossRef]
- Nasib, A.; Ali, K.; Khan, S. An optimized and improved method for the in vitro propagation of kiwifruit (Actinidia chinensis var. deliciosa) using coconut water. Pak. J. Bot. 2008, 40, 2355–2360. [Google Scholar] [CrossRef]
- Leto, L.; Favari, C.; Agosti, A.; Del Vecchio, L.; Di Fazio, A.; Bresciani, L.; Mena, P.; Guarrasi, V.; Cirlini, M.; Chiancone, B. Evaluation of in vitro-derived hop plantlets, cv. Columbus and Magnum, as potential source of bioactive compounds. Antioxidants 2024, 13, 909. [Google Scholar] [CrossRef]
- Rosli, N.S.M.; Abdullah, R.; Yaacob, J.S.; Razali, R.B.R. Effect of biochar as a hydroponic substrate on growth, colour and nutritional content of red lettuce (Lactuca sativa L.). Bragantia 2023, 82, e20220177. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Chen, J.; Younis, A.; Abideen, Z.; Naveed, M.; Koyro, H.W.; Siddique, K.H. Biochar, compost, and biochar–compost blend applications modulate growth, photosynthesis, osmolytes, and antioxidant system of medicinal plant Alpinia zerumbet. Front. Plant Sci. 2021, 12, 707061. [Google Scholar] [CrossRef]
Particle Diameter (μm) | <500 |
Nitrogen (%) | 0.6 |
Potassium (%) | 0.8 |
Phosphorous (%) | 0.07 |
Calcium (%) | 2.7 |
Magnesium (%) | 0.4 |
Sodium (%) | 0.1 |
Total carbon (%) | 62,5 |
Water holding capacity (%) | 74.2 |
pH | 9.85 |
Ash content (%) | 22.8 |
pH | 7.7 |
Electrical conductivity (dS m−1) | 0.4 |
H/C | 0.3 |
[Biochar] | Presence of BAP | Callus | n° of Shoots | Shoots Length | n° of Roots | FW | DW |
---|---|---|---|---|---|---|---|
(cm) | (g) | (g) | |||||
0BC | 0BAP | 1.45 ± 0.2744 | 1.40 ± 0.1604 | 0.98 ± 0.0959 | 1.13 ± 0.1250 | 0.51 ± 0.0449 | 0.22 ± 0.0559 |
0.2BAP | 1.68 ± 0.2875 | 1.85 ± 0.1581 | 1.00 ± 0.0480 | 1.00 ± 0.0000 | 0.98 ± 0.0868 | 0.24 ± 0.0491 | |
4BC | 0BAP | 0.30 ± 0.0854 | 1.85 ± 0.1581 | 1.39 ± 0.0274 | 2.80 ± 0.7229 | 0.51 ± 0.0405 | 0.18 ± 0.0325 |
0.2BAP | 0.04 ± 0.0434 | 2.00 ± 0.2134 | 1.63 ± 0.0356 | 2.33 ± 1.3471 | 0.53 ± 0.0579 | 0.30 ± 0.0279 | |
6BC | 0BAP | 0.27 ± 0.2920 | 1.60 ± 0.1777 | 0.79 ± 0.0176 | 3.33 ± 0.8606 | 0.50 ± 0.0372 | 0.22 ± 0.0111 |
0.2BAP | 0.19 ± 0.0779 | 2.10 ± 0.1857 | 1.20 ± 0.0201 | 2.64 ± 0.7063 | 0.45 ± 0.0295 | 0.26 ± 0.0303 | |
Statistical analysis | |||||||
Factors | p | p | p | p | p | p | |
[Biochar] (BC) | <0.001 | 0.043 | <0.001 | 0.092 | <0.001 | 0.948 | |
Presence of BAP (BAP) | 0.804 | <0.001 | <0.001 | 0.525 | <0.001 | 0.158 | |
BC × BAP | 0.412 | 0.985 | <0.001 | 0.939 | <0.001 | 0.249 |
[Biochar] | Presence of BAP | n° of Shoots | length of Shoots (cm) | n° of Roots | FW (g) | DW (g) |
---|---|---|---|---|---|---|
0BC | 0BAP | 2.30 ± 0.1527 | 2.15 ± 0.0108 | 3.60 ± 0.2477 | 0.47 ± 0.0073 | 0.09 ± 0.0011 |
0.2BAP | 2.10 ± 0.0999 | 3.35 ± 0.0118 | 0.00 ± 0.0000 | 1.83 ± 0.0012 | 0.14 ± 0.0012 | |
4BC | 0BAP | 3.80 ± 0.1333 | 4.65 ± 0.0044 | 6.25 ± 1.2628 | 1.54 ± 0.0120 | 0.12 ± 0.0012 |
0.2BAP | 4.60 ± 0.1632 | 3.85 ± 0.0049 | 4.60 ± 0.2470 | 0.62 ± 0.0023 | 0.04 ± 0.0011 | |
6BC | 0BAP | 3.40 ± 0.1000 | 4.84 ± 0.0046 | 6.75 ± 0.5803 | 1.39 ± 0.0425 | 0.10 ± 0.0007 |
0.2BAP | 4.10 ± 0.1632 | 5.16 ± 0.0066 | 4.75 ± 0.3170 | 1.86 ± 0.0118 | 0.03 ± 0.0012 | |
Statistical analysis of the factors | ||||||
Factors | ||||||
[Biochar] (BC) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Presence of BAP (BAP) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
BC × BAP | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
[Biochar] | Presence of BAP | TPC mg GAE/g | AO mg TEAC/g |
---|---|---|---|
0BC | 0BAP | 29.26 ± 3.0437 | 26.05 ± 3.2523 |
0.2BAP | 31.19 ± 2.9529 | 30.21 ± 2.0734 | |
4BC | 0BAP | 26.19 ± 3.1100 | 21.02 ± 1.3760 |
0.2BAP | 16.33 ± 1.8456 | 11.01 ± 1.9808 | |
6BC | 0BAP | 44.38 ± 5.8206 | 39.11 ± 0.5235 |
0.2BAP | 18.38 ± 0.2125 | 13.76 ± 2.1966 | |
Statistical analysis | |||
Factors | |||
[Biochar] (BC) | <0.001 | <0.000 | |
Presence of BAP (BAP) | <0.001 | <0.001 | |
BC × BAP | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazeer, S.; Morresi, V.; Balducci, F.; Leto, L.; Di Fazio, A.; Cirlini, M.; Agosti, A.; Chiancone, B. Biochar: A Valid Additive to Enhance Kiwifruit In Vitro Proliferation. Agronomy 2025, 15, 849. https://doi.org/10.3390/agronomy15040849
Nazeer S, Morresi V, Balducci F, Leto L, Di Fazio A, Cirlini M, Agosti A, Chiancone B. Biochar: A Valid Additive to Enhance Kiwifruit In Vitro Proliferation. Agronomy. 2025; 15(4):849. https://doi.org/10.3390/agronomy15040849
Chicago/Turabian StyleNazeer, Samreen, Valentina Morresi, Francesca Balducci, Leandra Leto, Andrea Di Fazio, Martina Cirlini, Anna Agosti, and Benedetta Chiancone. 2025. "Biochar: A Valid Additive to Enhance Kiwifruit In Vitro Proliferation" Agronomy 15, no. 4: 849. https://doi.org/10.3390/agronomy15040849
APA StyleNazeer, S., Morresi, V., Balducci, F., Leto, L., Di Fazio, A., Cirlini, M., Agosti, A., & Chiancone, B. (2025). Biochar: A Valid Additive to Enhance Kiwifruit In Vitro Proliferation. Agronomy, 15(4), 849. https://doi.org/10.3390/agronomy15040849