Shifts in the Efficiency of 15N-Ammonium Sulfate Fertilization to Sugarcane Varieties Inoculated with Diazotrophic Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Conditions
2.2. Calculation of Nitrogen Derived from Fertilizers and Evaluation of Use Efficiency
2.3. Statistical Analyses
3. Results
3.1. Stem Production, N Accumulation, and Dry Matter
3.2. Efficiency of 15N Fertilizer Use Inoculated with Diazotrophic Bacteria
4. Discussion
4.1. Plant Growth, Nitrogen Concentration, and Dry Biomass Accumulation
4.2. Impact of 15N Fertilizer on Nitrogen Use Efficiency and Contribution to Sugarcane
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urquiaga, S.; Xavier, R.; Morais, R.F.; Batista, R.; Schultz, N.; Leite, J.M.; Resende, A.; Alves, B.J.R.; Boddey, R.M. Evidence from field nitrogen balance and 15N natural abundance data of the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant Soil 2012, 356, 5–21. [Google Scholar] [CrossRef]
- Otto, R.; Castro, S.A.Q.; Mariano, E.; Castro, S.G.Q.; Franco, H.C.J.; Trivelin, P.C.O. Nitrogen Use Efficiency for Sugarcane-Biofuel Production: What Is Next? Bioenergy Res. 2016, 9, 1272–1289. [Google Scholar] [CrossRef]
- Otto, R.; Ferraz-Almeida, R.; Sanches, G.M.; Lisboa, I.P.; Cherubin, M.R. Nitrogen fertilizer consumption and nitrous oxide emissions associated with ethanol production—A national-scale comparison between Brazilian sugarcane and corn in the United States. J. Clean. Prod. 2022, 20, 131–482. [Google Scholar] [CrossRef]
- IFA—International Fertilizer Industry Association. Assessment of Fertilizer Use by Crop at Global Level; 2010-2010/11; International Fertilizer Industry Association: Paris, France, 2013; 10p. [Google Scholar]
- Martins, D.S.; Reis, V.M.; Schultz, N.; Alves, B.J.R.; Urquiaga, S.; Pereira, W.; Sousa, J.S.; Boddey, R.M. Both the contribution of soil nitrogen and of biological N2 fixation to sugarcane can increase with the inoculation of diazotrophic bacteria. Plant Soil 2020, 454, 155–169. [Google Scholar] [CrossRef]
- Boddey, R.M.; Urquiaga, S.; Alves, B.J.R.; Reis, V. Endophytic nitrogen fixation in sugarcane: Present knowledge and future applications. Plant Soil 2003, 252, 139–149. [Google Scholar] [CrossRef]
- Schultz, N.; Morais, R.F.; Silva, J.A.; Baptista, R.B.; Oliveira, R.P.; Leite, J.M.; Pereira, W.; Carneiro, J.B.C., Jr.; Alves, B.J.R.; Baldani, J.I.; et al. Agronomic evaluation of sugarcane varieties inoculated with diazotrophic bacteria and fertilized with nitrogen. Pesqui. Agropecu. Bras. 2012, 47, 261–268. [Google Scholar] [CrossRef]
- Schultz, N.; Pereira, W.; Reis, V.M.; Urquiaga, S. Productivity and 15N isotope dilution of sugarcane inoculated with diazotrophic bacteria. Pesqui. Agropecu. Bras. 2016, 51, 1594–1601. [Google Scholar] [CrossRef]
- Pereira, W.; Leite, J.M.; Hipólito, G.S.; Santos, C.L.R.; Reis, V.M. Biomass accumulation in sugarcane varieties inoculated with different strains of diazotrophs. Rev. Ciênc. Agron. 2013, 44, 363–370. [Google Scholar] [CrossRef]
- Gírio, L.A.; Dias, F.L.F.; Reis, V.M.; Urquiaga, S.; Schultz, N.; Bolonhezi, D.; Mutton, M.A. Bactérias promotoras de crescimento e adubação nitrogenada no crescimento inicial de cana-de-açúcar proveniente de mudas pré-brotadas. Pesqui. Agropecuária Bras. 2015, 50, 33–43. [Google Scholar] [CrossRef]
- Isa, D.W.; Hofman, G.; Van Cleemput, O. Uptake and balance of fertilizer nitrogen applied to sugarcane. Field Crops Res. 2006, 95, 348–354. [Google Scholar] [CrossRef]
- Thorburn, P.J.; Biggs, J.S.; Webster, A.J.; Biggs, I.M. An improved way to determine nitrogen fertiliser requirements of sugarcane crops to meet global environmental challenges. Plant Soil 2011, 339, 51–67. [Google Scholar] [CrossRef]
- Allen, D.E.; Kingston, G.; Rennenberg, H.; Dalal, R.C.; Schmidt, S. Effect of nitrogen fertilizer management and waterlogging on nitrous oxide emission from subtropical sugarcane soils. Agric. Ecosyst. Environ. 2012, 136, 209–217. [Google Scholar] [CrossRef]
- Franco, H.C.J.; Otto, R.; Faroni, C.E.; Vitti, A.C.; Oliveira, E.C.A.; Trivelin, P.C.O. Nitrogen in sugarcane derived from fertilizer under Brazilian field conditions. Field Crops Res. 2011, 121, 29–41. [Google Scholar] [CrossRef]
- Pereira, W.; Oliveira, R.P.; Pereira, A.; Sousa, J.S.; Schultz, N.; Urquiaga, S.; Reis, V.M. Nitrogen acquisition and 15N-fertiliser recovery efficiency of sugarcane cultivar RB92579 inoculated with five diazotrophs. Nutr. Cycl. Agroecosyst. 2021, 119, 37–50. [Google Scholar] [CrossRef]
- Santos, S.G.; Chaves, V.A.; Ribeiro, F.S.; Alves, G.; Reis, V.M. Rooting and growth of pre-germinated sugarcane seedlings inoculated with diazotrophic bacteria. Appl. Soil Ecol. 2018, 133, 12–23. [Google Scholar] [CrossRef]
- Martins, M.R.; Jantalia, C.P.; Reis, V.M.; Döwich, I.; Polidoro, J.C.; Alves, B.J.R.; Boddey, R.M.; Urquiaga, S. Impact of plant growth-promoting bacteria on grain yield, protein content, and urea-15N recovery by maize in a Cerrado Oxisol. Plant Soil 2018, 422, 239–250. [Google Scholar] [CrossRef]
- Landell, M.G.A.; Campana, M.P.; Figueiredo, P. Sistema de Multiplicação de Cana-de-Açúcar Com Uso de Mudas Pré-Brotadas (MPB), Oriundas de Gemas Individualizadas; Documentos, 109; IAC: Campinas, Brazil, 2012; 17p. [Google Scholar]
- Reis, V.M.; Olivares, F.L.; Döbereiner, J. Metodologia melhorada para isolamento de Acetobacter diazotrophicus e confirmação de seu habitat endofítico. World J. Microbiol. Biotechnol. 1994, 10, 401–405. [Google Scholar] [CrossRef]
- Santos, S.G.; Ribeiro, F.S.; Pereira, W.; Santos, L.A.; Reis, V.M. Inoculation with five diazotrophs alters nitrogen metabolism during the initial growth of sugarcane varieties with contrasting responses to added nitrogen. Plant Soil 2019, 451, 25–44. [Google Scholar] [CrossRef]
- Oliveira, A.L.M.; Urquiaga, S.; Döbereine, J.; Baldani, J.I. The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 2002, 242, 205–215. [Google Scholar] [CrossRef]
- Pereira, W.; Sousa, J.S.; Schultz, N.; Reis, V.M. Sugarcane Productivity as a Function of Nitrogen Fertilization and Inoculation with Diazotrophic Plant Growth-Promoting Bacteria. Sugar Tech 2019, 21, 71–82. [Google Scholar] [CrossRef]
- Cavalcante, V.; Döbereiner, J. A new acid-tolerant nitrogen-fixing bacterium isolated from sugarcane. Plant Soil 1988, 108, 23–31. [Google Scholar] [CrossRef]
- Baldani, J.I.; Baldani, V.L.D.; Seldin, L.; Döbereiner, J. Characterization of Herbaspirillum seropedicae gen. nov. sp. nov. a root associated nitrogen fixing bacterium. Int. J. Syst. Evol. Bacteriol. 1986, 36, 86–93. [Google Scholar] [CrossRef]
- Baldani, J.I.; Pot, B.; Kirchhof, G.; Falsen, E.; Baldani, V.L.D.; Olivares, F.L.; Hoste, B.; Kersters, K.; Hartmann, A.; Gillis, M.; et al. Emended description of Herbaspirillum; inclusion of (Pseudomonas) rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates EF group 1 as Herbaspirillum species 3. Int. J. Syst. Evol. Bacteriol. 1996, 46, 802–810. [Google Scholar] [CrossRef]
- Oren, A.; Garrity, G.M. List of new names and new combinations previously effective, but not validly, published. Int. Syst. Evol. Microbiol. 2015, 65, 2017–2025. [Google Scholar] [CrossRef]
- Lin, S.Y.; Hameed, A.; Shen, F.T.; Liu, Y.C.; Hsu, Y.H.; Shahina, M.; Lai, W.A.; Young, C.C. Description of Niveispirillum fermenti gen. nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense 1989 as Niveispirillum irakense comb. nov., and reclassification of Azospirillum amazonense 1983 as Nitrospirillum amazonense gen. nov. Antonie Leeuwenhoek 2014, 105, 1149–1162. [Google Scholar] [CrossRef]
- Baldani, J.I.; Reis, V.M.; Videira, S.S.; Boddey, L.H.; Baldani, V.L.D. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: A practical guide for microbiologists. Plant Soil 2014, 384, 413–431. [Google Scholar] [CrossRef]
- Reis, V.M.; Baldani, J.I.; Urquiaga, S. Recomendação de Uma Mistura de Estirpes de Cinco Bactérias Fixadoras de Nitrogênio para Inoculação de Cana-de-Açúcar: Gluconacetobacter diazotropicus (BR 11281), Herbaspirillum seropedicae (BR 11335), Herbaspirillum rubrisubalbicans (BR 11504), Azospirillum amazonense (BR 11145) e Burkholderia trópica (BR 11366); Circular Técnica; Embrapa Agrobiologia: Seropédica, Rio de Janeiro, Brazil, 2009. [Google Scholar]
- Arnold, S.L.; Schepers, J.S.A. Simple roller-mill grinding procedure for plant and soil samples. Commut. Soil Sci. Plant Anal. 2004, 35, 537–545. [Google Scholar] [CrossRef]
- Nogueira, A.R.A.; Souza, G.B. Manual de Laboratório: Solo, Água, Nutrição Vegetal, Nutrição Animal e Alimentos; Embrapa Pecuária Sudeste: São Carlos, Brazil, 2005. [Google Scholar]
- IAEA—International Atomic Energy Agency. Use of Isotope and Radiation Methods in Soil and Water Management and Crop Nutrition; Training Course Series N° 14; IAEA: Vienna, Àustria, 2001. [Google Scholar]
- Silva, F.A.S.; Azevedo, C.A.V. The Assistat Software Version 7.7 and its use in the analysis of experimental data. Afr. J. Agric. Res. 2016, 11, 3733–3740. [Google Scholar] [CrossRef]
- Schultz, N.; Pereira, W.; de Albuquerque Silva, P.; Baldani, J.I.; Boddey, R.M.; Alves, B.J.R.; Urquiaga, S.; Reis, V.M. Yield of sugarcane varieties and their sugar quality grown in different soil types and inoculated with a diazotrophic bacteria consortium. Plant Prod. Sci. 2017, 20, 366–374. [Google Scholar] [CrossRef]
- Kölln, O.T.; Boschiero, B.N.; Franco, H.C.J.; Soldi, M.C.M.M.; Sanches, G.M.; Castro, S.G.Q.; Trivelin, P.C.O. Preferential mineral N form uptake by sugarcane genotypes contrasting in nitrogen use efficiency. Exp. Agric. 2022, 58, e32. [Google Scholar] [CrossRef]
- Salvato, F.; Wilson, R.; Portilla Llerena, J.P.; Kiyota, E.; Lima Reis, K.; Boaretto, L.F.; Balbuena, T.S.; Azevedo, R.A.; Thelen, J.J.; Mazzafera, P. Luxurious nitrogen fertilization of two sugarcane genotypes contrasting for lignin composition causes changes in the stem proteome related to carbon, nitrogen, and oxidant metabolism but does not alter lignin content. J. Proteome Res. 2017, 16, 3688–3703. [Google Scholar]
- Azimi, S.; Kaur, T.; Gandhi, T.K. A deep learning approach to measure stress level in plants due to Nitrogen deficiency. Measurement 2021, 173, 108650. [Google Scholar]
- Oliveira, A.L.M.; Canuto, E.L.; Urquiaga, S.; Reis, V.M.; Baldani, J.I. Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 2006, 284, 23–32. [Google Scholar] [CrossRef]
- de Sousa Silva, A.M.; de Oliveira, E.C.A.; de Andrade, J.J.; Lima, A.M.S.; de Almeida, B.G.; Trivelin, P.C.O.; Freire, F.J.; Guimarães, D.H. The Leaching Potential and Recovery of 15-N-Fertilizer by Sugarcane Cultivated in Sandy Soil. Sugar Tech 2025, 27, 119–133. [Google Scholar] [CrossRef]
- Rosa, P.A.L.; Mortinho, E.S.; Jalal, A.; Galindo, F.S.; Buzetti, S.; Fernandes, G.C.; Barco Neto, M.; Pavinato, P.S.; Teixeira Filho, M.C.M. Inoculation with Growth-Promoting Bacteria Associated with the Reduction of Phosphate Fertilization in Sugarcane. Front. Environ. Sci. 2020, 8, 32. [Google Scholar] [CrossRef]
- Mellis, E.; Kölln, O.T.; Moreira, L.A.; Otto, R.; Ferraz-Almeida, R.; Ramos, L.F.; Franco, H.C.J. Molybdenum increases nitrogen use efficiency of sugarcane under limited N supply. J. Plant Nutr. 2022, 45, 1360–1369. [Google Scholar] [CrossRef]
- dos Santos, R.L.; Freire, F.J.; de Oliveira, E.C.A.; Trivellin, P.C.O.; Freire, M.B.G.S.; Bezerra, P.C.; de Oliveira, R.I.; Santos, M.B.C. Changes in Biological Nitrogen Fixation and Natural-Abundance N Isotopes of Sugarcane Under Molybdenum Fertilization. 2019. Sugar Tech 2019, 21, 925–935. [Google Scholar] [CrossRef]
- Fortes, C.; Trivelin, P.C.O.; Vitti, A.C.; Otto, R.; Franco, H.C.J.; Faroni, C.E. Stalk and sucrose yield in response to nitrogen fertilization of sugarcane under reduced tillage. Pesqui. Agropecuária Bras. 2013, 48, 88–96. [Google Scholar] [CrossRef]
- Joris, H.A.W.; Vitti, A.C.; Ferraz-Almeida, R.; Otto, R.; Cantarella, H. Long-term N fertilization reduces uptake of N from fertilizer and increases the uptake of N from soil. Sci. Rep. 2020, 10, 18834. [Google Scholar] [CrossRef]
- Matoso, E.S.; Avancini, A.R.; dos Anjos e Silva, S.D.; Reis, V.M.; Brito, G.G.; Maciel, K.F.K. Sugarcane is Less Impacted by Water Deficit using a Mixture of Five Diazotrophs Bacteria. Sugar Tech 2021, 23, 1284–1294. [Google Scholar] [CrossRef]
Treatments | Sugarcane Varieties | |
---|---|---|
RB92579 | RB867515 | |
Fresh weight of stems (kg pot−1) | ||
Non-inoculated | 10.4 a (±1.0) | 10.5 a (±2.1) |
Inoculated | 10.7 a (±1.7) | 9.5 a (±1.1) |
No N fertilizer | 10.9 a (±1.4) | 10.6 a (±1.8) |
+N fertilizer | 10.2 a (±1.4) | 9.4 a (±1.3) |
F test | ||
Inoculant (I) | 0.3 ns | 2.1 ns |
Fertilizer (F) | 1.6 ns | 3.8 ns |
Interaction I × F | 0.1 ns | 0.3 ns |
CV (%) | 12 | 14 |
Whole plant dry matter (kg pot−1) | ||
Non-inoculated | 6.2 a (±0.6) | 5.7 a (±0.9) |
Inoculated | 6.2 a (±0.9) | 5.5 a (±0.5) |
No N fertilizer | 6.1 a (±0.8) | 5.8 a (±0.9) |
+N fertilizer | 6.3 a (±0.7) | 5.5 a (±0.7) |
F test | ||
Inoculant (I) | 0.0 ns | 0.8 ns |
Fertilizer (F) | 0.2 ns | 3.5 ns |
Interaction I × F | 0.0 ns | 0.0 ns |
CV (%) | 15 | 9 |
Whole planta N accumulation (g N pot−1) | ||
Non-inoculated | 9.8 a (±2.2) | 10.5 a (±2.8) |
Inoculated | 9.7 a (±1.1) | 10.0 a (±0.8) |
No N fertilizer | 9.8 a (±1.6) | 10.1 a (±2.5) |
+N fertilizer | 9.8 a (±1.8) | 10.4 a (±1.4) |
F test | ||
Inoculant (I) | 0.3 ns | 0.2 ns |
Fertilizer (F) | 0.0 ns | 0.8 ns |
Interaction I × F | 0.1 ns | 0.2 ns |
CV (%) | 13 | 19 |
Treatments | Sugarcane Varieties | |
---|---|---|
RB92579 | RB867515 | |
15N enrichment of different parts of the sugarcane plant | ||
Roots | 0.081 a (±0.01) | 0.079 a (±0.01) |
Basal portion of the stalk | 0.090 a (±0.01) | 0.076 a (±0.01) |
Middle portion of the stalk | 0.090 a (±0.00) | 0.072 a (±0.00) |
Upper portion of the stalk | 0.084 a (±0.01) | 0.080 a (±0.01) |
Flag leaves | 0.084 a (±0.01) | 0.077 a (±0.01) |
Senescent leaves | 0.083 a (±0.00) | 0.075 a (±0.01) |
F test—Inoculation (I) | 10.2 * | 1.1 ns |
F test—Part of the plant (PP) | 2.5 * | 0.6 ns |
F test—Interaction I × PP | 0.6 ns | 2.7 * |
CVI % | 13 | 6 |
CVpp % | 8 | 11 |
Weighted mean whole plant | ||
Non-inoculated | 0.085 b (±0.00) | 0.078 a (±0.01) |
Inoculated | 0.091 a (± 0.00) | 0.076 a (±0.01) |
CV % | 5 | 3 |
Weighted mean shoot | ||
Non-inoculated | 0.080 b (±0.01) | 0.078 a (±0.01) |
Inoculated | 0.090 a (±0.00) | 0.073 a (±0.01) |
CV % | 5 | 5 |
Treatment | Varieties RB867515 | |
---|---|---|
Non-Inoculated | Inoculated | |
15N enrichment of different parts (Atom % 15N excess) | ||
Roots | 0.076 aA (±0.01) | 0.080 aA (±0.01) |
Basal portion of the stalk | 0.070 aA (±0.00) | 0.082 aA (±0.01) |
Middle portion of the stalk | 0.070 aA (±0.00) | 0.075 aA (±0.01) |
Upper portion of the stalk | 0.085 aA (±0.01) | 0.075 aA (±0.01) |
Flag leaves | 0.085 aA (±0.01) | 0.069 bA (±0.00) |
Senescent leaves | 0.077 aA (±0.00) | 0.075 aA (±0.00) |
Treatments | Sugarcane Varieties | |||||
---|---|---|---|---|---|---|
RB92579 | RB867515 | |||||
Non- Inoculated | Inoculated | CV (%) | Non- Inoculated | Inoculated | CV (%) | |
Values | ||||||
Ndff (%) | 4.9 b (±0.30) | 5.5 a (±0.37) | 13 | 4.7 a (±0.34) | 4.6 a (±0.44) | 6 |
QNDFF * | 0.47 a (±0.07) | 0.50 a (±0.05) | 13 | 0.48 a (±0.07) | 0.48 a (±0.05) | 16 |
NUE (%) | 59 a (±0.09) | 61 a (±0.06) | 13 | 60 a (±0.09) | 59 a (±0.06) | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, E.d.C.; de Oliveira, C.A.G.; da Silva, C.G.N.; Amaral, M.B.; Reis, V.M.; Boddey, R.M.; Alves, B.J.R.; Urquiaga, S. Shifts in the Efficiency of 15N-Ammonium Sulfate Fertilization to Sugarcane Varieties Inoculated with Diazotrophic Bacteria. Agronomy 2025, 15, 842. https://doi.org/10.3390/agronomy15040842
Monteiro EdC, de Oliveira CAG, da Silva CGN, Amaral MB, Reis VM, Boddey RM, Alves BJR, Urquiaga S. Shifts in the Efficiency of 15N-Ammonium Sulfate Fertilization to Sugarcane Varieties Inoculated with Diazotrophic Bacteria. Agronomy. 2025; 15(4):842. https://doi.org/10.3390/agronomy15040842
Chicago/Turabian StyleMonteiro, Edevaldo de Castro, Carolina Almada Gomes de Oliveira, Cleudison Gabriel Nascimento da Silva, Mayan Blanc Amaral, Veronica Massena Reis, Robert Michael Boddey, Bruno José Rodrigues Alves, and Segundo Urquiaga. 2025. "Shifts in the Efficiency of 15N-Ammonium Sulfate Fertilization to Sugarcane Varieties Inoculated with Diazotrophic Bacteria" Agronomy 15, no. 4: 842. https://doi.org/10.3390/agronomy15040842
APA StyleMonteiro, E. d. C., de Oliveira, C. A. G., da Silva, C. G. N., Amaral, M. B., Reis, V. M., Boddey, R. M., Alves, B. J. R., & Urquiaga, S. (2025). Shifts in the Efficiency of 15N-Ammonium Sulfate Fertilization to Sugarcane Varieties Inoculated with Diazotrophic Bacteria. Agronomy, 15(4), 842. https://doi.org/10.3390/agronomy15040842