Differential Physiological Changes in Stomata in Polyploid Agave spp. Could Indicate Flexibility in CO2 Fixation
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Determination of Nuclear DNA Content in Agave
2.3. Variability of Agave L. By AFLP
2.4. Determination of Physiological Parameters
2.5. Analysis of Wax Content in Polyploidy Agave
2.6. Determination of Stomatal Opening and Closure
2.7. Determination of Relative Expression of the NADH, rbcL, PEPC, and PEPCK Genes
3. Results
3.1. Polyploidy in Agave and the Increase in Nuclear DNA
3.2. Differences in Stomata and Relative Expression of NADH, PEPC, PEPCK, and rbcL Genes
3.3. Differences in Physiological Parameters over Time (Day and Night) and Determination of Epiticular Waxes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flores, J.; Briones, O.; Andrade, J.L. Physiological ecology of Mexican CAM plants: History, progress, and opportunities. Bot. Sci. 2022, 100, 290–324. [Google Scholar] [CrossRef]
- Burgos, A.; Miranda, E.; Vilaprinyo, E.; Meza-Canales, I.D.; Alves, R. CAM models: Lessons and implications for CAM evolution. Front. Plant Sci. 2022, 13, 893095. [Google Scholar] [CrossRef]
- Skogberg, M.; Kohonen, K.M.; Lohila, A.; Merbold, L.; Räsänen, M.; Vuorinne, I.; Pellikka, P.; Vesala, T.; Kübert, A. Ecosystem-scale crassulacean acid metabolism (CAM) gas exchange of a sisal (Agave sisalana) plantation. Agric. Ecosyst. Environ. 2025, 381, 109435. [Google Scholar] [CrossRef]
- Carvajal, M.A.; Quiroz, M.; Alaniz, A.J.; Vergara, P.M.; Valenzuela-Aguayo, F.; Hidalgo-Corrotea, C. The global land-water-climate nexus of drought-tolerant succulent plants for bioenergy in abandoned croplands and arid marginal lands. J. Environ. Manag. 2025, 379, 124747. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Z.; Tu, C.; Lv, Z.; Liu, S.; Fan, Y. Response of an obligate CAM plant to competition and increased watering intervals. Physiol. Plant. 2025, 177, e70093. [Google Scholar] [CrossRef]
- Cenciareli, L.C.; Justi, M.S.; Ferreira-Silva, S.L.; de Almeida, L.F.R.; Sershen; Lima Neto, M.C. Physiological and biochemical changes associated with the induction of facultative CAM in Pereskia aculeata under drought stress and recovery. Plant Physiol. Biochem. 2025, 222, 109681. [Google Scholar] [CrossRef]
- Mohanta, T.K.; Mohanta, Y.K.; Kaushik, P.; Kumar, J. Physiology, genomics, and evolutionary aspects of desert plants. J. Adv. Res. 2024, 58, 63–78. [Google Scholar] [CrossRef] [PubMed]
- Cushman, J.C. Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol. 2001, 127, 1439–1448. [Google Scholar] [CrossRef]
- García-Mendoza, A.J.; Franco Martínez, I.S.; Sandoval Gutiérrez, D. Cuatro especies nuevas de Agave (Asparagaceae, Agavoideae) del sur de México. Acta Bot. Mex. 2019, 126. [Google Scholar] [CrossRef]
- Tamayo-Ordóñez, M.C.; Rodriguez-Zapata, L.C.; Narváez-Zapata, J.A.; Tamayo-Ordóñez, Y.; Ayil-Gutiérrez, B.; Barredo-Pool, F.; Sánchez-Teyer, L. Morphological features of different polyploids for adaptation and molecular characterization of CC-NBS-LRR and LEA gene families in Agave L. J. Plant Physiol. 2016, 195, 80–94. [Google Scholar] [CrossRef]
- Pimienta-Barrios, E.; Zañudo-Hernández, J.; Nobel, P.S.; García-Galindo, J. Respuesta fisiológica a factores ambientales del agave azul (Agave tequilana Weber). Sci. Cuba. 2005, 7, 5–97. [Google Scholar]
- Pimienta-Barrios, E.; Zañudo-Hernández, J.; García-Galindo, J. Fotosíntesis estacional en plantas jóvenes de Agave tequilana. Agrociencia. 2006, 40, 69–709. [Google Scholar]
- Campos, H.; Trejo, C.; Peña-Valdivia, C.B.; García-Nava, R.; Conde-Martínez, F.V.; Cruz-Ortega, M.d.R. Photosynthetic acclimation to drought stress in Agave salmiana Otto ex Salm-Dyck seedlings is largely dependent on thermal dissipation and enhanced electron flux to photosystem I. Photosynth. Res. 2014, 122, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Tamayo-Ordóñez, Y.J.; Narváez-Zapata, J.A.; Tamayo-Ordóñez, M.C.; Sánchez-Teyer, L.F. Retroelements and DNA Methylation Could Contribute to Diversity of 5S rDNA in Agave L. J. Mol. Evol. 2018, 86, 404–423. [Google Scholar] [CrossRef]
- Holtum, J.A.; Winter, K. Limited photosynthetic plasticity in the leaf-succulent CAM plant Agave angustifolia grown at different temperatures. Funct. Plant Biol. 2014, 41, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Winter, K.; Garcia, M.; Holtum, J.A. Nocturnal versus diurnal CO2 uptake: How flexible is Agave angustifolia? J. Exp. Bot. 2014, 65, 3695–3703. [Google Scholar] [CrossRef]
- Males, J.; Griffiths, H. Stomatal biology of CAM plants. Plant Physiol. 2017, 174, 550–560. [Google Scholar] [CrossRef]
- Cruz-Vasconcelos, S.T.; Ruiz-Posadas, L.d.M.; Garcia-Moya, E.; Sandoval-Villa, M.; Cruz-Huerta, N. Growth and CO2 exchange rate of maguey pulquero (Agave salmiana) obtained by seed. Agrociencia 2020, 54, 911–926. [Google Scholar] [CrossRef]
- Kohonen, K.M.; Skogberg, M.; Kübert, A.; Räsänen, M.; Merbold, L.; Buchmann, N.; Mammarella, I.; Pellikka, P.; Vesala, T. COS, CO2 and H2O eddy covariance flux measurements over Agave sisalana. In Proceedings of the EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024. [Google Scholar] [CrossRef]
- Pimienta-Barrios, E.; Robles-Murguia, C.; Nobel, P.S. Net CO2 Uptake for Agave tequilana in a warm and a temperate environment. Biotropica 2001, 33, 312–318. [Google Scholar] [CrossRef]
- Robert, M.L.; Lim, K.Y.; Hanson, L.; Sanchez-Teyer, F.; Bennett, M.D.; Leitch, A.R.; Leitch, I.J. Wild and agronomically important Agave species (Asparagaceae) show proportional increases in chromosome number, genome size, and genetic markers with increasing ploidy. Bot. J. Linn. Soc. 2008, 158, 215–222. [Google Scholar] [CrossRef]
- Tamayo-Ordóñez, Y.J.; Narvaez-Zapata, J.A.; Sánchez-Teyer, L.F. Comparative characterization of ribosomal DNA regions in different Agave accessions with economical importance. Plant Mol. Biol. Rep. 2015, 33, 2014–2029. [Google Scholar] [CrossRef]
- Stewart, J.R. Agave as a model CAM crop system for a warming and drying world. Front. Plant Sci. 2015, 6, 684. [Google Scholar] [CrossRef]
- Davis, S.C.; Abatzoglou, J.T.; LeBauer, D.S. Expanded potential growing region and yield increase for Agave americana with future climate. Agronomy 2021, 11, 2109. [Google Scholar] [CrossRef]
- Palomino, G.; Martínez, J.; Cepeda-Cornejo, V.; Pimienta-Barrios, E. Nuclear genome size and cytotype analysis in Agave cupreata Trel. & Berger (Agavaceae). Caryologia 2012, 65, 281–294. [Google Scholar] [CrossRef]
- Doležel, J. Application of flow cytometry for the study of plant genomes. J. Appl. Genet. 1997, 3, 285–302. [Google Scholar]
- Doležel, J.; Greilhuber, J.; Lucretti, S.; Meister, A.; Lysák, M.A.; Nardi, L.; Obermayer, R. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann. Bot. 1998, 82, 17–26. [Google Scholar] [CrossRef]
- Doležel, J.; Bartoš, J.A.N. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 2005, 95, 99–110. [Google Scholar] [CrossRef]
- Tamayo-Ordoñez, M.; Huijara-Vasconselos, J.; Quiroz-Moreno, A.; Ortíz-García, M.; Sánchez-Teyer, L.F. Plant Tissue Culture and Molecular Markers. In Plant Cell Culture Protocols; Loyola-Vargas, V., Ochoa-Alejo, N., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; Volume 877, pp. 343–356. [Google Scholar] [CrossRef]
- Rohlf, F.J. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System, version 2.1; Exeter Software: Setauket, NY, USA, 2000. [Google Scholar]
- Nei, M.; Li, W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 1979, 76, 5269–5273. [Google Scholar] [CrossRef]
- Pavlíek, A. Free Tree-freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia. Folia Biol. 1999, 45, 97–99. [Google Scholar]
- García-Castillo, M.J.; Rodríguez-Zapata, L.C.; Sanchez-Teyer, L.F. Differential expression of CesA genes and the relationship with fiber content in henequen. Trop. Subtrop. Agroecosyst. 2022, 25, 3. [Google Scholar] [CrossRef]
- Estrada-Medina, H.; Cobos-Gasca, V.; Acosta-Rodríguez, J.L.; Fierro, S.P.; Castilla-Martínez, M.; Castillo-Carrillo, C.; Franco-Brito, S.; López-Castillo, D.; López-Díaz, M.; Luna-Flores, W.; et al. La sequía de la península de Yucatán. Tecnol. Cienc. Agua. 2016, 7, 151–165. [Google Scholar]
- Santamaría, J.M.; Herrera, J.L.; Robert, M.L. Stomatal physiology of a micropropagated CAM plant; Agave tequilana (Weber). Plant Growth Regul. 1995, 16, 211–214. [Google Scholar] [CrossRef]
- Tamayo-Ordoñez, M.; Rodríguez-Zapata, L.C.; Sánchez-Teyer, L.F. Construction and characterization of a partial binary bacterial artificial chromosome (BIBAC) of Agave tequilana var. azul (2X) and its application for gene identification. Afr. J. Biotechnol. 2012, 11, 15950–15958. [Google Scholar]
- Moreno-Salazar, S.F.; Esqueda, M.; Martínez, J.; Palomino, G. Tamaño del genoma y cariotipo en Agave angustifolia y A. rhodacantha de Sonora, México. Rev. Fitotec. Mex. 2007, 30, 13–23. [Google Scholar]
- Chen, Z.J. Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci. 2010, 15, 57–71. [Google Scholar] [CrossRef]
- Moghe, G.D.; Shiu, S.H. The causes and molecular consequences of polyploidy in flowering plants. Ann. N. Y. Acad. Sci. 2014, 1320, 16–34. [Google Scholar] [CrossRef] [PubMed]
- McKain, M.R.; Wickett, N.; Zhang, Y.; Ayyampalayam, S.; McCombie, W.R.; Chase, M.W.; Pires, J.C.; de Pamphilis, C.W.; Leebens-Mack, J. Phylogenomic analysis of transcriptome data elucidates co-occurrence of a paleopolyploid event and the origin of bimodal karyotypes in Agavoideae (Asparagaceae). Am. J. Bot. 2012, 99, 397–406. [Google Scholar] [CrossRef]
- Palomino, G.; Martínez, J.; Méndez, I.; Cepeda-Cornejo, V.; Barba-González, R.; Rodríguez-Garay, B. Nuclear genome size and cytotype analysis in Agave parviflora Torr. subsp. flexiflora Gentry (Asparagales, Asparagaceae). Caryologia 2015, 68, 159–168. [Google Scholar] [CrossRef]
- Vargas-Ponce, O.; Zizumbo-Villarreal, D.; Martínez-Castillo, J.; Coello-Coello, J.; Colunga-Garcíamarín, P. Diversity and structure of landraces of Agave grown for spirits under traditional agriculture: A comparison with wild populations of A. angustifolia (Agavaceae) and commercial plantations of A. tequilana. Am. J. Bot. 2009, 96, 448–457. [Google Scholar] [CrossRef]
- Aguirre-Dugua, X.; Eguiarte, L.E. Genetic diversity, conservation and sustainable use of wild Agave cupreata and Agave potatorum extracted for mezcal production in Mexico. J. Arid. Environ. 2013, 90, 36–44. [Google Scholar] [CrossRef]
- Sánchez-Teyer, F.; Moreno-Salazar, S.; Esqueda, M.; Barraza, A.; Robert, M.L. Genetic variability of wild Agave angustifolia populations based on AFLP: A basic study for conservation. J. Arid. Environ. 2009, 73, 611–616. [Google Scholar] [CrossRef]
- Bousious, A.; Saldana-Oyarzabal, I.; Valenzuela-Zapata, A.G.; Wood, C.; Pearce, S.R. Isolation and characterization of Ty1-copia retrotransposon sequences in the blue agave (Agave tequilana Weber var. azul) and their development as SSAP markers for phylogenetic analysis. Plant Sci. 2007, 172, 291–298. [Google Scholar] [CrossRef]
- Good-Avila, S.V.; Souza, V.; Gaut, B.S.; Eguiarte, L.E. Timing and rate of speciation in Agave (Agavaceae). Proc. Natl. Acad. Sci. USA 2006, 103, 9124–9129. [Google Scholar] [CrossRef] [PubMed]
- Casas, A.; Blancas, J.; Lira, R. Mexican ethnobotany: Interactions of people and plants in Mesoamerica. In Ethnobotany of Mexico: Interactions of People and Plants in Mesoamerica; Springer: New York, NY, USA, 2016; pp. 1–19. [Google Scholar] [CrossRef]
- Colunga-GarcíaMarín, P.; Zizumbo-Villarreal, D. Domestication of plants in Maya lowlands. Econ. Bot. 2004, 58, S101–S110. [Google Scholar] [CrossRef]
- Balao, F.; Herrera, J.; Talavera, S. Phenotypic consequences of polyploidy and genome size at the microevolutionary scale: A multivariate morphological approach. New Phytol. 2011, 192, 256–265. [Google Scholar] [CrossRef]
- Jordan, G.J.; Carpenter, R.J.; Koutoulis, A.; Price, A.; Brodribb, T.J. Environmental adaptation in stomatal size independent of the effects of genome size. New Phytol. 2015, 205, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, Y.; Yuan, G.; Weston, D.J.; Tuskan, G.A. Engineering crassulacean acid metabolism in C3 and C4 plants. Cold Spring Harb. Perspect. Biol. 2024, 16, a041674. [Google Scholar] [CrossRef]
- Sage, R.F.; Gilman, I.S.; Smith, J.A.C.; Silvera, K.; Edwards, E.J. Atmospheric CO2 decline and the timing of CAM plant evolution. Ann. Bot. 2023, 132, 753–770. [Google Scholar] [CrossRef]
- Winter, K. Ecophysiology of constitutive and facultative CAM photosynthesis. J. Exp. Bot. 2019, 70, 6495–6508. [Google Scholar] [CrossRef]
- Driever, S.M.; Kromdijk, J. Will C3 crops enhanced with the C4 CO2-concentrating mechanism live up to their full potential (yield)? J. Exp. Bot. 2013, 64, 3925–3935. [Google Scholar] [CrossRef]
- Ehrler, W.L. Daytime stomatal closure in Agave americana as related to enhanced water-use efficiency. In Physiological Systems in Semiarid Environments; Hoff, C.C., Riedesel, M.L., Eds.; University of New Mexico Press: Albuquerque, NM, USA, 1969; pp. 239–247. [Google Scholar]
- Nobel, P.S.; Hartsock, T.L. Resistance analysis of nocturnal carbon dioxide uptake by a Crassulacean acid metabolism succulent, Agave deserti. Plant Physiol. 1978, 61, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Geydan, T.D.; Melgarejo, L. Metabolismo ácido de las crasuláceas. Acta Biol. Colom. 2005, 10, 3–16. [Google Scholar]
- Yang, Z.; Yang, Q.; Liu, Q.; Li, X.; Wang, L.; Zhang, Y.; Ke, Z.; Lu, Z.; Shen, H.; Li, J.; et al. A chromosome-level genome assembly of Agave hybrid NO.11648 provides insights into the CAM photosynthesis. Hortic. Res. 2024, 11, uhad269. [Google Scholar] [CrossRef]
- Bailey, K.J.; Gray, J.E.; Walker, R.P.; Leegood, R.C. Coordinate regulation of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase by light and CO2 during C4 photosynthesis. Plant Physiol. 2007, 144, 479–486. [Google Scholar] [CrossRef]
- O’Leary, B.; Park, J.; Plaxton, W.C. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): Recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem. J. 2011, 436, 15–34. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, L.S.; Zhang, G.Q.; Zheng, B.-Q.; Liu, Z.-J.; Wang, Y. Evolutionary history of PEPC genes in green plants: Implications for the evolution of CAM in orchids. Mol. Phylogenetics Evol. 2016, 94, 559–564. [Google Scholar] [CrossRef]
- Borland, A.M.; Barrera-Zambrano, V.A.; Ceusters, J.; Shorrock, K. The photosynthetic plasticity of crassulacean acid metabolism: An evolutionary innovation for sustainable productivity in a changing world. New Phytol. 2011, 191, 619–633. [Google Scholar] [CrossRef]
- Heckmann, D. C4 photosynthesis evolution: The conditional Mt. Fuji. Curr. Opin. Plant Biol. 2016, 31, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Valegård, K.; Hasse, D.; Andersson, I.; Gunn, L.H. Structure of Rubisco from Arabidopsis thaliana in complex with 2-carboxyarabinitol-1, 5-bisphosphate. Acta Crystallogr. D Struct. Biol. 2018, 74, 1–9. [Google Scholar] [CrossRef]
- Ramírez-Tobías, H.M.; Peña-Valdivia, C.B.; Aguirre, J.R. Respuestas bioquímico-fisiológicas de especies de Agave a la restricción de humedad. Bot. Sci. 2014, 92, 131–139. [Google Scholar]
- Hartsock, T.L.; Nobel, P.S. Watering converts a CAM plant to daytime CO2 uptake. Nature 1976, 262, 574–576. [Google Scholar] [CrossRef]
- Graham, E.A.; Nobel, P.S. Long-term effects of a doubled atmospheric CO2 concentration on the CAM species Agave deserti. J. Exp. Bot. 1996, 47, 61–69. [Google Scholar] [CrossRef]
- Nobel, P.S. Responses of some North American CAM plants to freezing temperatures and doubled CO2 concentrations: Implications of global climate change for extending cultivation. J. Arid. Environ. 1996, 34, 187–196. [Google Scholar] [CrossRef]
- Nobel, P.S.; Berry, W.L. Element responses of agaves. Am. J. Bot. 1985, 72, 686–694. [Google Scholar] [CrossRef]
- Zhu, J.; Goldstein, G.; Bartholomew, D.P. Gas exchange and carbon isotope composition of Ananas comosus in response to elevated CO2 concentration and temperature. Plant Cell Environ. 1999, 22, 999–1007. [Google Scholar] [CrossRef]
- Winter, K.; von Willert, D.J. NaCl-induzierter Crassulaceensäurestoffwechsel bei Mesembryanthemum crystallinum. Z. Pflanzenphysiol. 1972, 67, 166–170. [Google Scholar] [CrossRef]
- Winter, K.; Garcia, M.; Holtum, J.A. Drought-stress-induced up-regulation of CAM in seedlings of a tropical cactus, Opuntia elatior, operating predominantly in the C3 mode. J. Exp. Bot. 2011, 62, 4037–4042. [Google Scholar] [CrossRef]
- Heyduk, K.; McKain, M.R.; Lalani, F.; Leebens-Mack, J. Evolution of a CAM anatomy predates the origins of Crassulacean acid metabolism in the Agavoideae (Asparagaceae). Mol. Phylogenetics Evol. 2016, 105, 102–113. [Google Scholar] [CrossRef]
- Sage, R.F. Are crassulacean acid metabolism and C4 photosynthesis incompatible? Funct. Plant Biol. 2002, 29, 775–785. [Google Scholar] [CrossRef]
- Sage, R.F. The evolution of C4 photosynthesis. New Phytol. 2004, 161, 341–370. [Google Scholar] [CrossRef]
- Sage, R.F.; Sage, T.L.; Kocacinar, F. Photorespiration and the evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 2012, 63, 19–47. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayil-Gutiérrez, B.A.; Sánchez-Teyer, L.F.; Rodríguez-Zapata, L.C.; Barredo-Pool, F.; Ramos-García, V.H.; Acosta-Cruz, E.; Rodríguez-de la Garza, J.A.; Sosa-Santillán, G.d.J.; Córdova-Quiroz, A.V.; Tamayo-Ordoñez, F.A.; et al. Differential Physiological Changes in Stomata in Polyploid Agave spp. Could Indicate Flexibility in CO2 Fixation. Agronomy 2025, 15, 817. https://doi.org/10.3390/agronomy15040817
Ayil-Gutiérrez BA, Sánchez-Teyer LF, Rodríguez-Zapata LC, Barredo-Pool F, Ramos-García VH, Acosta-Cruz E, Rodríguez-de la Garza JA, Sosa-Santillán GdJ, Córdova-Quiroz AV, Tamayo-Ordoñez FA, et al. Differential Physiological Changes in Stomata in Polyploid Agave spp. Could Indicate Flexibility in CO2 Fixation. Agronomy. 2025; 15(4):817. https://doi.org/10.3390/agronomy15040817
Chicago/Turabian StyleAyil-Gutiérrez, Benjamín Abraham, Lorenzo Felipe Sánchez-Teyer, Luis Carlos Rodríguez-Zapata, Felipe Barredo-Pool, Víctor Hugo Ramos-García, Erika Acosta-Cruz, José Antonio Rodríguez-de la Garza, Gerardo de Jesús Sosa-Santillán, Atl Víctor Córdova-Quiroz, Francisco Alberto Tamayo-Ordoñez, and et al. 2025. "Differential Physiological Changes in Stomata in Polyploid Agave spp. Could Indicate Flexibility in CO2 Fixation" Agronomy 15, no. 4: 817. https://doi.org/10.3390/agronomy15040817
APA StyleAyil-Gutiérrez, B. A., Sánchez-Teyer, L. F., Rodríguez-Zapata, L. C., Barredo-Pool, F., Ramos-García, V. H., Acosta-Cruz, E., Rodríguez-de la Garza, J. A., Sosa-Santillán, G. d. J., Córdova-Quiroz, A. V., Tamayo-Ordoñez, F. A., Damas-Damas, S., Sánchez-López, E., Lizarazo-Ortega, C., Tamayo-Ordóñez, M. C., & Tamayo-Ordóñez, Y. d. J. (2025). Differential Physiological Changes in Stomata in Polyploid Agave spp. Could Indicate Flexibility in CO2 Fixation. Agronomy, 15(4), 817. https://doi.org/10.3390/agronomy15040817