Field Experimental Assessment of HYDRUS-3D Soil Moisture Simulations Under Drip Irrigation Using Horizontal Mobile Dielectric Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. The Horizontal Mobile Sensor System
2.3. The HYDRUS-3D Model
2.4. Modeling Scenarios
2.5. Statistical Analysis
3. Results and Discussion
3.1. Dynamic of Soil Water Infiltration in Central Areas
3.2. Dynamic of Soil Water Infiltration in Slope Areas
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karandish, F.; Šimůnek, J. A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint. Agric. Water Manag. 2019, 213, 809–820. [Google Scholar] [CrossRef]
- Hu, Y.X.; Li, X.W.; Jin, M.G.; Wang, R.; Chen, J.Y.; Guo, S.L. Reduced co-occurrence and ion-specific preferences of soil microbial hub species after ten years of irrigation with brackish water. Soil Tillage Res. 2020, 199, 104599. [Google Scholar] [CrossRef]
- Wang, Z.M.; Li, Z.F.; Zhan, H.B.; Yang, S.F. Effect of long-term saline mulched drip irrigation on soil-groundwater environment in arid Northwest China. Sci. Total Environ. 2022, 820, 153222. [Google Scholar] [PubMed]
- Li, X.W.; Jin, M.G.; Zhou, N.Q.; Jiang, S.M.; Hu, Y.X. Inter-dripper variation of soil water and salt in a mulched drip irrigated cotton field: Advantages of 3-D modelling. Soil Tillage Res. 2018, 184, 186–194. [Google Scholar] [CrossRef]
- Elnesr, M.N.; Alazba, A.A. Computational evaluations of HYDRUS simulations of drip irrigation in 2D and 3D domains (i-Surface drippers). Comput. Electron. Agric. 2019, 162, 189–205. [Google Scholar] [CrossRef]
- Zhao, L.S.; Hou, R.; Wu, F.Q.; Keesstra, S. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments. Soil Tillage Res. 2018, 179, 47–53. [Google Scholar] [CrossRef]
- Younes, A.; Zaouali, J.; Fahs, M.; Slama, F.; Grunberger, O.; Mara, T.A. Bayesian soil parameter estimation: Results of percolation-drainage vs infiltration laboratory experiments. J. Hydrol. 2018, 565, 770–778. [Google Scholar]
- Jha, M.K.; Mahapatra, S.; Mohan, C.; Pohshna, C. Infiltration characteristics of lateritic vadose zones: Field experiments and modeling. Soil Tillage Res. 2019, 187, 219–234. [Google Scholar] [CrossRef]
- Sheng, F.; Liu, H.H.; Wang, K.; Zhang, R.D.; Tang, Z.H. Investigation into preferential flow in natural unsaturated soils with field multiple-tracer infiltration experiments and the active region model. J. Hydrol. 2014, 508, 137–146. [Google Scholar]
- Honari, M.; Ashrafzadeh, A.; Khaledian, M.; Vazifedoust, M.; Mailhol, J.C. Comparison of HYDRUS-3D Soil Moisture Simulations of Subsurface Drip Irrigation with Experimental Observations in the South of France. J. Irrig. Drain. Eng. 2017, 143, 04017014. [Google Scholar] [CrossRef]
- Jiang, Q.J.; Qi, Z.M.; Lu, C.; Tan, C.S.; Zhang, T.Q.; Prasher, S.O. Evaluating RZ-SHAW model for simulating surface runoff and subsurface tile drainage under regular and controlled drainage with subirrigation in southern Ontario. Agric. Water Manag. 2020, 237, 106179. [Google Scholar] [CrossRef]
- Bailey, R.T.; Bieger, K.; Flores, L.; Tomer, M. Evaluating the contribution of subsurface drainage to watershed water yield using SWAT+ with groundwater modeling. Sci. Total Environ. 2022, 802, 149962. [Google Scholar] [CrossRef]
- Šimůnek, J.; Van Genuchten, M.T.; Šejna, M. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J. 2016, 15, 1–25. [Google Scholar] [CrossRef]
- Domínguez-Niño, J.M.; Oliver-Manera, J.; Arbat, G.; Girona, J.; Casadesús, J. Analysis of the variability in soil moisture measurements by capacitance sensors in a drip-irrigated orchard. Sensors 2020, 20, 5100. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Niño, J.M.; Arbat, G.; Raij-Hoffman, I.; Kisekka, I.; Girona, J.; Casadesús, J. Parameterization of soil hydraulic parameters for HYDRUS-3D simulation of soil water dynamics in a drip-irrigated orchard. Water 2020, 12, 1858. [Google Scholar] [CrossRef]
- Carlos, F.U.; Cristian, K.F.; Marco, G.S.; Mauricio, G.; Humberto, A.; de Miranda Jarbas, H.; Oscar, S.S. Testing the model efficiency of HYDRUS 2D/3D under desert conditions for water content and pore electrical conductivity: A case study in an olive orchard. J. Soil Sci. Plant Nutr. 2022, 22, 1859–1872. [Google Scholar] [CrossRef]
- Morianou, G.; Kourgialas, N.N.; Karatzas, G.P. A review of HYDRUS 2D/3D applications for simulations of water dynamics, root uptake and solute transport in tree crops under drip irrigation. Water 2023, 15, 741. [Google Scholar] [CrossRef]
- Morianou, G.; Karatzas, G.P.; Arampatzis, G.; Pisinaras, V.; Kourgialas, N.N. Assessing Soil Water Dynamics in a Drip-Irrigated Grapefruit Orchard Using the HYDRUS 2D/3D Model: A Comparison of Unimodal and Bimodal Hydraulic Functions. Agronomy 2025, 15, 504. [Google Scholar] [CrossRef]
- Gravalos, I.; Moshou, D.; Loutridis, S.; Gialamas, T.; Kateris, D.; Bompolas, E.; Tsiropoulos, Z.; Xyradakis, P.; Fountas, S. 2D and 3D soil moisture imaging using a sensor-based platform moving inside a subsurface network of pipes. J. Hydrol. 2013, 499, 146–153. [Google Scholar] [CrossRef]
- Gravalos, I.G.; Moshou, D.E.; Loutridis, S.J.; Gialamas, T.A.; Kateris, D.L.; Tsiropoulos, Z.T.; Xyradakis, P.I. Design of a pipeline sensor-based platform for soil water content monitoring. Biosyst. Eng. 2012, 113, 1–10. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, H.; Qin, Y.; Schulze Lammers, P.; Berg, A.; Deng, H.; Cai, X.; Wang, D.; Jones, S.B. Horizontal monitoring of soil water content using a novel automated and mobile electromagnetic access-tube sensor. J. Hydrol. 2014, 516, 50–55. [Google Scholar]
- Shan, G.; Sun, Y.; Cheng, Q.; Wang, Z.; Zhou, H.; Wang, L.; Xue, X.; Chen, B.; Jones, S.B.; Schulze Lammers, P.; et al. Monitoring tomato root zone water content variation and partitioning evapotranspiration with a novel horizontally-oriented mobile dielectric sensor. Agric. For. Meteorol. 2016, 228, 85–94. [Google Scholar]
- Shan, G.; Sun, Y.; Zhou, H.; Schulze Lammers, P.; Grantz, D.; Xue, X.; Wang, Z. A horizontal mobile dielectric sensor to assess dynamic soil water content and flows: Direct measurements under drip irrigation compared with HYDRUS-2D model simulation. Biosyst. Eng. 2019, 179, 13–21. [Google Scholar]
- Basset, C.; Najm, A.M.; Ghezzehei, T.; Hao, X.X.; Daccache, A. How does soil structure affect water infiltration? A meta-data systematic review. Soil Tillage Res. 2023, 226, 105577. [Google Scholar]
- Zribi, W.; Aragüés, R.; Medina, E.; Faci, J.M. Efficiency of inorganic and organic mulching materials for soil evaporation control. Soil Tillage Res. 2015, 148, 40–45. [Google Scholar]
- Šimůnek, J.; Van Genuchten, M.T.; Šejna, M. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J. 2008, 7, 587–600. [Google Scholar]
- Šimůnek, J.; Van Genuchten, M.T.; Šejna, M. Hydrus: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1261–1274. [Google Scholar]
- Richards, L.A. Capillary conduction of liquids through porous mediums. J. Appl. Phys. 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Gruber, N.; Galloway, J.N. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296. [Google Scholar]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar]
- Arbat, G.; Puig-Bargués, J.; Duran-Ros, M.; Barragán, J.; de Cartagena, F.R. Drip-Irriwater: Computer software to simulate soil wetting patterns under surface drip irrigation. Comput. Electron. Agric. 2013, 98, 183–192. [Google Scholar] [CrossRef]
- Fernández-Gálvez, J.; Simmonds, L.P. Monitoring and modelling the three-dimensional flow of water under drip irrigation. Agric. Water Manag. 2006, 83, 197–208. [Google Scholar] [CrossRef]
- Liu, Y.; Ao, C.; Zeng, W.Z.; Srivastava, A.K.; Gaiser, T.; Wu, J.W.; Huang, J.S. Simulating water and salt transport in subsurface pipe drainage systems with HYDRUS-2D. J. Hydrol. 2021, 292, 125823. [Google Scholar] [CrossRef]
- Sakaguchi, A.; Yanai, Y.; Sasaki, H. Subsurface irrigation system design for vegetable production using HYDRUS-2D. Agric. Water Manag. 2019, 219, 12–18. [Google Scholar] [CrossRef]
- Dou, X.; Shi, H.B.; Li, R.P.; Miao, Q.F.; Yan, J.W.; Tian, F.; Wang, B. Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model. Agric. Water Manag. 2022, 273, 107899. [Google Scholar] [CrossRef]
- Tao, Y.; Li, N.; Wang, S.L.; Chen, H.R.; Guan, X.Y.; Ji, M.Z. Simulation study on performance of nitrogen loss of an improved subsurface drainage system for one-time drainage using HYDRUS-2D. Agric. Water Manag. 2021, 246, 106698. [Google Scholar] [CrossRef]
- Mubarak, I.; Mailhol, J.C.; Angulo-Jaramillo, R.; Ruelle, P.; Boivin, P.; Khaledian, M. Temporal variability in soil hydraulic properties under drip irrigation. Geoderma 2009, 150, 158–165. [Google Scholar] [CrossRef]
- Raij, I.; Ben-Gal, A.; Lazarovitch, N. Soil and irrigation heterogeneity effects on drainage amount and concentration in lysimeters: A numerical study. Agric. Water Manag. 2018, 195, 1–10. [Google Scholar] [CrossRef]
- Assouline, S.; Ben-Hur, M. Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. Catena 2006, 66, 211–220. [Google Scholar] [CrossRef]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Govindaraju, R.S. Role of slope on infiltration: A review. J. Hydrol. 2018, 557, 878–886. [Google Scholar] [CrossRef]
- Chen, L.; Young, M.H. Green-Ampt infiltration model for sloping surfaces. Water Resour. Res. 2006, 42, W07420. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.; Yu, Z. Modeling rainfall infiltration on hillslopes using flux-concentration relation and time compression approximation. J. Hydrol. 2018, 557, 243–253. [Google Scholar] [CrossRef]
- Ribolzi, O.; Patin, J.; Bresson, L.; Latsachack, K.; Mouche, E.; Sengtaheuanghoung, O.; Silvera, N.; Thiébaux, J.P.; Valentin, C. Impact of slope gradient on soil surface features and infiltration on steep slopes in northern Laos. Geomorphology 2011, 127, 53–63. [Google Scholar] [CrossRef]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Cifrodelli, M.; Picciafuoco, T.; Corradini, C.; Govindaraju, R.S. Laboratory investigation on the role of slope on infiltration over grassy soils. J. Hydrol. 2016, 543, 542–547. [Google Scholar] [CrossRef]
- Kandelous, M.; Šimůnek, J. Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D. Agric. Water Manag. 2010, 97, 1070–1076. [Google Scholar] [CrossRef]
Parameters | Symbol | Numerical Value | Unit |
---|---|---|---|
Residual water content | θr | 0.0338 | cm3 cm−3 |
Saturated water content | θs | 0.3709 | cm3 cm−3 |
Soil intake air value pressure parameter | a | 0.011 | cm−1 |
Curve shape parameter | n | 1.5302 | |
Empirical parameter | l | 0.5 | |
Saturated soil water conductivity | Ks | 3.975 | cm h−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.; Zhang, D.; Jing, Z.; Nie, X.; Di, B.; Qian, J.; Cheng, W.; Zhang, G.; Shan, G. Field Experimental Assessment of HYDRUS-3D Soil Moisture Simulations Under Drip Irrigation Using Horizontal Mobile Dielectric Sensor. Agronomy 2025, 15, 776. https://doi.org/10.3390/agronomy15040776
Song C, Zhang D, Jing Z, Nie X, Di B, Qian J, Cheng W, Zhang G, Shan G. Field Experimental Assessment of HYDRUS-3D Soil Moisture Simulations Under Drip Irrigation Using Horizontal Mobile Dielectric Sensor. Agronomy. 2025; 15(4):776. https://doi.org/10.3390/agronomy15040776
Chicago/Turabian StyleSong, Chunyu, Dingyuan Zhang, Ze Jing, Xiaohang Nie, Bao Di, Ji Qian, Weixue Cheng, Guanghua Zhang, and Guilin Shan. 2025. "Field Experimental Assessment of HYDRUS-3D Soil Moisture Simulations Under Drip Irrigation Using Horizontal Mobile Dielectric Sensor" Agronomy 15, no. 4: 776. https://doi.org/10.3390/agronomy15040776
APA StyleSong, C., Zhang, D., Jing, Z., Nie, X., Di, B., Qian, J., Cheng, W., Zhang, G., & Shan, G. (2025). Field Experimental Assessment of HYDRUS-3D Soil Moisture Simulations Under Drip Irrigation Using Horizontal Mobile Dielectric Sensor. Agronomy, 15(4), 776. https://doi.org/10.3390/agronomy15040776