Soil Organic Matter Quality and Glomalin-Related Soil Protein Content in Cambisol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
Site | Lukavec |
---|---|
Location | 49°33′23″ N 14°58′39″ E |
Altitude (metres above sea level) | 610 |
Mean annual temperature (°C) | 7.7 |
Mean annual precipitation (mm) | 666 |
Soil type 1 | Stagnic cambisol |
Soil texture 1 | Sandy loam |
Clay (%) (<0.002 mm) | 3.2 |
Silt (%) (0.002–0.05 mm) | 37.1 |
Sand (%) (0.05–2 mm) | 59.7 |
Bulk density (g.cm−3) | 1.27 |
pH (CaCl2) 2 | 5.3 |
P in Mehlich 3 (mg.kg−1) 3 | 138 |
K in Mehlich 3 (mg.kg−1) 3 | 149 |
Al in Aqua regia 4 (in HNO3 5) (mg.kg−1) | 40,284 (11,682) |
Fe in Aqua regia 4 (in HNO3 5) (mg.kg−1) | 28,149 (15,663) |
CEC (mmol(+).kg−1) | 45 |
2.2. Soil Analysis
Treatment | Potatoes | Wheat | Barley | Total N Dose in Three Years |
---|---|---|---|---|
N | N | N | ||
Cont. | - | - | - | - |
SS1 | 330 1 | 0 | 0 | 330 |
SS3 | 990 1 | 0 | 0 | 990 |
F1 | 330 1 | 0 | 0 | 330 |
F1/2 + N1/2 | 165 1 | 115 2 | 50 2 | 330 |
N | 120 2 | 140 2 | 70 2 | 330 |
N + St | 120 2 + 27 3 | 140 2 | 70 2 | 357 |
2.3. Statistical Analysis
Quality of Fertiliser/Site | Dry Matter (t per 3 Years) | ∑DM per 27 Years (t) | OM Content 1 (%) | % C in DM 2 | % N in DM 1 | % P in DM 3 | % K in DM 3 | Total Supplied C (t per 27 Years) |
---|---|---|---|---|---|---|---|---|
F | 18.77 | 168.93 | 71.2 | 28.2 | 1.76 | 0.22 | 1.82 | 47.64 |
SS | 9.09 | 81.81 | 64.1 | 25.8 | 3.63 | 2.37 | 0.48 | 21.11 |
St | 5 | 45 | 95.3 | 42.8 | 0.54 | 0.09 | 0.96 | 19.26 |
3. Results
3.1. Principal Component Analysis
3.2. The Influence of Mineral and Organic Fertiliser on Some Selected Indicators of SOM Content and Quality
3.3. The Changes in the GRSP Content Caused by the Fertiliser
3.4. The Influence of the Fertiliser on the Soil Aggregate Stability and the Influence of the GRSP in This Process
3.5. The Relationship Between the SOM Content and Quality Indicators
4. Discussion
4.1. The Influence of Fertilisers on the SOM Content and Quality
4.2. The Changes in the GRSP Content
4.3. The Soil Aggregate Stability and the Influence of the GRSP in This Process
4.4. The Relationship Between the SOM Content and Quality Indicators
5. Conclusions
- (1)
- The lowest soil organic matter (SOM) content and quality were determined on unfertilised control treatment. Additionally, there was also the lowest degree of polymerisation (HA) and GRSP content (EE-GRSP and T-GRSP).
- (2)
- High sewage sludge doses significantly increased the SOM content. The response in the SOM quality was smaller, which is proven by a lower degree of polymerisation, the humification index (HI), and the humification rate (HR).
- (3)
- The high CSOM content and highest SOM quality were determined in the farmyard manure treatment. The HA value and the content of the GRSP (EE-GRSP and T-GRSP) were the highest.
- (4)
- The positive effect of mineral N fertiliser in combination with straw on the SOM content and quality was observed.
- (5)
- Significant relationships between the GRSP content (EE-GRSP and T-GRSP) and the CSOM content, CHS, CHA, and HA were determined. On the other hand, there was no relationship between the GRSP content (EE-GRSP and T-GRSP) and CFA content.
- (6)
- The relationship between the stability of soil aggregates (WSA) and SOM content and quality was not confirmed. The relationship between the WSA and GRSP (both EE-GRSP and T-GRSP) was not observed either.
- (7)
- There was a significant influence of the fertiliser treatment on the EE-GRSP and T-GRSP content.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Food Agriculture Organization of United Nations. FAO’S Work on Climate Change. 2018. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/7b68d197-abcf-49a2-ad5a-48e7b9141d86/content (accessed on 31 May 2024).
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.F.; Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 1996, 161, 575–586. [Google Scholar] [CrossRef]
- Bolliger, A.; Nalla, A.; Magid, J.; de Neergaard, A.; Dole Nalla, A.; Bøghansen, T.C. Reexamining the glomalin-purity of glomalin-related soil protein fractions through immunochemical, lectin-affinity and soil labelling experiments. Soil Biol. Biochem. 2008, 40, 887–893. [Google Scholar] [CrossRef]
- Gillespie, A.W.; Farrell, R.E.; Walley, F.L.; Ross, A.R.S.; Leinweber, P.; Eckhardt, K.U.; Regier, T.Z.; Blyth, R.I. Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biol. Biochem. 2011, 43, 766–777. [Google Scholar] [CrossRef]
- Walley, F.L.; Gillespie, A.W.; Adetona, A.B.; Germida, J.J.; Farrell, R.E. Manipulation of rhizosphere organisms to enhance glomalin production and C sequestration: Pitfalls and promises. Can. J. Plant Sci. 2014, 94, 1025–1032. [Google Scholar] [CrossRef]
- Rosier, C.L.; Hoye, A.T.; Rillig, M.C. Glomalin-related soil protein: Assessment of current detection and quantification tools. Soil Biol. Biochem. 2006, 38, 2205–2211. [Google Scholar] [CrossRef]
- Irving, T.B.; Alptekin, B.; Kleven, B.; Ané, J.M. A critical review of 25 years of glomalin research: A better mechanical understanding and robust quantification techniques are required. New Phytol. 2021, 232, 1572–1581. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 2004, 80, 355–363. [Google Scholar] [CrossRef]
- Wu, Q.S.; Cao, M.Q.; Zou, Y.N.; He, X.H. Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange. Sci. Rep. 2014, 4, 5823. [Google Scholar] [CrossRef]
- Dai, J.; Hu, J.; Zhu, A.; Lin, X. No-tillage with half-amount residue retention enhances microbial functional diversity, enzyme activity and glomalin-related soil protein content within soil aggregates. Soil Use Manag. 2017, 33, 153–162. [Google Scholar] [CrossRef]
- Saikia, R.; Sharma, S.; Thind, H.S.; Sidhu, H.S.; Yadvinder, S. Temporal changes in biochemical indicators of soil quality in response to tillage, crop residue and green manure management in a rice-wheat system. Ecol. Indic. 2019, 103, 383–394. [Google Scholar] [CrossRef]
- Turgay, O.C.; Buchan, D.; Moeskops, B.; De Gusseme, B.; Ortas, I.; De Neve, S. Changes in soil ergosterol content, glomalin-related soil protein, and phospholipid fatty acid profile as affected by long-term organic and chemical fertilization practices in Mediterranean Turkey. Arid Land Res. Manag. 2015, 29, 180–198. [Google Scholar] [CrossRef]
- Sandeep, S.; Manjaiah, K.M.; Pal, S.; Singh, A.K. Soil carbon fractions under maize-wheat system: Effect of tillage and nutrient management. Environ. Monit. Assess. 2016, 188, 14. [Google Scholar] [CrossRef] [PubMed]
- Balík, J.; Sedlář, O.; Kulhánek, M.; Černý, J.; Smatanová, M.; Suran, P. Effect of organic fertilisers on glomalin content and soil organic matter quality. Plant Soil Environ. 2020, 66, 590–597. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X.; Zhang, S.; Xing, Y.; Wang, R.; Liang, W. Organic amendment effects on aggregate-associated organic C, microbial biomass C and glomalin in agricultural soils. Catena 2014, 123, 188–194. [Google Scholar] [CrossRef]
- Bertagnoli, B.G.P.; Oliveira, J.F.; Barbosa, G.M.C.; Filho, A.C. Poultry Litter and Liquid Swine Slurry Applications Stimulate Glomalin, Extraradicular Mycelium Production, and Aggregation in Soils. Soil Till. Res. 2020, 202, 104657. [Google Scholar] [CrossRef]
- Li, X.; Han, S.; Luo, X.S.; Chen, W.L.; Huang, Q.Y. Arbuscular mycorrhizal-like fungi and glomalin-related soil protein drive the distributions of carbon and nitrogen in a large scale. J. Soils Sediments 2020, 20, 963–972. [Google Scholar] [CrossRef]
- Černý, J.; Balík, J.; Suran, P.; Sedlář, O.; Procházková, S.; Kulhánek, M. The Content of Soil Glomalin Concerning Selected Indicators of Soil Fertility. Agronomy 2024, 14, 1731. [Google Scholar] [CrossRef]
- Singh, A.K.; Rai, A.; Singh, N. Effect of long-term land use systems on fractions of glomalin and soil organic carbon in the Indo-Gangetic plain. Geoderma 2016, 277, 41–50. [Google Scholar] [CrossRef]
- Driver, J.D.; Holben, W.E.; Rillig, M.C. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 2005, 37, 101–106. [Google Scholar] [CrossRef]
- Rillig, M.C. A connection between fungal hydrophobins and soil water repellency? Pedobiologia 2005, 49, 395–399. [Google Scholar] [CrossRef]
- Schindler, F.V.; Mercer, E.J.; Ricc, A.J. Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soil of varying organic matter. Soil Biol. Biochem. 2007, 39, 320–329. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, X.; Zhong, S.; Yin, G.; Gao, Y.; He, X. Recalcitrant carbon components in glomalin-related soil protein facilitate soil organic carbon preservation in tropical forests. Sci. Rep. 2017, 7, 2391. [Google Scholar] [CrossRef]
- Singh, A.K.; Zhu, X.; Chen, C.; Wu, J.; Yang, B.; Zakari, S.; Jiang, X.J.; Singh, N.; Liu, W. The role of glomalin in mitigation of multiple soil degradation problems. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1604–1638. [Google Scholar] [CrossRef]
- Feige, M.J.; Braakman, I.; Hendershot, L.M. CHAPTER 1.1 disulfide bonds in protein folding and stability. In Oxidative Folding of Proteins: Basic Principles, Cellular Regulation and Engineering; Feige, M.J., Braakman, I., Hendershot, L.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–33. [Google Scholar] [CrossRef]
- Wedemeyer, W.J.; Welker, E.; Narayan, M.; Scheraga, H.A. Disulfide bonds and protein folding. Biochemistry 2000, 39, 4207–4216. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, Y.; Luo, X.; Li, J.; Reed, S.A.; Xiao, H.; Young, T.S.; Schultz, P.G. Enhancing protein stability with extended disulfide bonds. Proc. Natl. Acad. Sci. USA 2016, 113, 5905–5910. [Google Scholar] [CrossRef]
- Son, Y.; Martinez, C.E.; Kao-Kniff, J. Three important roles and chemical properties of glomalin-related soil protein. Front. Soil Sci. 2024, 4, 1418072. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. International Soil Classification System for Naming and Creating Legends for Soil Maps; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 1 September 2020).
- National Resource Conservation Service United States Department of Agriculture. Soil Taxonomy. 1999. Available online: https://www.nrcs.usda.gov/sites/default/files/2022-06/Soil%20Taxonomy.pdf (accessed on 16 December 2023).
- Sown Areas of Crops as at 31 May. Czech Statistical Ofiice. 2025. Available online: https://vdb.czso.cz/vdbvo2/faces/en/index.jsf?page=vystup-objekt&pvo=ZEM02A&z=T&f=TABULKA&skupId=346&katalog=30840&pvo=ZEM02A&evo=v2369_!_ZEM02A-2024T_1 (accessed on 27 February 2025).
- Minasny, B.; Mcbratney, A.B.; Brough, D.M.; Jacquier, D. Models relating soil pH measurements in water and calcium chloride that incorporate electrolyte concentration. Eur. J. Soil Sci. 2011, 62, 728–732. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- ISO Standard No. 11466:1995; Soil Quality—Extraction of Trace Elements Soluble in Aqua Regia. International Organization for Standardization: Geneva, Switzerland, 1995. Available online: https://www.iso.org/standard/19418.html (accessed on 20 December 2022).
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis Part 3. Chemical Methods; ACSESS: Madison, WI, USA, 2020; p. 1424. [Google Scholar]
- Johnson, A.; Ruppenthal, M.; Kraus, S.; Szuppa, T.; Schmidt, C.; Sieper, H. Elemental Analysis of Macro Samples of Biomass. In Proceedings of the EUBCE 2016, Amsterdam, The Netherlands, 6–9 June 2016. [Google Scholar] [CrossRef]
- Kononova, M.M. Soil Organic Matter: Nature, Properties and Methods of Study; Pergamon Press Ltd.: Oxford, UK, 1966. [Google Scholar]
- Raiesi, F. The quantity and quality of soil organic matter and humic substances following dry-farming and subsequent restoration in an upland pasture. Catena 2021, 202, 105249. [Google Scholar] [CrossRef]
- Iqbal, M.K.; Shafiq, T.; Hussain, A.; Ahmed, K. Effect of enrichment on chemical properties of MSW compost. Bioresour. Technol. 2010, 101, 5969–5977. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.F.; Upadhyaya, A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil. 1998, 198, 97–107. [Google Scholar] [CrossRef]
- Nimmo, J.R.; Perkins, K.S. Aggregate stability and size distribution. In Methods of Soil Analysis: Part 4 Physical Methods, 5.4. Soil Science Society of America; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 2002; pp. 317–327. [Google Scholar] [CrossRef]
- National Reference Laboratory. 20321.1—Determination of Combustible Compounds Based on the Calculation from the CN-Analyser Data. 2022; (In Czech). Available online: https://ukzuz.gov.cz/public/portal/ukzuz/-q420773---gMWMEbuG/jpp-zkouseni-hnojiv-dalsi-postupy-20321 (accessed on 27 February 2025).
- National Reference Laboratory. 20070.3—Stanovení Obsahu Al, As, B, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, S, V a Zn Metodou ICP-OES. 2022; (In Czech). Available online: https://ukzuz.gov.cz/public/portal/ukzuz/laboratore/dokumenty-a-publikace/jednotne-pracovni-postupy/hnojiva-prilohy/20070.3-stanoveni-prvku-metodou-icp-oes-vyd1-rev4/20070.3_Stanoven%c3%ad_prvk%c5%af_metodou_ICP_OES_vyd1_rev4.pdf (accessed on 27 February 2025).
- Menšík, L.; Hlisnikovský, L.; Pospíšilová, L.; Kunzová, E. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. J. Soils Sediments 2018, 18, 2813–2822. [Google Scholar] [CrossRef]
- Liang, G.; Wu, H.; Houssou, A.A.; Cai, D.; Wu, X.; Gao, L.; Wang, B.; Li, S. Soil respiration, glomalin content, and enzymatic activity response to straw application in a wheat-maize rotation system. J. Soils Sediments 2017, 18, 697–707. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Chang, Y.; Li, R.; Zhou, K.; Zhan, Y.; Wei, R.; Wei, Y. Comparing bacterial dynamics for the conversion of organics and humus components during manure composting from different sources. Front. Microbiol. 2023, 14, 1281633. [Google Scholar] [CrossRef]
- Voltr, V.; Menšík, L.; Hlisnikovský, L.; Hruška, M.; Pokorný, E.; Pospíšilová, L. The Soil Organic Matter in Connection with Soil Properties and Soil Inputs. Agronomy 2021, 11, 779. [Google Scholar] [CrossRef]
- Naikwade, P.V. Soil Organic Carbon Sequestration by Long-Term Application of Manures Prepared from Trianthema portulacastrurm Linn. Comm. Soil Sci. Plant Anal. 2019, 50, 2579–2592. [Google Scholar] [CrossRef]
- Macholdt, J.; Piepho, H.P.; Honermeier, B. Mineral NPK and manure fertilisation affecting the yield stability of winter wheat: Results from a long-term field experiment. Eur. J. Agron. 2019, 102, 14–22. [Google Scholar] [CrossRef]
- Balík, J.; Kulhánek, M.; Černý, J.; Sedlář, O.; Suran, P.; Asrade, D.A. The Influence of organic and mineral fertilizers on the quality of soil organic matter and glomalin content. Agronomy 2022, 12, 1375. [Google Scholar] [CrossRef]
- Balík, J.; Kulhánek, M.; Černý, J.; Sedlář, O.; Suran, P.; Procházková, S.; Srade, D.A. The impact of the long-term application of mineral nitrogen and sewage sludge fertilizers on the quality of soil organic matter. Chem. Biol. Technol. Agric. 2022, 9, 86–97. [Google Scholar] [CrossRef]
- Balík, J.; Kulhánek, M.; Černý, J.; Sedlář, O.; Suran, P. Soil organic matter degradation in long-term maize cultivation and insufficient organic fertilization. Plants 2020, 9, 1217. [Google Scholar] [CrossRef] [PubMed]
- Balík, J.; Suran, P.; Sedlář, O.; Černý, J.; Kulhánek, M.; Procházková, S.; Asrade, D.A.; Smatanová, M. Long-term application of manure and different mineral fertilization in relation to the soil organic matter quality of luvisols. Agronomy 2023, 13, 2678. [Google Scholar] [CrossRef]
- Balík, J.; Suran, P.; Sedlář, O.; Černý, J.; Kulhánek, M.; Procházková, S.; Asrade, D.A.; Smatanová, M. The effect of long-term farmyard manure and mineral fertilizer application on the increase in soil organic matter quality of Cambisols. Agronomy 2023, 13, 2960. [Google Scholar] [CrossRef]
- Ozlu, E.; Sandhu, S.S.; Kumar, S.; Arriaga, F.J. Soil health indicators impacted by long-term cattle manure and inorganic fertilizer application in a corn-soybean rotation of South Dakota. Sci. Rep. 2019, 9, 11776. [Google Scholar] [CrossRef]
- Wang, H.; Parent, S.; Gosselin, A.; Desjardins, Y. Vesicular-arbuscular mycorrhizal peat-based substrates enhance symbiosis establishment and growth of three micropropagated species. J. Am. Soc. Hortic. Sci. 1993, 118, 896–901. [Google Scholar] [CrossRef]
- Ma, N.; Yokoyama, K.; Marumoto, T. Promotion of host plant growth and infection of roots with arbuscular mycorrhizal fungus Gigaspora margarita by the application of peat. Soil. Sci. Plant Nutr. 2006, 52, 162–167. [Google Scholar] [CrossRef]
- Delavaux, C.S.; Smith-Ramesh, L.M.; Kuebbing, S.E. Beyond nutrients: A meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 2017, 98, 2111–2119. [Google Scholar] [CrossRef]
- Yang, H.; Cai, Z.; De Clerk, C.; Meersmans, J.; Colinet, G.; Zhang, W. Long-Term Manuring Enhanced Compositional Stability of Glomalin-Related Soil Proteins through Arbuscular Mycorrhizal Fungi Regulation. Agriculture 2024, 14, 1510. [Google Scholar] [CrossRef]
- Huo, W.; Chai, X.; Wang, X.; Batchelor, W.D.; Kafle, A.; Gu, F. Indigenous arbuscular mycorrhizal fungi play a role in phosphorus depletion in organic manure amended high fertility. soil. J. Integr. Agric. 2022, 21, 3051–3066. [Google Scholar] [CrossRef]
- Liu, W.; Ma, K.; Wang, X.; Wang, Z.; Negrete-Yankelevich, S. Effects of no-tillage and biologically-based organic fertilizer on soil arbuscular mycorrhizal fungal communities in winter wheat field. Appl. Soil Ecol. 2022, 178, 104564. [Google Scholar] [CrossRef]
- Balík, J.; Kulhánek, M.; Černý, J.; Sedlář, O.; Suran, P. Impact of organic and mineral fertilising on aluminium mobility and extractability in two temperate Cambisols. Plant Soil Environ. 2019, 65, 581–587. [Google Scholar] [CrossRef]
- Asrade, D.A.; Kulhánek, M.; Balík, J.; Černý, J.; Sedlář, O. Side effect of organic fertilizing on the phosphorus transformation and balance over 27 years of maize monoculture. Field. Crops Res. 2023, 291, 108902. [Google Scholar] [CrossRef]
- Johnson, N.C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol. 2010, 185, 631–647. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Zhou, J.M.; Wang, H.Y.; Chen, X.Q.; Du, C.W. Effect of long-term rice straw return on soil glomalin, carbon and nitrogen. Pedosphere 2007, 17, 295–302. [Google Scholar] [CrossRef]
- Agnihotri, R.; Sharma, M.P.; Prakash, A.; Ramesh, A.; Bhattacharjya, S.; Patra, A.K.; Manna, M.C.; Kurganova, I.; Kuzyakov, Y. Glycoproteins of arbuscular mycorrhiza for soil carbon sequestration: Review of mechanisms and controls. Sci. Total Environ. 2022, 806, 150571. [Google Scholar] [CrossRef]
- Cissé, G.; Essi, M.; Kedi, B.; Mollier, A.; Staunton, S. Contrasting effects of long term phosphorus fertilization on glomalin-related soil protein (GRSP). Eur. J. Soil Biol. 2021, 107, 103363. [Google Scholar] [CrossRef]
- Wojewódzki, P.; Ciescinska, B. Effect of crop rotation and long term fertilization on the carbon and glomalin content in the soil. J. Cent. Eur. Agric. 2012, 13, 814–821. [Google Scholar] [CrossRef]
- Comis, D. Glomalin: Hiding place for a third of the world’s stored soil carbon. Agric. Res. 2002, 50, 4–7. [Google Scholar]
- Yang, Y.; He, C.; Huang, L.; Ban, Y.; Tang, M. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PLoS ONE 2017, 12, e0182264. [Google Scholar] [CrossRef]
- Stehlíková, I.; Kodešová, R.; Kunzová, E.; Czakó, A.; Mayerová, M.; Madaras, M. Sixty-year impact of manure and NPK on soil aggregate stability. Geoderma Reg. 2024, 39, e00858. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, J.; Fan, J.; Yang, X.; Han, X.; Wang, D.; Zhu, P.; Peng, X. Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments. Sci. Total Environ. 2019, 600, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.T.; Li, J.W.; Zhang, B.; Wang, L.F.; He, H.B.; Zhang, X.D. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates. Sci. Rep. 2015, 5, 14687. [Google Scholar] [CrossRef] [PubMed]
- Galazka, A.; Gawryjolek, K.; Grzadziel, J.; Ksiezak, J. Effect of different agricultural management practices on soil biological parameters including glomalin fraction. Plant Soil Environ. 2017, 63, 300–306. [Google Scholar] [CrossRef]
- Řezáčová, V.; Czakó, A.; Stehlík, M.; Mayerová, M.; Šimon, T.; Smatanová, M.; Madaras, M. Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi. Sci. Rep. 2021, 11, 12548. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry, Genesis, Composition, Reactions; John Wiley and Sons: New York, USA, 1994; p. 512. [Google Scholar]
- Wang, R.; Li, D.; Zheng, G.; Gao, Z.; Deng, F. Co-production of water-soluble humic acid fertilizer and crude cellulose from rice straw via urea assisted artificial humification under room temperature. Chem. Eng. J. 2023, 455, 140916. [Google Scholar] [CrossRef]
- Wright, S.F.; Anderson, R.L. Aggregate stability and glomalin in alternative crop rotations for the central Great Plains. Biol. Fertil. Soils. 2000, 3, 249–253. [Google Scholar] [CrossRef]
Indicator | PC1 | PC2 |
---|---|---|
CSOM | 0.705 | 0.691 |
CHS | 0.633 | 0.240 |
CFA | −0.009 | 0.489 |
CHA | 0.944 | 0.035 |
HA | 0.852 | −0.193 |
HR | −0.286 | −0.701 |
HI | 0.682 | −0.549 |
EE-GRSP | 0.919 | −0.145 |
T-GRSP | 0.831 | 0.325 |
EE-GRSP/T-GRSP | 0.488 | −0.526 |
EE-GRSP/CSOM | 0.625 | −0.659 |
T-GRSP/CSOM | 0.364 | −0.394 |
NT | 0.609 | 0.772 |
CSOM/NT | 0.707 | −0.178 |
WSA | 0.005 | 0.097 |
Eigenvalue | 6.23 | 3.24 |
Variance (%) | 41.5 | 21.6 |
Cumulative variance (%) | 41.5 | 63.1 |
Treatment/Indicator | Cont | SS1 | SS3 | F1 | F1/2 + N1/2 | N | N + ST | |
---|---|---|---|---|---|---|---|---|
CSOM (%) | 1.41 a | 1.67 b | 2.03 d | 1.87 cd | 1.71 c | 1.56 ab | 1.69 b | |
CHS (%) | 0.360 a | 0.434 b | 0.441 b | 0.438 b | 0.410 ab | 0.406 ab | 0.442 b | |
CFA (%) | 0.211 ab | 0.203 ab | 0.241 c | 0.200 a | 0.229 bc | 0.202 a | 0.206 ab | |
CHA (%) | 0.098 a | 0.117 b | 0.147 cd | 0.174 e | 0.144 cd | 0.137 c | 0.152 d | |
HA | 0.462 a | 0.580 b | 0.610 bc | 0.868 e | 0.627 bc | 0.691 cd | 0.737 d | |
HR | 0.219 b | 0.192 a | 0.191 a | 0.200 ab | 0.218 b | 0.217 b | 0.212 ab | |
HI | 0.070 a | 0.070 a | 0.072 a | 0.093 c | 0.084 b | 0.088 bc | 0.090 bc | |
EE-GRSP (mg.kg−1) | 491 a | 633 b | 687 b | 873 c | 806 c | 656 b | 612 b | |
T-GRSP (mg.kg−1) | 1252 a | 1536 abc | 1771 bc | 1813 c | 1705 bc | 1513 ab | 1596 bc | |
EE-GRSP/ T-GRSP (%) | 39.2 ab | 41.2 ab | 38.8 ab | 48.2 b | 47.3 ab | 43.4 ab | 38.3 a | |
EE-GRSP/ CSOM (%) | 3.48 a | 3.79 ab | 3.38 a | 4.67 c | 4.71 c | 4.21 bc | 3.62 ab | |
T-GRSP/ CSOM (%) | 8.88 | 9.20 | 8.72 | 9.70 | 9.97 | 9.70 | 9.44 | n/s |
N (%) | 0.160 a | 0.185 bc | 0.255 e | 0.201 d | 0.184 bc | 0.171 ab | 0.188 cd | |
CSOM/NT | 8.79 a | 8.93 ab | 9.00 ab | 9.30 b | 9.25 b | 9.11 ab | 9.00 ab | |
WSA | 0.686 | 0.687 | 0.741 | 0.762 | 0.720 | 0.768 | 0.745 | n/s |
X | Y | Regression | R2 |
---|---|---|---|
CSOM | EE-GRSP | y = 360.19x + 65.235 | 0.327 ** |
CSOM | T-GRSP | y = 828.59x + 185.12 | 0.608 *** |
CHS | EE-GRSP | y = 1818.7x − 81.972 | 0.245 ** |
CHS | T-GRSP | y = 3272.5x + 228.05 | 0.279 ** |
CHA | EE-GRSP | y = 4111.1x + 110.86 | 0.601 *** |
CHA | T-GRSP | y = 6738.2x + 666.23 | 0.567 *** |
CFA | EE-GRSP | y = 519.07x + 568.97 | 0.006 |
CFA | T-GRSP | y = 1881x + 1197.5 | 0.026 |
HA | EE-GRSP | y = 649.63x + 255.04 | 0.440 *** |
HA | T-GRSP | y = 993.84x + 948.92 | 0.362 *** |
CSOM/NT | EE-GRSP | y = 391.85x − 2867.6 | 0.478 *** |
CSOM/NT | T-GRSP | y = 422.35x − 2224.9 | 0.195 * |
CSOM | WSA | y = 0.0163x + 0.6879 | 0.002 |
CHS | WSA | y = 0.1199x + 0.6655 | 0.003 |
CHA | WSA | y = 0.2028x + 0.6876 | 0.004 |
CFA | WSA | y = 0.2643x + 0.6593 | 0.004 |
HA | WSA | y = 0.0228x + 0.7007 | 0.002 |
EE-GRSP | WSA | y = −0.00006x + 0.757 | 0.011 |
T-GRSP | WSA | y = 0.00002x+ 0.6827 | 0.004 |
EE-GRSP/T-GRSP | WSA | y = −0.0027x + 0.8295 | 0.037 |
CSOM | EE-GRSP/T-GRSP | y = 1.2563x + 40.355 | 0.002 |
CHS | EE-GRSP/T-GRSP | y = 29.669x + 30.074 | 0.037 |
CHA | EE-GRSP/T-GRSP | y = 80.709x + 31.332 | 0.131 |
CFA | EE-GRSP/T-GRSP | y = −13.861x + 45.453 | 0.002 |
HA | EE-GRSP/T-GRSP | y = 14.438x + 33.062 | 0.123 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balík, J.; Suran, P.; Černý, J.; Sedlář, O.; Kulhánek, M.; Procházková, S. Soil Organic Matter Quality and Glomalin-Related Soil Protein Content in Cambisol. Agronomy 2025, 15, 745. https://doi.org/10.3390/agronomy15030745
Balík J, Suran P, Černý J, Sedlář O, Kulhánek M, Procházková S. Soil Organic Matter Quality and Glomalin-Related Soil Protein Content in Cambisol. Agronomy. 2025; 15(3):745. https://doi.org/10.3390/agronomy15030745
Chicago/Turabian StyleBalík, Jiří, Pavel Suran, Jindřich Černý, Ondřej Sedlář, Martin Kulhánek, and Simona Procházková. 2025. "Soil Organic Matter Quality and Glomalin-Related Soil Protein Content in Cambisol" Agronomy 15, no. 3: 745. https://doi.org/10.3390/agronomy15030745
APA StyleBalík, J., Suran, P., Černý, J., Sedlář, O., Kulhánek, M., & Procházková, S. (2025). Soil Organic Matter Quality and Glomalin-Related Soil Protein Content in Cambisol. Agronomy, 15(3), 745. https://doi.org/10.3390/agronomy15030745