Farm-Produced Plant Biostimulant: Case Study with Passion Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. On-Farm Biostimulant Production
2.1.1. Vermicompost Production
2.1.2. Humic Substances Extraction
2.1.3. Plant Growth-Promoting Bacteria (PGPB)
2.1.4. Biostimulant Preparation
2.2. Plant Assay
2.2.1. Crop Production
2.2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glissman, S.R. The Ecology of Sustainable Food Systems, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2014; p. 405. [Google Scholar]
- Li, J.; Van Gerrewey, T.; Geelen, D.A. Meta-Analysis of biostimulant yield effectiveness in field trials. Front. Plant Sci. 2022, 13, 836702. [Google Scholar] [CrossRef] [PubMed]
- EBIC. Economic Overview of the European Biostimulants Market. 2024. Available online: https://biostimulants.eu/highlights/economic-overview-of-the-european-biostimulants-market/ (accessed on 21 July 2024).
- du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Nardi, S.; Schiavon, M.; Francioso, O. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules 2021, 26, 2256. [Google Scholar] [CrossRef] [PubMed]
- Lamar, R.T.; Gralian, J.; Hockaday, W.C.; Jerzykiewicz, M.; Monda, H. Investigation into the role of carboxylic acid and phenolic hydroxyl groups in the plant biostimulant activity of a humic acid purified from an oxidized sub-bituminous coal. Front. Plant Sci. 2024, 15, 1328006. [Google Scholar] [CrossRef]
- Scotti, R.; Pane, C.; Spaccini, R.; Palese, A.M.; Piccolo, A.; Celano, G.; Zaccardelli, M. On-farm compost: A useful tool to improve soil quality under intensive farming systems. Appl. Soil Ecol. 2016, 107, 13–23. [Google Scholar] [CrossRef]
- O’Callaghan, M.; Ballard, R.A.; Wright, D. Soil microbial inoculants for sustainable agriculture: Limitations and opportunities. Soil Use Manag. 2022, 38, 1340–1369. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Canellas, N.A.; Jindo, K.; Rosa, R.C.C.; Piccolo, A. Challenge of transition: The history of a case study involving tropical fruits polyculture stimulated by humic acids and plant-growth promoting bacteria. Chem. Biol. Technol. Agric. 2022, 9, 76. [Google Scholar] [CrossRef]
- van der Ploeg, J.A. O Sistema Alimentar em Tempos de COVID-19: Ensinamentos Para o Futuro CADERNOS PARA DEBATE n. 3. Available online: https://outraspalavras.net/wp-content/uploads/2021/10/211001-VanderPloegCriseAgricola.pdf (accessed on 7 September 2022).
- Santos Filho, H.P.; Laranjeira, F.F.; Santos, C.C.F.; Barbosa, C.J. Doenças do maracujazeiro. In Maracujá: Produção e Qualidade na Passicultura; Lima, A.A., Cunha, M.A.P., Eds.; Embrapa Mandioca e Fruticultura: Cruz das Almas, BA, Brazil, 2004; pp. 240–280. [Google Scholar]
- de Jesus, O.N. (Ed.) Plano Estratégico para a Cultura do Maracujá 2017–2021 Documentos 231; Embrapa Mandioca e Fruticultura: Cruz das Almas, BA, Brazil, 2019; 28p. [Google Scholar]
- Embrapa. Manual de Métodos de Análise de Solo; CNPS: Rio de Janeiro, RJ, Brazil, 1997. [Google Scholar]
- Pascholati, S.F.; Nicholson, R.L.; Butler, L.G. Phenylalanine Ammonia-Lyase Activity and Anthocyanin Accumulation in Wounded Maize Mesocotyls. J. Phytopathol. 1986, 115, 165–172. [Google Scholar] [CrossRef]
- Hammerschmidt, R.; Nuckles, E.M.; Kué, J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol. 1982, 20, 73–82. [Google Scholar] [CrossRef]
- Lever, M. New reactions for colorimetric determination of carbohydrates. Anal. Biochem. 1972, 47, 273–279. [Google Scholar] [CrossRef]
- Hafez, M.; El-Nile, A.; Hassan, M.I.; Zeitar, E.M.; Mohammed, S.R.; Abdallah, A.M.; Zohir, W.A.; Popov, A.I.; Minkina, T.; Rashad, M. Humic Substances and Their Potential to Enhance Soil, Plants, and Animals’ Productivity: A New Concept for Sustainable Agriculture. Agricultural Research Updates; Gorawala, P., Mandhatri, S., Eds.; Nova Publisher: New York, NY, USA, 2023; Volume 44, Chapter 3. [Google Scholar]
- Hung, S.H.W.; Huang, T.C.; Lai, Y.C.; Wu, I.C.; Liu, C.H.; Huarng, Y.F.; Huang, C.C. Endophytic biostimulants for smart agriculture: Burkholderia seminalis 869T2 benefits heading leafy vegetables in-field management in Taiwan. Agronomy 2023, 13, 967. [Google Scholar] [CrossRef]
- Silva, R.M.; Canellas, L.P. Organic matter in the pest and plant disease control: A meta-analysis. Chem. Biol. Technol. Agric. 2022, 9, 70. [Google Scholar]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Perrot, T.; Pauly, M.; Ramírez, V. Emerging roles of β-Glucanases in plant development and adaptative responses. Plants 2022, 11, 1119. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef]
- Schiavon, M.; Pizzeghello, D.; Muscolo, A.; Vaccaro, S.; Francioso, O.; Nardi, S. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J. Chem. Ecol. 2010, 36, 662–669. [Google Scholar] [CrossRef]
- Appua, M.; Ramalingamb, P.; Sathiyanarayananc, A.; Huanga, J. An overview of plant defense-related enzymes responses to biotic stresses. Plant Gene 2021, 27, 100302. [Google Scholar] [CrossRef]
- Santos-Jiménez, J.L.; Montebianco, C.B.; Olivares, F.L.; Caanellas, L.P.; Barreto-Bergter, E.; Rosa, R.C.C.; Vaslin, M.F.S. Passion fruit plants treated with biostimulants induce defense-related and phytohormone-associated genes. Plant Gene 2022, 30, 100357. [Google Scholar] [CrossRef]
- Pieterse, C.M.J.; Van Loon, L.C. Salicylic acid-independent plant defense pathways. Trends Plant Sci. 1999, 4, 52–58. [Google Scholar] [CrossRef]
- Silva, R.M.; Canellas, N.A.; Olivares, F.L.; Piccolo, A.; Canellas, L.P. Humic substances trigger plant immune responses. Chem. Biol. Technol. Agric. 2023, 10, 123. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Soliman, S.M.; Salem, H.M.; Ahmed, A.I.; Mahmood, M.; El-Tahan, A.M.; Ebrahim, A.A.M.; Abd El-Mageed, T.A.; Negm, S.H.; et al. Plant growth promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. Front. Plant Sci. 2022, 13, 923880. [Google Scholar] [CrossRef] [PubMed]
- Beneduzi, A.; Ambrosini, A.; Passaglia, L.M.P. Plant growth promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 2012, 35, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Takishita, Y.; Charron, J.B.; Smith, D.L. Biocontrol rhizobacterium Pseudomona sp. 23s induces systemic resistance in tomato (Solanum lycopersicum L.) against bacterial canker Clavibacter michiganensis subsp. michiganensis. Front. Microbiol. 2018, 9, 2119. [Google Scholar] [CrossRef]
- Nardi, S.; Carletti, P.; Pizzeghello, D.; Muscolo, A. Biological activities of humic substances. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems, Part 1: Fundamentals and Impact of Mineral-Organic Biota Interactions on the Formation, Transformation, Turnover, and Storage of Natural Nonliving Organic Matter (NOM); Senesi, N., Xing, B., Huang, P.M., Eds.; Wiley: Hoboken, NJ, USA, 2009; Volume 2, pp. 305–339. [Google Scholar]
- Quaggiotti, S.; Ruperti, B.; Pizzeghello, D.; Francioso, O.; Tugnoli, V.; Nardi, S. Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize [Zea mays L.]. J. Exp. Bot. 2004, 55, 803–813. [Google Scholar] [CrossRef]
- Cavalcanti Filho, P.F.M.; Baía, D.C.; Ribeiro, R.C.; Rosa, R.C.C.; Canellas, L.P. Humic acids induce the expression of nitrate transporters in passion-fruit seedlings. Rev. Bras. Frut. 2023, 45, e-941. [Google Scholar] [CrossRef]
- Azevedo, I.G.; Olivares, F.L.O.; Ramos, A.C.R.; Bertolazi, A.A.; Canellas, L.P. Humic acids and Herbaspirillum seropedicae change the extracellular H+ flux and gene expression in maize roots seedlings. Chem. Biol. Technol. Agric. 2019, 6, 8. [Google Scholar] [CrossRef]
- Zribi, I.; Ghorbel, M.; Brini, F. Pathogenesis Related Proteins (PRs): From Cellular Mechanisms to Plant Defense. Curr. Protein Pept. Sci. 2021, 22, 396–412. [Google Scholar] [CrossRef]
- Viswanath, K.K.; Varakumar, P.; Pamuru, R.R.; Basha, S.J.; Mehta, S.; Rao, A.D. Plant Lipoxygenases and Their Role in Plant Physiology. J. Plant Biol. 2020, 63, 83–95. [Google Scholar] [CrossRef]
- EMBRAPA. Embrapa Mandioca e Fruticultura. 2022. Available online: https://www.embrapa.br/mandioca-e-fruticultura/cultivos/maracuja (accessed on 10 March 2025).
- SEBRAE. O Mercado Para os Produtos Orgânicos Está Aquecido. Available online: https://sebrae.com.br/sites/PortalSebrae/artigos/o-mercado-para-os-produtos-organicos-esta-aquecido,5f48897d3f94e410VgnVCM1000003b74010aRCRD (accessed on 17 February 2025).
Group | Mean | Median | SD | Min | Q1 | Q3 | Max | n | Shapiro-Wilk Test (p) | Mann-Whitney Test (p) | Effect Size |
---|---|---|---|---|---|---|---|---|---|---|---|
CT | 3.63 | 4 | 0.688 | 2 | 3 | 4 | 5 | 27 | 0.00042 | 1.66 × 10−4 | 0.713 |
PB | 2.22 | 2 | 0.751 | 1 | 2 | 2.5 | 4 | 27 | 0.000113 | --- | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canellas, L.P.; Canellas, N.A.; Martinez-Balmori, D.; Silva, R.M.; Rosa, R.C.C.; Olivares, F.L. Farm-Produced Plant Biostimulant: Case Study with Passion Fruit. Agronomy 2025, 15, 681. https://doi.org/10.3390/agronomy15030681
Canellas LP, Canellas NA, Martinez-Balmori D, Silva RM, Rosa RCC, Olivares FL. Farm-Produced Plant Biostimulant: Case Study with Passion Fruit. Agronomy. 2025; 15(3):681. https://doi.org/10.3390/agronomy15030681
Chicago/Turabian StyleCanellas, Luciano P., Natália A. Canellas, Dariellys Martinez-Balmori, Rakiely M. Silva, Raul C. C. Rosa, and Fabio L. Olivares. 2025. "Farm-Produced Plant Biostimulant: Case Study with Passion Fruit" Agronomy 15, no. 3: 681. https://doi.org/10.3390/agronomy15030681
APA StyleCanellas, L. P., Canellas, N. A., Martinez-Balmori, D., Silva, R. M., Rosa, R. C. C., & Olivares, F. L. (2025). Farm-Produced Plant Biostimulant: Case Study with Passion Fruit. Agronomy, 15(3), 681. https://doi.org/10.3390/agronomy15030681