Evaluation of Combination Fungicides for Charcoal Rot and Collar Rot Management in Soybean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of Plant Pathogens
2.2. Evaluation of Seed Treatment Fungicides Against M. phaseolina and S. rolfsii in Controlled Environment
2.3. Evaluation of Seed Treatment Fungicides Against M. phaseolina and S. rolfsii in Epiphytotic Field Conditions
2.4. Data Analysis
3. Results
3.1. Evaluation of New Combination Seed Treatment Fungicides Against M. phaseolina in a Controlled Environment
3.2. Evaluation of New Combination Seed Treatment Fungicides Against M. phaseolina at Epiphytotic Field Condition
3.3. Evaluation of New Combination Seed Treatment Fungicides Against S. rolfsii in Controlled Environment
3.4. Evaluation of Combination Seed Treatment Fungicides Against S. rolfsii at Epiphytotic Field Condition
3.5. Principle Component Analysis (PCA)
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majumder, D.; Rajesh, T.; Suting, E.G.; Debbarma, A. Detection of seed borne pathogens in wheat. Recent Trends Aust. J. Crop Sci. 2013, 7, 500–507. [Google Scholar]
- Mancini, V.; Romanazzi, G. Seed treatments to control seedborne fungal pathogens of vegetable crops. Pest Manag. Sci. 2014, 70, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Schaad, N.W.; Frederick, R.D.; Shaw, W.L.; Schneider, H.; Robert, H.; Michael, D.P.; Luster, D.G. Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Ann. Rev. Phytopathol. 2003, 41, 305–324. [Google Scholar] [CrossRef] [PubMed]
- Mengistu, A.; Wrather, A.; Rupe, J.C. Charcoal Rot. In Compendium of Soybean Diseases; Hartman, G.L., Rupe, J.C., Sikora, E.F., Domier, L.L., Davies, J.A., Steffey, K.L., Eds.; APS Press: Saint Paul, MN, USA, 2015; pp. 67–69. [Google Scholar]
- Mueller, D.S.; Wise, K.A.; Sisson, A.J.; Smith, D.L.; Sikora, E.J.; Robertson, A.E. A Farmer’s Guide to Soybean Diseases; American Phytopathological Society: Saint Paul, MN, USA, 2016. [Google Scholar]
- Allen, T.W.; Bradley, C.A.; Sisson, A.J.; Byamukama, E.; Chilvers, M.I.; Coker, C.M.; Wrather, J.A. Soybean Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada, from 2010 to 2014. Plant Health Prog. 2017, 18, 19–27. [Google Scholar] [CrossRef]
- Bandara, A.Y.; Weerasooriya, D.K.; Bradley, C.A.; Allen, T.W.; Esker, P.D. Dissecting the economic impact of soybean diseases in the United States over two decades. PLoS ONE 2020, 15, e0231141. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Chhapekar, S.S.; Vieira, C.C.; Da Silva, M.P.; Rojas, A.; Lee, D.; Liu, N.; Pardo, E.M.; Lee, Y.C.; Dong, Z.; et al. Breeding for disease resistance in soybean: A global perspective. Theor. Appl. Genet. 2022, 135, 3773–3872. [Google Scholar] [CrossRef] [PubMed]
- Hartman, G.L.; Rupe, J.C.; Sikora, E.F.; Domier, L.L.; Davies, J.A.; Steffey, K.L. Compendium of Soybean Diseases and Pests; American Phytopathological Society: Saint Paul, MN, USA, 2015. [Google Scholar]
- Mengistu, A.; Ray, J.D.; Smith, J.R.; Paris, R.L. Charcoal rot disease assessment of soybean genotypes using a colony-forming unit index. Crop Sci. 2007, 47, 2453–2461. [Google Scholar] [CrossRef]
- Wrather, A.G.; Shannon, R.; Balardin, L.; Carregal, R.E.; Gupta, G.K.; Ma, Z.; Morel, W.; Ploper, D.; Tenuta, A. Effect of diseases on soybean yield in the top eight producing countries in 2006. Plant Health Prog. 2010, 11, 29. [Google Scholar] [CrossRef]
- Mengistu, A.; Ray, J.D.; Smith, J.R.; Arelli, P.R.; Bellaloui, N.; Chen, P.; Shannon, G.; Boykin, D. Effect of charcoal rot on selected putative drought-tolerant soybean genotypes and yield. Crop Prot. 2018, 105, 90–110. [Google Scholar] [CrossRef]
- Gupta, G.K.; Sharma, S.K.; Ramteke, R. Biology, epidemiology, and management of the pathogenic fungus Macrophomina phaseolina (Tassi) Goid with special reference to charcoal rot of soybean (Glycine max (L.) Merrill). J. Phytopathol. 2012, 160, 167–180. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hasna, M.K.; Shumsun, N.; Hasan, R.; Islam, M.N.; Kabir, M.H.; Hossain, D.M. Evaluation of some fungicides against collar rot disease of soybean. Am. J. Pure Appl. Sci. 2020, 2, 159–166. [Google Scholar] [CrossRef]
- Ramteke, R.; Rajput, L.S.; Nataraj, V.; Tiwari, S.; Borah, M.; Kumar, S.; Maranna, S.; Ratnaparkhe, M.B.; Mandloi, S.; Jaiswal, S.; et al. Evaluation of soybean genotypes for resistance to collar rot (Sclerotium rolfsii) under field and controlled conditions. Trop. Plant Pathol. 2024, 49, 714–725. [Google Scholar] [CrossRef]
- Sharma, A.N.; Gupta, G.K.; Verma, R.K.; Sharma, O.P.; Bhagat, S.; Amaresan, N.; Saini, M.R.; Chattopadhyay, C.; Sushil, S.N.; Asre, R.; et al. Integrated Pest Management for Soybean; National Centre for Integrated Pest Management: New Delhi, India, 2014; p. 3. [Google Scholar]
- Debbarma, A.; Majumder, D.; Kongbrailatpam, J.D.; Kangjam, B. Estimation of yield loss in soybean due to collar rot disease in mid hills of Meghalaya and its management. Environ. Ecol. 2017, 35, 1081–1086. [Google Scholar]
- Amrate, P.K.; Pancheshwar, D.K.; Shrivastava, M.K. Evaluation of soybean germplasm against charcoal rot, aerial blight, and yellow mosaic virus disease in Madhya Pradesh. Plant Dis. Res. 2018, 33, 185–190. [Google Scholar]
- Bradley, C.A. Effect of fungicide seed treatments on stand establishment, seedling disease, and yield of soybean in North Dakota. Plant Dis. 2008, 92, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Mayo, S.; Gutierrez, S.; Malmierca, M.G.; Lorenzana, A.; Campelo, M.P.; Hermosa, R.; Casquero, P.A. Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. Front. Plant Sci. 2015, 6, 685. [Google Scholar] [CrossRef]
- Nyandoro, R.; Chang, K.F.; Hwang, S.F.; Ahmed, H.U.; Turnbull, G.D.; Strelkov, S.E. Management of root rot of soybean in Alberta with fungicide seed treatments and genetic resistance. Can. J. Plant Sci. 2019, 99, 499–509. [Google Scholar] [CrossRef]
- Goulart, A.C.P. Effectiveness of fungicide seed treatment in the control of soybean seedling damping-off caused by Rhizoctonia solani under greenhouse conditions. Summa Phytopathol. 2022, 48, 121–125. [Google Scholar] [CrossRef]
- Reznikov, S.; Vellicce, G.R.; Gonzalez, V.; de Lisi, V.; Castagnaro, A.P.; Ploper, D.L. Evaluation of chemical and biological seed treatments to control charcoal rot of soybean. J. Gen. Plant Pathol. 2016, 82, 273–280. [Google Scholar] [CrossRef]
- Kumar, D.G.; Natarajan, N.; Nakkeeran, S. Antifungal activity of nano fungicide Trifloxystrobin 25% + Tebuconazole 50% against Macrophomina phaseolina. Afr. J. Microbiol. Res. 2016, 10, 100–105. [Google Scholar] [CrossRef]
- Rahman, M.; Bhuiyan, M.; Akanda, M.; Khan, M.; Karim, M.; Hossain, M.; Rubayet, M. Integrated approaches for managing collar rot disease and increasing soybean yield. Egyp. J. Agric. Res. 2024, 102, 90–102. [Google Scholar] [CrossRef]
- El-Abdean, W.Z.; Abo-Elyousr, K.A.; Hassan, M.H.; El-Sharkawy, R.M. Effect of silicon compounds against Macrophomina phaseolina, the causal agent of soybean charcoal rot disease. Arch. Phytopathol. Plant Prot. 2020, 53, 983–998. [Google Scholar] [CrossRef]
- Dalal, S.; Ramteke, R.; Mandloi, S.; Jaiswal, S.; Rajput, L.S.; Kumar, S.; Maheshwari, H.S.; Nataraj, V.; Shivakumar, M.; Ratnaparkhe, M.B. Screening of soybean genotypes against collar rot disease caused by Sclerotium rolfsii Sacc. Soybean Res. 2022, 20, 89–96. [Google Scholar]
- Twizeyimana, M.; Hill, C.B.; Pawlowski, M.; Paul, C.; Hartman, G.L. A cut stem inoculation technique to evaluate soybean for resistance to Macrophomina phaseolina. Plant Dis. 2012, 96, 1210–1215. [Google Scholar] [CrossRef]
- Simko, I.; Piepho, H.P. The area under the disease progress stairs: Calculation, advantage, and application. Anal. Theor. Plant Pathol. 2012, 102, 381–389. [Google Scholar] [CrossRef] [PubMed]
- ICAR. Handbook of Agriculture; Indian Council of Agricultural Research: New Delhi, India, 2009; pp. 1143–1150. [Google Scholar]
- Ramesh, A.; Sharma, S.K.; Sharma, M.P.; Yadav, N.; Joshi, O.P. Inoculation of zinc-solubilizing Bacillus aryabhattai strains for improved growth, mobilization, and biofortification of zinc in soybean and wheat cultivated in vertisols of central India. Appl. Soil Ecol. 2014, 73, 87–96. [Google Scholar] [CrossRef]
- Paris, R.L.; Mengistu, A.; Tyler, J.M.; Smith, J.R. Registration of soybean germplasm line DT97-4290 with moderate resistance to charcoal rot. Crop Sci. 2006, 46, 2324–2325. [Google Scholar] [CrossRef]
- Yasmin, H.; Naz, R.; Nosheen, A.; Hassan, M.N.; Ilyas, N.; Sajjad, M.; Anjum, S.; Gao, X.; Geng, Z. Identification of new biocontrol agent against charcoal rot disease caused by Macrophomina phaseolina in soybean (Glycine max L.). Sustainability 2020, 12, 6856. [Google Scholar] [CrossRef]
- Rajput, L.S.; Kumar, S.; Nataraj, V.; Shivakumar, M.; Maheshwari, H.S.; Ghodki, B.S. Evaluation of novel fungicide for the management of soybean anthracnose disease and yield loss estimation. Legum. Res. 2024, 47, 1998–2004. [Google Scholar] [CrossRef]
- De Mendiburu Delgado, F. Una Herramienta de Análisis Estadístico Para la Investigación Agrícola. Ph.D. Thesis, Universidad Nacional de Ingeniería, Lima, Peru, 2009. [Google Scholar]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package, Version 1.0.7. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 18 February 2022).
- Dorrance, A.E.; Kleinhenz, M.D.; McClure, S.A.; Tuttle, N.T. Temperature, moisture, and seed treatment effects on Rhizoctonia solani root rot of soybean. Plant Dis. 2003, 87, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Urrea, K.; Rupe, J.C.; Rothrock, C.S. Effect of fungicide seed treatments, cultivars, and soils on soybean stand establishment. Plant Dis. 2013, 97, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Ajayi-Oyetunde, O.O.; Bradley, C.A. Rhizoctonia solani: Taxonomy, population biology and management of Rhizoctonia seedling disease of soybean. Plant Pathol. 2018, 67, 3–17. [Google Scholar] [CrossRef]
- Feng, Y.; Huang, Y.; Zhan, H.; Bhatt, P.; Chen, S. An overview of strobilurin fungicide degradation: Current status and future perspective. Front. Microbiol. 2020, 11, 389. [Google Scholar] [CrossRef]
- Di, S.; Wang, Z.; Cang, T.; Xie, Y.; Zhao, H.; Qi, P.; Wang, X.; Xu, H.; Wang, X. Enantioselective toxicity and mechanism of chiral fungicide penflufen based on experiments and computational chemistry. Ecotoxicol. Environ. Saf. 2021, 222, 112534. [Google Scholar] [CrossRef]
- Yang, C.; Hamel, C.; Vujanovic, V.; Gan, Y. Fungicide: Modes of action and possible impact on nontarget microorganisms. Int. Sch. Res. Not. 2011, 8, 130289. [Google Scholar] [CrossRef]
- Sagarika, M.; Amrate, P.K.; Yadav, V.K.; Shrivastava, M.K. Exploring potential of new generation fungicides as seed treatment in combating early infection of Macrophomina phaseolina in soybean. Indian Phytopathol. 2023, 76, 1045–1053. [Google Scholar] [CrossRef]
- Jebaraj, D.; Hubballi, M.M.; Selvaraj, M.; Jagannathan, R.; Srinivasan, V.M. Application of fungicides suppressed the root rot disease incidence and improved the biometric parameters and yield in coleus. Inter. J. Curr. Res. 2012, 4, 156–161. [Google Scholar]
- Khan, I.H.; Javaid, A. Chemical control of collar rot disease of chickpea. Pak. J. Phytopathol. 2015, 27, 61–68. [Google Scholar]
- Arunasri, P.; Padmodaya, B.; Kumar, M.R.; Rao, K.S.R.; Reddy, B.R.; Reddy, S.T. Evaluation of integrated management strategies against stem rot of groundnut (Sclerotium rolfsii) under pot culture. J. Res. ANGRAU 2021, 49, 43–47. [Google Scholar]
- Sanjay; Kumar, S.; Chaudhary, B. Potential of few fungicides and plant extracts for managing charcoal rot of soybean caused by Macrophomina phaseolina (Tassi) Gold in Madhya Pradesh, India. J. Appl. Nat. Sci. 2020, 12, 388–393. [Google Scholar] [CrossRef]
- Lokesh, R.; Madagoudra, Y.B.; Sai Srujan, C.; Prakash Teri, N. Evaluation of fungicides and bioagents in pot condition for management of dry root rot of chickpea (Cicer arietinum L.) caused by Macrophomina phaseolina (Tassi) Goid. J. Mycopathol. Res. 2021, 59, 295–298. [Google Scholar]
- You, J.; Tang, T.; Wang, F.; Mao, T.; Yuan, B.; Guo, J.; Guo, X.; Duan, Y.; Huang, J. Baseline sensitivity and control efficacy of strobilurin fungicide pyraclostrobin against Sclerotium rolfsii. Plant Dis. 2021, 105, 3503–3509. [Google Scholar] [CrossRef]
- Najera, J.F.D.; Castellanos, J.S.; Hernandez, M.V.; Serna, S.A.; Gomez, O.G.A.; Verduzco, C.V.; Ramos, M.A. Diagnosis and integrated management of fruit rot in Cucurbita argyrosperma, caused by Sclerotium rolfsii. Plant Pathol. J. 2018, 34, 171–181. [Google Scholar] [CrossRef]
- Sartori, F.F.; Pimpinato, R.F.; Tornisielo, V.L.; Engroff, T.D.; Jaccoud Filho, D.S.; Menten, J.O.; Dorrance, A.E.; Dourado Neto, D. Soybean seed treatment: How do fungicides translocate in plants? Pest Manag. Sci. 2020, 76, 2355–2359. [Google Scholar] [CrossRef]
- Tsialtas, J.T.; Theologidou, G.S.; Karaoglanidis, G.S. Effects of pyraclostrobin on leaf diseases, leaf physiology, yield and quality of durum wheat under Mediterranean conditions. Crop Prot. 2018, 113, 48–55. [Google Scholar] [CrossRef]
- Juroszek, P.; Laborde, M.; Kleinhenz, B.; Mellenthin, M.; Racca, P.; Sierotzki, H. A review on the potential effects of temperature on fungicide effectiveness. Plant Pathol. 2022, 71, 775–784. [Google Scholar] [CrossRef]
- Gikas, G.D.; Parlakidis, P.; Mavropoulos, T.; Vryzas, Z. Particularities of fungicides and factors affecting their fate and removal efficacy: A review. Sustainability 2022, 14, 4056. [Google Scholar] [CrossRef]
- Mengistu, A.; Smith, R.J.; Ray, J.D.; Bellaloui, N. Seasonal progress of charcoal rot and its impact on soybean productivity. Plant Dis. 2011, 95, 1159–1166. [Google Scholar] [CrossRef]
- Poag, P.S.; Popp, M.; Rupe, J.; Dixon, B.; Rothrock, C.; Boger, C. Economic evaluation of soybean fungicide seed treatments. Agron. J. 2005, 97, 1647–1657. [Google Scholar] [CrossRef]
- Klocke, B.; Sommerfeldt, N.; Wagner, C.; Schwarz, J.; Baumecker, M.; Ellmer, F.; Jacobi, A.; Matschiner, K.; Petersen, J.; Wehling, P.; et al. Disease threshold-based fungicide applications: Potential of multi-disease resistance in winter wheat cultivars in Germany. Eur. J. Plant Pathol. 2023, 165, 363–383. [Google Scholar] [CrossRef]
- Cruz, C.D.; Jesus, W.C.; Nunes, J.D.P.; Alves, F.S.R.; Mizubuti, E.S.G. Efficacy of fungicides in controlling soybean rust and their effect on yield. Fitopatol. Bras. 2010, 35, 239–247. [Google Scholar]
- Dias, W.P.; Curcio, G.R.; Zambolim, L.; Neves, J.C.L. Management of soybean diseases with fungicides and its effect on yield. Pesqui. Agropecu. Bras. 2016, 51, 393–400. [Google Scholar]
Treatment | Doses (g or mL/kg of Seed) | Lesion Length (cm) at 2 DAI | Lesion Length (cm) at 4 DAI | Lesion Length (cm) at 8 DAI | AUDPC |
---|---|---|---|---|---|
Penflufen + trifloxystrobin | 1 | 1.20 c–f | 2.57 e–g | 6.58 ij | 23.44 d–j |
Penflufen + trifloxystrobin | 1.5 | 1.23 cd | 2.62 c–f | 7.04 c–e | 24.56 b–g |
Penflufen + trifloxystrobin | 2 | 1.45 b | 2.93 b | 6.76 g–i | 25.24 b–d |
Thiophanate methyl + pyraclostrobin | 1 | 0.98 h–j | 2.23 k | 5.10 k | 18.80 k |
Thiophanate methyl + pyraclostrobin | 1.5 | 0.98 h–j | 2.20 kl | 4.94 k | 18.52 k |
Thiophanate methyl + pyraclostrobin | 2 | 0.85 j | 1.96 m | 4.86 k | 18.04 k |
Carboxin + thiram | 1 | 1.25 c | 2.79 c | 7.18 cd | 25.52 bc |
Carboxin + thiram | 1.5 | 1.22 c–e | 2.69 c–e | 7.24 c | 25.24 b–e |
Carboxin + thiram | 2 | 1.25 c | 2.78 cd | 7.01 c–f | 25.14 b–f |
Carbendazim + mancozeb | 1 | 1.18 c–g | 2.54 e–i | 6.89 e–h | 23.94 b–h |
Carbendazim + mancozeb | 1.5 | 1.09 d–i | 2.47 fj | 6.90 e–g | 23.68 b–i |
Carbendazim + mancozeb | 2 | 1.12 c–h | 2.56 e–h | 7.68 b | 25.60 b |
Control | - | 2.57 a | 3.33 a | 8.38 a | 30.08 a |
Treatment | PDI% | PDC (%) | Yield (kg/ha) | IY (%) | Net Return ($/ha) | BC Ratio | Seed Index (g) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | Pooled | 2020 | 2021 | Pooled | 2020 | 2021 | Pooled | |||||
Penflufen + trifloxystrobin | 5.09 a | 51.25 c | 28.17 c | 29.98 | 1301.75 a | 1820.04 a | 1560.89 a | 32.02 | 494.09 | 3.13 | 12.70 a | 13.14 ab | 12.92 a |
Thiophanate methyl + pyraclostrobin | 4.28 a | 50.00 C | 27.14 c | 32.54 | 1329.21 a | 1827.40 a | 1578.31 a | 33.50 | 499.34 | 3.12 | 12.81 a | 13.24 ab | 13.03 a |
Carboxin + thiram | 5.16 a | 64.00 b | 34.58 b | 14.04 | 1311.93 a | 1545.19 c | 1428.56 b | 20.83 | 432.05 | 2.86 | 12.58 a | 12.54 b | 12.56 b |
Uninoculated control | 4.75 a | 32.25 d | 17.44 d | 56.65 | 1367.88 a | 1830.11 a | 1586.50 a | 34.19 | 508.64 | 3.21 | 12.87 a | 13.77 a | 13.32 a |
Inoculated Control | 5.71 a | 74.75 a | 40.23 a | - | 1211.11 a | 1153.47 d | 1182.29 d | - | 343.82 | 2.50 | 12.34 a | 10.96 c | 11.65 c |
Source of Variation | Charcoal Rot | Collar Rot | ||||||
---|---|---|---|---|---|---|---|---|
PDI% | Incidence% | |||||||
Degree of Freedom | Mean Sum Square | F Value | p > F | Degree of Freedom | Mean Sum Square | F Value | p > F | |
Replication | 3 | 5.7 | 0.49 | NS * | 3 | 12.49 | 1.64 | NS |
Treatment | 4 | 587.5 | 51.74 | 0.0001 | 4 | 272.35 | 35.80 | 0.0001 |
Time | 1 | 24,874.7 | 2190.96 | 0.0001 | 1 | 37.78 | 4.96 | NS |
Treatment × Time | 4 | 444.4 | 39.14 | 0.0001 | 4 | 0.32 | 0.04 | NS |
Yield (Kg/ha) | ||||||||
Replication | 3 | 19,374 | 5.94 | NS | 3 | 2427.00 | 0.22 | NS |
Treatment | 4 | 262,633 | 80.65 | 0.0001 | 4 | 600,699.00 | 55.63 | 0.0001 |
Year | 1 | 1,266,391 | 388.92 | 0.0001 | 1 | 109,685.00 | 10.21 | NS |
Treatment × Time | 4 | 217,574 | 66.81 | 0.0001 | 4 | 10,157.00 | 0.94 | NS |
Seed index (g) | ||||||||
Replication | 3 | 0.32 | 1.32 | NS | 3 | 1.82 | 2.19 | NS |
Treatment | 4 | 3.31 | 13.68 | 0.0001 | 4 | 3.37 | 4.06 | NS |
Time | 1 | 0.05 | 0.21 | NS | 1 | 0.59 | 0.71 | NS |
Treatment × Time | 4 | 1.53 | 6.32 | 0.001 | 4 | 0.24 | 0.29 | NS |
Treatment | Doses (g or mL/kg of Seed) | Incidence% at 7 DAI | Incidence% at 15 DAI | Shoot Weight (g) | Root Weight (g) |
---|---|---|---|---|---|
Penflufen + trifloxystrobin | 1 | 26.19 f–h | 31.75 g–j | 1.35 hi | 0.91 g–i |
Penflufen + trifloxystrobin | 1.5 | 27.30 f–g | 33.97 fg | 1.22 ij | 0.83 ij |
Penflufen + trifloxystrobin | 2 | 28.97 e | 37.30 e | 1.17 i–k | 0.72 j |
Thiophanate methyl + pyraclostrobin | 1 | 24.52 g–j | 32.86 g–h | 1.47 f–h | 1.26 a–d |
Thiophanate methyl + pyraclostrobin | 1.5 | 20.95 kl | 25.71 l | 1.81 ab | 1.26 a–d |
Thiophanate methyl + pyraclostrobin | 2 | 16.19 m | 20.95 m | 1.98 a | 1.38 a |
Carboxin + thiram | 1 | 27.78 f | 36.11 ef | 1.61 b–g | 1.01 fg |
Carboxin + thiram | 1.5 | 25.56 f–i | 32.22 g–i | 1.65 b–f | 1.13 d–f |
Carboxin + thiram | 2 | 21.75 k | 27.30 k | 1.69 b–e | 1.19 b–e |
Carbendazim + mancozeb | 1 | 50.00 bc | 55.56 bc | 1.75 b–d | 1.28 a–c |
Carbendazim + mancozeb | 1.5 | 44.29 d | 49.05 d | 1.75 b–d | 1.31 ab |
Carbendazim + mancozeb | 2 | 51.11 b | 57.78 b | 1.76 bc | 0.98 gh |
Control | - | 68.25 a | 73.81 a | 0.96 k | 0.69 j |
Treatment | Incidence (%) | PDC (%) | Yield (Kg/ha) | IY (%) | Net Return (USD/ha) | BC Ratio | Seed Index (g) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | Pooled | 2020 | 2021 | Pooled | 2020 | 2021 | Pooled | |||||
Penflufen + trifloxystrobin | 8.11 bc | 10.44 bc | 9.27 bc | 54.40 | 2331.94 a | 2275.66 ab | 2303.80 ab | 28.98 | 840.40 | 4.62 | 11.89 a | 11.65 a | 11.77 a |
Thiophanate methyl + pyraclostrobin | 7.32 bc | 9.31 c | 8.32 c | 59.08 | 2353.47 a | 2347.37 a | 2350.42 a | 31.59 | 858.98 | 4.65 | 12.26 a | 12.19 a | 12.23 a |
Carboxin + thiram | 10.16 b | 12.41 b | 11.29 b | 44.47 | 2284.72 a | 2158.79 b | 2221.75 b | 24.38 | 801.63 | 4.44 | 11.80 a | 11.27 a | 11.54 a |
Uninoculated control | 4.10 c | 5.41 d | 4.75 d | 76.64 | 2410.69 a | 2392.94 a | 2401.82 a | 34.47 | 888.49 | 4.87 | 12.46 a | 12.29 a | 12.38 a |
Inoculated control | 19.42 a | 21.25 a | 20.33 a | - | 1887.50 b | 1684.91 c | 1786.20 c | - | 601.86 | 3.62 | 11.54 a | 11.31 a | 11.43 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajput, L.S.; Shaikh, M.S.; Borah, M.; Kumar, S.; Nataraj, V.; Shivakumar, M.; Maheshwari, H.S.; Pathak, K.; Gupta, A.; Goswami, D.; et al. Evaluation of Combination Fungicides for Charcoal Rot and Collar Rot Management in Soybean. Agronomy 2025, 15, 528. https://doi.org/10.3390/agronomy15030528
Rajput LS, Shaikh MS, Borah M, Kumar S, Nataraj V, Shivakumar M, Maheshwari HS, Pathak K, Gupta A, Goswami D, et al. Evaluation of Combination Fungicides for Charcoal Rot and Collar Rot Management in Soybean. Agronomy. 2025; 15(3):528. https://doi.org/10.3390/agronomy15030528
Chicago/Turabian StyleRajput, Laxman Singh, Mohammad Samio Shaikh, Munmi Borah, Sanjeev Kumar, Vennampally Nataraj, Maranna Shivakumar, Hemant Singh Maheshwari, Kriti Pathak, Aman Gupta, Divyanshu Goswami, and et al. 2025. "Evaluation of Combination Fungicides for Charcoal Rot and Collar Rot Management in Soybean" Agronomy 15, no. 3: 528. https://doi.org/10.3390/agronomy15030528
APA StyleRajput, L. S., Shaikh, M. S., Borah, M., Kumar, S., Nataraj, V., Shivakumar, M., Maheshwari, H. S., Pathak, K., Gupta, A., Goswami, D., Keerthi, P., Kumar, S., & Jadon, K. S. (2025). Evaluation of Combination Fungicides for Charcoal Rot and Collar Rot Management in Soybean. Agronomy, 15(3), 528. https://doi.org/10.3390/agronomy15030528