Remote Sensing Applications for Pasture Assessment in Kazakhstan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. General Methodology and Indices
2.3. Vegetation Indices and Biophysical Parameters
- (1)
- NDVI (Normalized Difference Vegetation Index)
- (2)
- LAI (Leaf Area Index)
- (3)
- FCover (Fraction of Vegetation Cover)
- (4)
- FAPAR (Fraction of Absorbed Photosynthetically Active Radiation)
- (5)
- CCC (Canopy Chlorophyll Content)
- (6)
- CWC (Canopy Water Content)
3. Data Collection and Information Extraction
3.1. Satellite Data Processing with Preliminary Thematic Map Preparation
3.2. Collection and Analysis of Geobotanical Composition
3.3. Biomass Assessment
- -
- Cereal (usually typical, but often with a predominance of wheat, as well as grass).
- -
- Grain–wormwood (tipchakovo–wormwood, kovylno–wormwood, zhitnyakovo–wormwood).
- -
- Mixed grasses (prevailed in meadow steppes and saline meadows).
- -
- Grass–mixed.
- -
- Wormwood and various herbs.
- -
- Grain–wormwood–mixed.
- -
- Cereals and legumes (usually in meadow steppes and on dry meadows).
4. Results
4.1. Leaf Area Index
4.2. Biophysical Indicators
4.3. Analysis of Biophysical Characteristics of Pastures Using Remote Sensing
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B. Information About the Diet of Ungulates
Plant (Name) | Time of Eating (Months) | Plant (Name) | Time of Eating (Months) |
---|---|---|---|
Family Ephedra—Ephedraceae | Family Chenopodiaceae | ||
Ephedra distachya | III, X–XII, I–II | Leafless hedgehog grass—Anabasis aphylla | VI, X–XI |
Buttercup family—Ranunculaceae | Biyurgun—A. salsa | V, VIII, X–XI, I–II | |
Hornhead—Ceratocephalus Orthoceras | III–V, X | Tatarian quinoa—Atriplex tatarica | V, X–XII |
Small mousetail—Myosurus minimus | VI–VIII | L. Peschanaya—A. dimorgpostegia | VI–VII, X–XII, I |
Family Cruciferae—Cruciferae | Kokpek—Atriplex cana | VII, X–XII | |
Arrowhead cress—Arabidopsis toxophylia | V–VII, IX | Grey teresken—Eurotia ceratoides | V–VIII |
Desert Alyssum—Allyssum desertorum | III–VIII, X | Kochia scoparia | VIII, X–XII, II |
Chorispora tenella | IV–V, X | Kochia iranica | VI–VII, X–XII |
Shepherd’s purse—Caspella bursa pastoris | V, VII–VII, X | Prutnyak—K. prostrata | III–VIII, X–XII, I–II |
Descurainia Sophia | IV–VIII, X | Tasbiyurgun—Nanophyton erinaceum | VII–VIII, X |
Syrian squirrel—Euclidium syriacum | V, VII–VIII | Early saltwort—Salsola praecox | V–VIII, X–XII, I–II |
Lepidium perfoliatum | IV–VIII, X | Larch saltwort—S. laricina | I–III, X–XII, I–II |
Family Caryophyllaceae | Solyanka—Salsola sp. | X–XII, I–II | |
Long-leaved chickweed—Arenaria longifolia | V, VIII, X | Boyalych—S. arbuscula | IV–V, X–XII, I–II |
P. thyme—leaved—A. serpillifolia | VII–VIII | Family of cereals—Gramineae | |
White sandman—Melandrium album | V–VII | Thin-legged thin—Koeleria gracilis | VI–VIII |
Buckwheat family—Polygonaceae | Couch grass—Agropyron fragile | III–VIII, XII, I–II | |
Marshall’s sorrel—Rumex marschallianus | IV–V, X | Couch grass—A. repens | III, V–VI |
Salt-marsh sorrel—R. pseudonatronatus | VI, VIII, X | Crested wheatgrass—A. pectiniforme | V–VII, XII, I–II |
Tatar rhubarb—Rheum tataricum | IV–V | Crested wheatgrass—A. cristatum | V–VI, X–XII, II |
Knotweed—Polygonum sp. | VI, VIII, X | Desert wheatgrass—A. desertorum | V–VI |
Rosaceae family—Rosacea | Giant ryegrass—Elymus giganteus | V–VI, II | |
Cinquefoil—Potentilla supina | VI–VIII | Eastern Mortuk—Eremopyrum orientale | III–VIII, X–XI, I–II |
Hulthemia persica | VI–VII | Wheatgrass—E. triticeum | V–VIII, X |
Spirea hypercifolia | VI–VII | Bromus inermis | VI–VII, XII |
Astragalus buchtarmensis | V–VIII, X | Meadow bluegrass—Poa pratensis | III–VIII, XI–XII, I–II |
Milk thistle—A. arbuscula | V–VII | Millet—Panicum sp. | V–VII |
Astragalus—Astragalus sp. | V–VIII | Fescue—Festuca sulcata | VI–VII, X, XII |
Licorice naked—Glycyrrhisa glabra | VI–VII, X–XII | Common wheat—Triticum aesticum | IV–VI |
Rough licorice—G. aspera | VI–VIII, X–XII | Lessing’s feather grass—Stipa lessingiana | VII |
Foxtail brunet—Goebelia alopecuroides | VIII, X–XII | Barley—Hordeum sp. | IV–VI |
Sickle-leaved alfalfa—Medicago falcata | IV–VIII, X–XII | Umbelliferae family | |
Family Asteraceae—Compositae | Ferula caspica | III–IV | |
Austrian wormwood—Artemisia austrica | VI, X–XII, I–II | Family Rubiaceae | |
Earth wormwood—A. terrae—albae | III–VIII, X–II, I–II | Spring bedstraw—Gallium verum | V–VI, X–XII |
Saltpeter wormwood—A. nitrosa | V, X–XII, I–II | Tatarian madder—Rubia tatarica | V–VII |
A. sublessingiana | V, VIII, X–XI, I–II | Plumbaginacea family | |
Artemisia pauciflora | III, V, VI, VIII, XII, I–II | Shrub kermek—Limonium frutirosa | IV–VIII, X |
Yarrow—Achillea micrantha | VII–VII, X–XI | Kermek Gmelin—L. gmelinii | VI–VIII, X |
Tanacetum santolina | VI–VIII, X | Borage family—Boraginacea | |
Dandelion—Taraxacum sp. | V–VII, X–XI | Blackthorn Velcro—Lappula echinata | VI, VIII, X |
Yellow-scaled thistle—Cirsium ochrolepidium | VI–VIII, X–XII, I–II | Convolvulaceae family | |
Cancrinia discoidea | VI–VII | Morning glory—Convolvulus arvenis | V–VI, X |
Common flea beetle—Pulicaria prostrata | VI–VII, X | Scrophulariaceae family | |
Field sow thistle—Sonchus arvensis | V–VIII, X–XII, II | Dodartia orientalis | V–VI, VIII, X–XI |
Elecampane British—Inula britanica | V–VIII | Liliaceae family | |
Allium senescens | III–V | ||
Tulipa shrenkii | III–V |
Pasture and Dates of Experiments | Animal | Feces, g/Individual per Day (Dry Mass) | Diet Digestibility, % | Feed Consumption per Day | Daily Body Weight Gain, g/Individual | |||
---|---|---|---|---|---|---|---|---|
Floor | Body Weight, kg | g/Individual (Dry Weight) | g/kg (Dry Weight) | Metabolic Energy, kJ/kg | ||||
Desert steppe without grazing, early summer, May 26–29 | Male | 32 | 431 ± 7.4 | 59.4 | 1060 | 78.8 | 704 | 166 |
Midsummer, June 19–26 | Female | 22 | 285 ± 9.4 | 71.2 | 990 | 97.5 | 1039 | 530 |
End of summer, 28–31 August | Female | 26 | 386 ± 10.6 | 68 | 1206 | 104.7 | 1068 | 250 |
Steppe with light grazing, early summer, June 2–6 | Male | 35 | 453 ± 18.0 | 67.6 | 1398 | 97.2 | 993 | 562 |
Second half of summer, July 27–30 | Male | 36 | 391 ± 31.8 | 50.9 | 796 | 54.2 | 409 | -262 |
Desert steppe, in a state of pasture failure, second half of summer, August 3–5 | Male | 41 | 865 ± 56.6 | 54.5 | 1901 | 117.3 | 949 | 150 |
Name of the Plant | Month of Eating | Frequency of Eating | Name of the Plant | Month of Eating | Frequency of Eating |
---|---|---|---|---|---|
Shrubs | Herbs | ||||
Spiraea hypercifolia | VI–IX, I | Very often | Potentilla acaulis | X | Rarely |
Spiraea crenata—S. crenata | VI–IX | Often | Silver cinquefoil—P. argentea | VII, VIII | Often |
Rose hip—Rosa spinosissima | VI–IX | Very often | Cinquefoil—P. strigosa | VII, VIII | Often |
Rose hips—R. acicularis | VI–IX | Often | Danish milkvetch—Astragalus danicus | VII, VIII | Often |
Wild rose—R. glabrifolia | VI–VIII | Rarely | Sickle-leaved alfalfa—Medicago falcata | VI–IX | Very often |
Black chokeberry—Cotoneaster melanocarpa | VI–IX, I | Very often | Don sainfoin—Onobrychis tanaitica | VII, VIII | Very often |
Cotoneaster oligoflora—C. oliganthus | VII, VIII | Rarely | Oxytropis floribunda | VI, VII | Very often |
Rock currant—Ribes saxatilis | VI–IX | Very often | Hairy razorbill—Ox. pilosa | VI–VIII | Rarely |
Blackcurrant—R. nugrum | VI–IX | Rarely | Gmelin’s trefoil—Hedysarum gmelinii | VI–VIII | Very often |
Red currant—R. hispidulum | VI–IX | Rarely | Lupine clover—Trifolium lupinaster | VI–VIII | Very often |
Honeysuckle, small-leaved—Lonicera microphylla | VI–IX | Very often | Pea, thin-leaved—Vicia tenuifolia | VI–VIII, X | Often |
Tatarian honeysuckle—L. tatarica | VI–IX | Often | Hybrid milkweed—Polygala hybrida | VI–VII | Rarely |
Pallas’s honeysuckle—L. pallasii | VI–IX | Rarely | Euphorbia humilis | VII | Rarely |
Small caragana—Caragana pumila | VI–VIII | Rarely | St. John’s wort—Hypericum sp. | VII | Rarely |
Ash willow—Salix cinerea | VIII–IX | Rarely | Fireweed—Hamaenerium angustifolium | VI–VIII | Often |
Willow, five-stamen—S. pentandra | VII–IX | Rarely | Ferula songorica | VIII | Rarely |
Cossack juniper—Juniperus sabina | XI, I | Rarely | Sedum hybrydium | VII—X, I | Very often |
Kuril tea, small-leaved—Dasyphora parvifolia | XI | Rarely | Libanotis buchtarmensis | VI–VIII, I | Often |
Teresken—Eurotia ceratoides | VIII, XI | Rarely | Morrison’s carrot—Peucedanum morissonii | VI–VIII | Rarely |
Herbs | Ledebour’s gill—Sesen ledebourii | VI–VIII | Often | ||
Meadow foxtail—Alopecurus pratensis | VI–VIII | Often | Fetisov’s Gentian—Gentlana fetissowii | VII–VIII | Rarely |
Bromus squarrosus | VI–VIII | Rarely | Lungwort—G. pneumonanthe | VII–VIII | Very often |
Ground reed grass—Calamagrostis epigeios | X, I | Rarely | Onosma simplicissimum | VI, VII | Often |
Hedgehog—Dactylis glomerata | VI, VII | Very often | Dracocephalum Ruischiana | VI–VII | Rarely |
Festuca sulcata | I | Very often | Tuberous comfrey—Phlemis tuberosa | VII | Rarely |
Schell’s oat—Avenastrum schellianum | VI, I | Very often | Pedicularis achillefolium | VI | Often |
Slender Keleria—Koeleria gracilis | VI, VII, I | Often | P. physocallis | VI | Very often |
Timothy grass—Phelum phleoides | VI, VII | Often | Veronica incana | VII, VIII | Rarely |
Green bristle grass—Setaria viridis | VI, VII | Rarely | Speedwell—V. longifolia | VII | Rarely |
Lichen—Parmeia sp. | I | Rarely | Patrinia intermedia | VII, VIII | Often |
Red feather grass—Stipa rubins | VI, X, I | Often | Six-petaled meadowsweet—Filipendula hexapitala | VII | Rarely |
Feather grass—Stipa sp. | X, I | Often | Lily-leaved bellflower—Adenophora liliepholia | VII | Rarely |
Carex pediformes | VI, X | Often | Siberian bellflower—Campanula sibirica | VI, VII | Rarely |
Onion—Allium globosum | VI, VII | Very often | Royal yarrow—Achillea nobilis | VII, VIII | Rarely |
Drooping onion—A. nutans | VI, VII | Rarely | Wormwood—escargot—Artemisa dracunculus | VIII, IX | Often |
Red onion—A. rubrum | VI, VII | Often | Cold wormwood—A. frigida | VIII– IX | Often |
Alpine buckwheat—Polygonum alpinium | VI, VII | Often | Marshall’s Wormwood—A. marchalliana | VI–VIII | Very often |
Spreading cypress—Cochia prostrata | VI—IX | Often | Artemisia santolinifolia | VI–VIII | Often |
Gypsophilia altissima | VI–VIII | Often | Alpine aster—Aster alpinus | VI–VIII | Very often |
Wood anemone—Anemone silvestris | VI | Rarely | Siberian cornflower—Centaurea sibirica | VI, VIII | Rarely |
Pulsatilla patens | VI | Often | Hawkweed—Hieracium echiodes | VII, VIII | Often |
Pasque flower—P. flavescens | VI | Rarely | Hawkweed—H. umbellatum | VII, VIII | Often |
Poppy—Papaver tenellum | VI, VII | Rarely | Austrian goatweed—Scorzonera austriaca | VII– IX | Rarely |
Orostachys spinosa | VII—IX | Very often | Jacob’s groundsel—Senecio jakobaea | VII–VIII | Rarely |
Echinops ritro | VII, VIII | Rarely |
Appendix C. Assessment Map of Absorbed Photosynthetically Active Radiation (FAPAR) of Pasture Lands in Six Regions According to Research Data in 2024
Appendix D. Assessment Map of the Green Vegetation Cover of the Pasture Lands of Six Regions According to the Research Data of 2024
References
- Behmanesh, B.; Barani, H.; Abedi Sarvestani, A.; Shahraki, M.R.; Sharafatmandrad, M.R. Rangeland degradation assessment: A new strategy based on indigenous ecological knowledge of pastoralists. Solid Earth Discuss. 2015, 7, 2999–3019. [Google Scholar] [CrossRef]
- Mganga, K.Z.; Nyariki, D.M.; Musimba, N.K.; Amwata, D.A. Determinants and rates of land degradation: Application of stationary time-series model to data from a semi-arid environment in Kenya. J. Arid Land. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Nasiev, B.; Shibaikin, V.; Bekkaliev, A.; Zhanatalapov, N.Z.; Bekkalieva, A. Changes in the quality of vegetation cover and soil of semi-desert pastures in Western Kazakhstan depending on livestock grazing methods. J. Ecol. Eng. 2022, 23, 50–60. [Google Scholar] [CrossRef]
- Lu, X.; Kelsey, K.C.; Yan, Y.; Sun, J.; Wang, X.; Cheng, G.; Neff, J.C. Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai-Tibetan Plateau: A synthesis. Ecosphere 2017, 8, e01656. [Google Scholar] [CrossRef]
- Mgalula, M.E.; Wasonga, O.V.; Hülsebusch, C.; Richter, U.; Hensel, O. Greenhouse gas emissions and carbon sink potential in Eastern Africa rangeland ecosystems: A review. Pastoralism 2021, 11, 19. [Google Scholar] [CrossRef]
- Shamsutdinov, Z. Ecological restoration of biodiversity and forage productivity of degraded pasture ecosystems in the Central Asian Desert. BIO Web Conf. 2022, 43, 01025. [Google Scholar] [CrossRef]
- Ragimov, A.; Mazirov, M.; Nikolaev, V.; Shitikova, A.; Malakhova, S. Impact of Different Type of Cattle Grazing on the Processes of Agrochemical Degradation and Digression of Soil Cover. E3S Web. Conf. 2020, 220, 01002. [Google Scholar] [CrossRef]
- Alvarez-Mendoza, C.I.; Guzman, D.; Casas, J.; Bastidas, M.; Polanco, J.; Valencia-Ortiz, M.; Montenegro, F.; Arango, J.; Ishitani, M.; Selvaraj, M.G. Predictive Modeling of Above-Ground Biomass in Brachiaria Pastures from Satellite and UAV Imagery Using Machine Learning Approaches. Remote Sens. 2022, 14, 5870. [Google Scholar] [CrossRef]
- Chen, Y.; Guerschman, J.; Shendryk, Y.; Henry, D.; Harrison, M.T. Estimating Pasture Biomass Using Sentinel-2 Imagery and Machine Learning. Remote Sens. 2021, 13, 603. [Google Scholar] [CrossRef]
- De Rosa, D.; Basso, B.; Fasiolo, M.; Friedl, J.; Fulkerson, B.; Grace, P.R.; Rowlings, D.W. Predicting pasture biomass using a statistical model and machine learning algorithm implemented with remotely sensed imagery. Comput. Electron. Agric. 2021, 180, 105880. [Google Scholar] [CrossRef]
- Franco, V.R.; Hott, M.C.; Andrade, R.G.; Goliatt, L. Hybrid machine learning methods combined with computer vision approaches to estimate biophysical parameters of pastures. Evol. Intell. 2023, 16, 1271–1284. [Google Scholar] [CrossRef]
- Wei, D.; Liu, K.; Xiao, C.; Sun, W.; Liu, W.; Liu, L.; Huang, X.; Feng, C. A Systematic Classification Method for Grassland Community Division Using China’s ZY1-02D Hyperspectral Observations. Remote Sens. 2022, 14, 3751. [Google Scholar] [CrossRef]
- Parente, L.; Ferreira, L.; Faria, A.; Nogueira, S.; Araújo, F.; Teixeira, L.; Hagen, S. Monitoring the Brazilian pasturelands: A new mapping approach based on the Landsat 8 spectral and temporal domains. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 135–143. [Google Scholar] [CrossRef]
- Xi, W.; Du, S.; Wang, Y.; Zhang, X. A spatiotemporal cube model for analyzing satellite image time series: Application to land-cover mapping and change detection. Remote Sens. Environ. 2019, 231, 111212. [Google Scholar] [CrossRef]
- Evstatiev, B.; Mladenova, T.; Valov, N.; Zhelyazkova, T.; Gerdzhikova, M.; Todorova, M.; Grozeva, N.; Sevov, A.; Stanchev, G. Fast Pasture Classification Method using Ground-based Camera and the Modified Green Red Vegetation Index (MGRVI). Int. J. Adv. Comput. Sci. Appl. 2023, 14, 45–51. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef]
- Hill, M.J. Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated Sentinel-2 data for a North American transect. Remote Sens. Environ. 2013, 137, 94–111. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Verrelst, J.; Munoz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, J. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sens. Environ. 2012, 118, 127–139. [Google Scholar] [CrossRef]
- Djamai, N.; Zhong, D.; Fernandes, R.; Zhou, F. Evaluation of Vegetation Biophysical Variables Time Series Derived from Synthetic Sentinel-2 Images. Remote Sens. 2019, 11, 1547. [Google Scholar] [CrossRef]
- Peng, Y. Assessment of Canopy Chlorophyll Content Retrieval in Maize and Soybean: Implications of Hysteresis on the Development of Generic Algorithms. Remote Sens. 2017, 9, 226. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Watson, D.J. Comparative Physiological Studies on the Growth of Field Crops. I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties and between Years. Ann. Bot. 1947, 11, 41–76. [Google Scholar] [CrossRef]
- Barrett, P.; Zhang, Y.; Moffat, J.; Kobbacy, K. A Holistic, Multi-Level Analysis Identifying the Impact of Classroom Design on Pupils’ Learning. Build. Environ. 2013, 59, 678–689. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS (Earth Resources Technology Satellite). In Proceedings of the 3rd Earth Resources Technology Satellite Symposium, Greenbelt, Washington, DC, USA, 10–14 December 1973; pp. 309–317. Available online: https://ntrs.nasa.gov/citations/19740022614 (accessed on 5 January 2025).
- Graw, V. Drought Dynamics and Vegetation Productivity in Different Land Management Systems of Eastern Cape, South Africa—A Remote Sensing Perspective. Sustainability 2017, 9, 1728. [Google Scholar] [CrossRef]
- Myneni, R.B.; Ramakrishna, R.; Nemani, R.; Running, S.W. Estimation of Global Leaf Area Index and Absorbed PAR Using Radiative Transfer Models. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1380–1393. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.; Miller, J.; Mohammed, G.; Noland, T.; Sampson, P. Estimation of Chlorophyll Fluorescence under Natural Illumination from Hyperspectral Data. Remote Sens. Environ. 2001, 3, 321–327. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Phiri, D. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2019, 12, 2291. [Google Scholar] [CrossRef]
- Kurtz, D.B. Ground and Satellite-Based Assessment of Rangeland Management in Sub-Tropical Argentina. Appl. Geogr. 2010, 30, 210–220. [Google Scholar] [CrossRef]
- Jiang, Y. Large-Scale and High-Resolution Crop Mapping in China Using Sentinel-2 Satellite Imagery. Agriculture 2020, 10, 433. [Google Scholar] [CrossRef]
- Lamqadem, A.A. Quantitative Assessment of Desertification in an Arid Oasis Using Remote Sensing Data and Spectral Index Techniques. Remote Sens. 2018, 10, 1862. [Google Scholar] [CrossRef]
- Shi, T. Derivation of Tasseled Cap Transformation Coefficients for Sentinel-2 MSI At-Sensor Reflectance Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 99, 1–11. [Google Scholar] [CrossRef]
- European Space Agency (ESA). Sentinel-2 User Handbook; Revision 2, ESA Standard Document; European Space Agency (ESA): Paris, France, 2015.
- Hagolle, O. SPOT-4: Simulation of Sentinel-2 Time Series on 45 Large Sites. Remote Sens. 2015, 7, 12242–12264. [Google Scholar] [CrossRef]
- Segl, K. S2eteS: An End-to-End Modeling Tool for the Simulation of Sentinel-2 Image Products. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5560–5571. [Google Scholar] [CrossRef]
- Yapiyev, V.; Sagintayev, Z.; Verhoef, A.; Kassymbekova, A.; Baigaliyeva, M.; Zhumabayev, D.; Malgazhdar, D.; Abudanash, D.; Ongdas, N.; Jumassultanova, S. The changing water cycle: Burabay National Nature Park, Northern Kazakhstan. Wiley Interdiscip. Rev. Water 2017, 4, e01227. [Google Scholar] [CrossRef]
- Baig, M. Derivation of a Tasselled Cap Transformation Based on Landsat 8 At-Satellite Reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Qiu, B. Developing Indices of Temporal Dispersion and Continuity to Map Natural Vegetation. Ecol. Indic. 2016, 64, 335–342. [Google Scholar] [CrossRef]
- Kalisa, W. Assessment of Climate Impact on Vegetation Dynamics over East Africa from 1982 to 2015. Sci. Rep. 2019, 9, 1–20. [Google Scholar] [CrossRef]
- Measho, S. Assessment of Vegetation Dynamics and Ecosystem Resilience in the Context of Climate Change and Drought in the Horn of Africa. Remote Sens. 2021, 13, 1668. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote Estimation of Crop and Grass Chlorophyll and Nitrogen Content Using Red-Edge Bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Shakenova, Z.K.; Ozeranskaya, N.L. Anthropogenic impact on agricultural landscapes of the Akmola region of the Republic of Kazakhstan. Probl. AgriMarket 2024, 213–226. (In Russian) [Google Scholar] [CrossRef]
- Konobritskaia, E.M. Karaganda Region: Economic and Geographical Characteristics; Goryaev, M.I., Ed.; Publishing House of the Academy of Sciences of the Kazakh SSR: Alma Ata, Kazakhstan, 1954; pp. 41–256. [Google Scholar]
- Vovk, V.V.; Lushnikov, A.D. Productivity of crop rotations in the dry-steppe zone. In Path of Intensification of Agricultural Cultivation in Kustanai Region; Alma-Ata, Russia, 1988; pp. 34–51. (In Russian) [Google Scholar]
- Yapiyev, V.; Samarkhanov, K.; Tulegenova, N.; Jumassultanova, S.; Verhoef, A.; Saidaliyeva, Z.; Umirov, N.; Sagintayev, Z.; Namazbayeva, A. Estimation of water storage changes in small endorheic lakes in Northern Kazakhstan. J. Arid. Environ. 2018, 160, 42–55. [Google Scholar] [CrossRef]
- Babkenov, A.T.; Babkenova, S.A.; Abdullayev, K.K.; Kairzhanov, Y.K. Breeding Spring Soft Wheat for Productivity, Grain Quality, and Resistance to Adverse External Factors in Nothern Kazakhstan. J. Ecol. Eng. 2020, 21, 8–12. [Google Scholar] [CrossRef]
- Nigmatova, S.; Pirogova, T.; Madiyarova, I.; Bekbotaeva, A.; Seydali, A.; Kozhakhmet, B.; Kalibek, B. Prospects of Creating a Geopark in the Ulytau Region of Kazakhstan: Geoheritage and Geotourism Potential. Geosciences 2024, 14, 355. [Google Scholar] [CrossRef]
- Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D. Remote Estimation of Nitrogen and Chlorophyll Contents in Maize at Leaf and Canopy Levels. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 47–54. [Google Scholar] [CrossRef]
- Moldakhmetov, M.; Makhmudova, L.; Zhanabayeva, Z.; Kumeiko, A.; Hamidi, D.; Sagin, J. Spatial and Temporal Variabilities of Maximum Snow Depth in Northern and Central Kazakhstan. Arab. J. Geosci. 2019, 12, 336. [Google Scholar] [CrossRef]
- Mashtayeva, S.; Liyun, D.; Tao, C.; Sagintayev, Z.; Sadvakasova, S.; Kussainova, M.; Alimbayeva, D.; Alynbekova, M. Spatial and Temporal Variability of Snow Depth Derived from Passive Microwave Remote Sensing Data in Kazakhstan. J. Meteorol. Res. JMR 2016, 30, 1033–1043. [Google Scholar] [CrossRef]
- Arystanov, A.; Karabkina, N.; Sagin, J.; Nurguzhin, M.; King, R.; Bekseitova, R. Use of Indices Applied to Remote Sensing for Establishing Winter–Spring Cropping Areas in the Republic of Kazakhstan. Sustainability 2024, 16, 7548. [Google Scholar] [CrossRef]
Name of Region | Area of Pasture, ha |
---|---|
Akmola | 5,783,503 |
Karagandinskaya | 19,709,128 |
Kostanay | 11,762,318 |
Pavlodar | 8,340,064 |
North Kazakhstan | 2,871,248 |
Ulytau | 18,260,865 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabzhanova, G.; Arystanova, R.; Bissembayev, A.; Arystanov, A.; Sagin, J.; Nasiyev, B.; Kurmasheva, A. Remote Sensing Applications for Pasture Assessment in Kazakhstan. Agronomy 2025, 15, 526. https://doi.org/10.3390/agronomy15030526
Kabzhanova G, Arystanova R, Bissembayev A, Arystanov A, Sagin J, Nasiyev B, Kurmasheva A. Remote Sensing Applications for Pasture Assessment in Kazakhstan. Agronomy. 2025; 15(3):526. https://doi.org/10.3390/agronomy15030526
Chicago/Turabian StyleKabzhanova, Gulnara, Ranida Arystanova, Anuarbek Bissembayev, Asset Arystanov, Janay Sagin, Beybit Nasiyev, and Aisulu Kurmasheva. 2025. "Remote Sensing Applications for Pasture Assessment in Kazakhstan" Agronomy 15, no. 3: 526. https://doi.org/10.3390/agronomy15030526
APA StyleKabzhanova, G., Arystanova, R., Bissembayev, A., Arystanov, A., Sagin, J., Nasiyev, B., & Kurmasheva, A. (2025). Remote Sensing Applications for Pasture Assessment in Kazakhstan. Agronomy, 15(3), 526. https://doi.org/10.3390/agronomy15030526