Response to Selection for Drought Tolerance in Algerian Maize Populations for Spanish Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection Program
2.2. Field Trials
2.3. Data Recorded
2.4. Statistical Analyses
3. Results
(R2 = 0.09 *, and 0.69 ** for Conductance and WUE, respectively, being *, ** significant at p = 0.05 and 0.01, respectively)
Yield = 20.59 − 0.196 × Fo + 0.017 × Conductance − 1.010 WUE
(R2 = 0.06, 0.21 **, and 0.56 ** for Fo, Conductance and WUE, respectively)
Yield = 13.4 − 0.18 Fo (R2 = 0.65 *)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ajani, O.T.; Oluwaranti, A.; Awoniyi, A.I. Assessment of water-use efficiency of drought tolerant maize (Zea mays L.) varieties in a rainforest location. J. Agric. Ecol. Res. Int. 2016, 8, 1–10. [Google Scholar] [CrossRef]
- Huang, R.; Birch, C.J.; George, D.L. Water use efficiency in maize production—The Challenge and improvement strategies. In Water to Gold, Proceedings of the 6th Triennial Conference, Griffith, NSW, Australia, 21–23 February 2006; Maize Association of Australia: Darlington Point, NSW, Australia, 2006. [Google Scholar]
- Anami, S.; Block, M.D.; Machuka, J.; Lijsebettens, M.V. Molecular improvement of tropical maize for drought stress tolerance in Sub-Saharan Africa. Crit. Rev. Plant Sci. 2009, 28, 16–35. [Google Scholar] [CrossRef]
- Chen, J.P.; Xu, W.W.; Velten, J.; Xin, Z.G.; Stout, J. Characterization of maize inbred lines for drought and heat tolerance. J. Soil Water Conserv. 2012, 67, 354–364. [Google Scholar] [CrossRef]
- Khan, N.H.; Ahsan, M.; Naveed, M.; Hafeez, A.; Sadaqat, H.A.; Javed, I. Genetics of drought tolerance at seedling and maturity stages in Zea mays L. Span. J. Agric. Res. 2016, 14, 705–716. [Google Scholar] [CrossRef]
- Bänziger, M.; Araus, J.L. Recent advances in breeding maize for drought and salinity stress tolerance. In Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops; Jenks, M.A., Hasegawa, P.M., Jain, S.M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 587–601. [Google Scholar]
- Welcker, C.; Boussuge, B.; Bencivenni, C.; Ribaut, J.M.; Tardieu, F. Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit. J. Exp. Bot. 2007, 58, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Vinodhana, N.K.; Ganesan, K.N. Analysis of physico-genetic traits for drought tolerance in maize (Zea mays L.). Int. J. Curr. Microbiol. App. Sci. 2017, 6, 4568–4575. [Google Scholar] [CrossRef]
- Bänziger, M.; Edmeades, G.O.; Beck, D.; Bellon, M. Breeding for Drought and Nitrogen Stress Tolerance in Maize: From Theory to Practice. D.F.; CIMMYT: Mexico City, Mexico, 2000. [Google Scholar]
- Ziyomo, C.; Bernardo, R. Drought tolerance in maize: Indirect selection through secondary traits versus genome wide selection. Crop Sci. 2013, 53, 1269–1275. [Google Scholar] [CrossRef]
- Betrán, F.J.; Beck, D.; Bänziger, M.; Edmeades, G.O. Genetic analysis of inbred and hybrid grain yield under stress and non-stress environments in tropical maize. Crop Sci. 2003, 43, 807–817. [Google Scholar] [CrossRef]
- Campos, H.; Cooper, M.; Edmeades, G.O.; Löffler, C.; Schussler, J.R.; Ibañez, M. Changes in drought tolerance in maize associated with fifty years of breeding for yield in the U.S. Corn Belt. Maydica 2006, 51, 369–381. [Google Scholar]
- Witt, S.; Galicia, L.; Lisec, J.; Cairns, J.; Tiessen, A.; Araus, J.L.; Palacios-Rojasand, N.; Fernie, A.R.R. Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally well-wateredled drought stress. Mol. Plant 2012, 5, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Bolaños, J.; Edmeades, G.O. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res. 1996, 48, 65–80. [Google Scholar] [CrossRef]
- Monneveux, P.; Sanchez, C.; Beck, D.; Edmeades, G.O. Drought tolerance improvement in tropical maize source populations: Evidence of progress. Crop Sci. 2006, 46, 180–191. [Google Scholar] [CrossRef]
- Parajuli, S.; Ojha, B.R.; Ferrara, G.O. Quantification of secondary traits for drought and low nitrogen stress tolerance in inbreds and hybrids of maize (Zea mays L.). J. Plant Genet. Breed. 2018, 2, 106–118. [Google Scholar]
- Arboleda-Rivera, F.; Compton, W.A. Differential response of maize (Zea mays L.) to mass selection in diverse selection environments. Theor. Appl. Genet. 1974, 44, 77–81. [Google Scholar] [CrossRef]
- Maazou, A.R.S.; Tu, J.; Qiu, J.; Liu, Z. Breeding for Drought Tolerance in Maize (Zea mays L.). Am. J. Plant Sci. 2016, 7, 1858–1870. [Google Scholar] [CrossRef]
- Flint-Garcia, S.A.; Thuillet, A.C.; Yu, J.; Pressoir, G.; Romero, S.M.; Mitchell, S.E.; Debley, J.; Kresovich, S.; Major, M.M.; Buckler, E.S. Maize association population: A high-resolution platform for quantitative trait locus dissection. Plant J. 2005, 44, 1054–1064. [Google Scholar] [CrossRef] [PubMed]
- Hallauer, A.R.; Carena, M.J.; Miranda, J.B. Quantitative Genetics in Maize Breeding. Handb. Plant Breed 6; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Djemel, A.; Revilla, P.; Hanifi-Mekliche, L.; Malvar, R.A.; Álvarez, A.; Khelifi, L. Maize (Zea mays L.) from the Saharan oasis: Adaptation to temperate areas and agronomic performance. Genet. Resour. Crop Evol. 2012, 59, 1493–1504. [Google Scholar] [CrossRef]
- Laumont, P.; Laby, H. Le Maïs et sa Culture en Algérie. Doc et Rens Agricoles; Bulletin n° 155: Algiers, Algeria, 1950. [Google Scholar]
- Aci, M.M.; Lupini, A.; Mauceri, A.; Morsli, A.; Khelifi, L.; Sunseri, F. Genetic variation and structure of maize populations from Saoura and Gourara oasis in Algerian Sahara. BMC Genet. 2018, 19, 1–10. [Google Scholar] [CrossRef]
- Belalia, N.; Lupini, A.; Djemel, A.; Morsli, A.; Mauceri, A.; Lotti, C.; Khelifi-Slaoui, M.; Khelifi, L.; Sunseri, F. Analysis of genetic diversity and population structure in Saharan maize (Zea mays L.) populations using phenotypic traits and SSR markers. Genet Resour. Crop Evol. 2019, 66, 243–257. [Google Scholar] [CrossRef]
- Djemel, A.; Cherchali, F.Z.; Benchikh-Le-Hocine, M.; Malvar, R.A.; Revilla, P. Assessment of drought tolerance among Algerian maize populations from oases of the Saharan. Euphytica 2018, 214, 149. [Google Scholar] [CrossRef]
- Benchikh-Lehocine, M.; Revilla, P.; Malvar, R.A.; Djemel, A. Response to selection for reduced anthesis-silking interval in four Algerian maize populations. Agronomy 2021, 11, 382. [Google Scholar] [CrossRef]
- SAS Institute. The SAS System for Windows, Release 9.4; SAS Institute: Cary, NC, USA, 2015. [Google Scholar]
- Bolaños, J.; Edmeades, G.O. Eight cycles of selection for drought tolerance in lowland tropical maize. II. Responses in reproductive behavior. Field Crops Res. 1993, 31, 253–268. [Google Scholar] [CrossRef]
- Edmeades, G.O.; Bolaños, J. Value of secondary traits in selecting for drought tolerance in tropical maize. Developing Drought and Low-N Tolerant Maize. In Proceedings of a Symposium, 25–29 March 1996; CIMMYT: El Batán, Mexico, 1997; p. 222. [Google Scholar]
- Herrero, M.P.; Johnson, R.R. Drought stress and its effects on maize reproductive systems. Crop Sci. 1981, 21, 105–110. [Google Scholar] [CrossRef]
- Ribaut, J.M.; Betran, J.; Monneveux, P.; Setter, T. Drought tolerance in maize. In Handbook of Maize: Its Biology; Bennetzen, J.L., Hake, S.C., Eds.; Springer: New York, NY, USA, 2009; pp. 311–344. [Google Scholar]
- Qiao, M.; Hong, C.; Jiao, Y.; Hou, S.; Gao, H. Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants 2024, 13, 1808. [Google Scholar] [CrossRef] [PubMed]
MAW | MAD | MPW | MPD | FAW | FAD | FPW | FPD | AAW | AAD | APW | APD | PAW | PAD | PPW | PPD | YAW | YAD | YPW | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAD | 0.85 ** | ||||||||||||||||||
MPW | 0.86 ** | 0.90 ** | |||||||||||||||||
MPD | 0.73 * | 0.98 ** | 0.83 * | ||||||||||||||||
FAW | 0.99 ** | 0.83 * | 0.83 * | 0.71 * | |||||||||||||||
FAD | 0.92 ** | 0.97 ** | 0.95 ** | 0.91 ** | 0.90 ** | ||||||||||||||
FPW | 0.86 ** | 0.90 ** | 1.00 ** | 0.83 * | 0.83 * | 0.95 ** | |||||||||||||
FPD | 0.85 ** | 1.00 ** | 0.90 ** | 0.98 ** | 0.83 * | 0.97 ** | 0.90 ** | ||||||||||||
AAW | −0.87 ** | −0.78 * | −0.78 * | −0.66 | −0.85 ** | −0.79 * | −0.78 * | −0.78 * | |||||||||||
AAD | 0.86 ** | 0.60 | 0.67 | 0.48 | 0.83 * | 0.74 * | 0.67 | 0.60 | −0.68 | ||||||||||
APW | −0.97 ** | −0.77 * | −0.81 * | −0.63 | −0.96 ** | −0.84 ** | −0.81 * | −0.77 * | 0.94 ** | −0.83 * | |||||||||
APD | 0.89 ** | 0.69 | 0.76 * | 0.57 | 0.86 ** | 0.81 | 0.76 * | 0.69 | −0.79 * | 0.98 ** | −0.87 ** | ||||||||
PAW | −0.65 | −0.31 | −0.55 | −0.14 | −0.62 | −0.51 | −0.55 | −0.31 | 0.56 | −0.83 * | 0.70 | −0.81 * | |||||||
PAD | −0.29 | 0.14 | −.14 | 0.26 | −0.31 | −0.01 | −0.14 | 0.14 | 0.18 | −0.48 | 0.35 | −0.38 | 0.60 | ||||||
PPW | −0.73 * | −0.55 | −0.76 * | −0.40 | −0.67 | −0.67 | −0.76 * | −0.54 | 0.79 * | −0.76 * | 0.77 * | −0.85 ** | 0.81 * | 0.38 | |||||
PPD | −0.28 | 0.07 | −0.21 | 0.17 | −0.28 | −0.08 | −0.21 | 0.07 | 0.18 | −0.48 | 0.34 | −0.38 | 0.67 | 0.93 ** | 0.38 | ||||
YAW | 0.00 | 0.10 | −0.24 | 0.19 | 0.05 | −0.05 | −0.23 | 0.10 | −0.05 | −0.07 | 0.02 | −010 | 0.52 | 0.14 | 0.40 | 0.26 | |||
YAD | −0.52 | −0.72 * | −0.65 | −0.75 * | −0.54 | −0.70 | −0.65 | −0.72 * | 0.21 | −0.25 | 0.35 | −0.25 | 0.04 | −0.17 | 0.04 | −0.06 | 0.02 | ||
YPW | 0.07 | 0.14 | −0.17 | 0.24 | 0.12 | 0.01 | −0.17 | 0.14 | −0.07 | 0.05 | −0.4 | 0.00 | 0.40 | 0.02 | 0.36 | 0.10 | 0.98 ** | −0.04 | |
YPD | 0.46 | −0.71 * | −0.64 | −0.76 * | −0.48 | −0.67 | −0.64 | −0.71 * | 0.18 | −0.17 | 0.29 | −0.19 | −0.05 | −0.26 | 0.02 | −0.17 | 0.05 | 0.99 ** | 0.00 |
Evaluated Under Well-Watered Conditions | ||||||
---|---|---|---|---|---|---|
Genotype b | Vigor (1–9) | Female Flower (Days) | Male Flower (Days) | Plant Height (cm) | Ears per Plant | Yield (Mg ha−1) |
BTMC0 | 4.5 | 76.5 | 77.5 | 194.7 | 1.70 | 2.6 |
BTMC1 | 4.0 | 78.5 | 79.5 | 176.9 | 1.58 | 2.3 |
BTMC2 | 1.0 | 88.5 | 90.0 | 145.0 | 1.00 | 0.2 |
BTMC3 | 3.5 | 79.5 | 80.5 | 175.3 | 1.61 | 1.4 |
LOMC0 | 5.5 | 71.0 | 72.5 | 190.2 | 2.44 | 2.7 |
LOMC1 | 6.0 | 70.0 | 71.0 | 174.2 | 1.43 | 2.9 |
LOMC2 | 7.0 | 67.0 | 69.0 | 178.7 | 2.44 | 2.3 |
LOMC3 | 4.0 | 75.0 | 76.0 | 167.4 | 3.44 | 1.8 |
EPS5 | 6.5 | 65.0 | 67.0 | 198.7 | 1.09 | 4.4 |
LSD (0.05) | 2.7 | 11.0 | 10.3 | 16.1 | 2.2 | 1.8 |
CV | 23.6 | 5.4 | 5.9 | 3.6 | 49.1 | 32.2 |
Evaluated under drought conditions | ||||||
BTMC0 | 3.5 | 82.5 | 88.5 | 112.8 | 1.05 | 1.1 |
BTMC1 | 3.5 | 88 | 93 | 88.3 | 0.85 | 0.6 |
BTMC2 | 3.5 | 78.5 | 84 | 109.3 | 0.90 | 1.0 |
BTMC3 | 2.5 | 84.5 | 88 | 93.7 | 1.34 | 0.6 |
LOMC0 | 5.0 | 72.5 | 77 | 124.7 | 1.00 | 1.6 |
LOMC1 | 4.0 | 73.5 | 80.5 | 93.6 | 0.87 | 0.7 |
LOMC2 | 4.5 | 71 | 74 | 112.9 | 1.19 | 1.4 |
LOMC3 | 4.0 | 68.5 | 71.5 | 103.7 | 0.87 | 1.1 |
EPS5 | 6.0 | 64.5 | 70.5 | 145.2 | 0.84 | 2.2 |
LSD (0.05) | 1.6 | 10.8 | 10.6 | 28.2 | 0.80 | 0.8 |
CV | 16.9 | 5.7 | 6.1 | 11.2 | 35.1 | 32.6 |
Evaluated Under Well-Watered Conditions | |||||||
---|---|---|---|---|---|---|---|
Genotype | Fo | Quantum Efficiency of Photosystem Fv/Fm | Net CO2 Assimilation (AN) (µmol CO2 m−2 s−1) | Stomatal Conductance (gS) (mol H2O m−2 s−1) | Substomatal [CO2] (Ci) (µmol mol−1) | Transpiration (E) (mmol H2O m−2 s−1) | WUE (mmol CO2/ mol H2O) |
BTMC0 | 53.8 | 707 | 28.24 | 0.17 | 47.48 | 5.09 | 5.70 |
BTMC1 | 52.5 | 698 | 26.55 | 0.18 | 74.91 | 4.83 | 5.61 |
BTMC2 | 55.5 | 681 | 35.93 | 0.27 | 101.09 | 7.12 | 5.04 |
BTMC3 | 56.1 | 702 | 29.81 | 0.19 | 48.36 | 5.53 | 5.58 |
LOMC0 | 53.8 | 737 | 31.97 | 0.23 | 78.94 | 5.96 | 5.99 |
LOMC1 | 52.7 | 702 | 31.27 | 0.24 | 94.27 | 5.45 | 6.19 |
LOMC2 | 53.2 | 743 | 28.13 | 0.24 | 127.03 | 5.85 | 4.96 |
LOMC3 | 53.0 | 759 | 33.42 | 0.24 | 76.45 | 6.28 | 6.69 |
EPS5 | 53.3 | 687 | 35.44 | 0.23 | 60.01 | 5.68 | 6.61 |
CV | 5.5 | 4.9 | 11.6 | 23.0 | 42.5 | 29.8 | 25.1 |
Evaluated under drought conditions | |||||||
BTMC0 | 58.1 | 731 | 28.02 | 0.16 | 43.52 | 4.23 | 6.88 |
BTMC1 | 56.1 | 740 | 31.32 | 0.155 | 5.33 | 5.92 | |
BTMC2 | 54.3 | 725 | 29.04 | 0.16 | 26.03 | 4.73 | 6.29 |
BTMC3 | 54.2 | 740 | 25.97 | 0.15 | 37.52 | 3.49 | 7.45 |
LOMC0 | 53.2 | 716 | 32.76 | 0.21 | 62.66 | 4.17 | 8.00 |
LOMC1 | 51.7 | 761 | 26.65 | 0.15 | 36.54 | 4.01 | 6.81 |
LOMC2 | 51.5 | 733 | 28.80 | 0.185 | 68.46 | 4.24 | 6.97 |
LOMC3 | 50.9 | 749 | 28.29 | 0.145 | 7.52 | 3.96 | 7.27 |
EPS5 | 53.7 | 761 | 28.51 | 0.18 | 71.59 | 3.67 | 7.90 |
CV | 3.4 | 6.7 | 7.3 | 23.4 | 111.4 | 17.4 | 13.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benchikh-Lehocine, M.; Álvarez-Iglesias, L.; Revilla, P.; Malvar, R.A.; Djemel, A.; Laouar, M. Response to Selection for Drought Tolerance in Algerian Maize Populations for Spanish Conditions. Agronomy 2025, 15, 499. https://doi.org/10.3390/agronomy15020499
Benchikh-Lehocine M, Álvarez-Iglesias L, Revilla P, Malvar RA, Djemel A, Laouar M. Response to Selection for Drought Tolerance in Algerian Maize Populations for Spanish Conditions. Agronomy. 2025; 15(2):499. https://doi.org/10.3390/agronomy15020499
Chicago/Turabian StyleBenchikh-Lehocine, Maysoun, Lorena Álvarez-Iglesias, Pedro Revilla, Rosa Ana Malvar, Abderrahmane Djemel, and Meriem Laouar. 2025. "Response to Selection for Drought Tolerance in Algerian Maize Populations for Spanish Conditions" Agronomy 15, no. 2: 499. https://doi.org/10.3390/agronomy15020499
APA StyleBenchikh-Lehocine, M., Álvarez-Iglesias, L., Revilla, P., Malvar, R. A., Djemel, A., & Laouar, M. (2025). Response to Selection for Drought Tolerance in Algerian Maize Populations for Spanish Conditions. Agronomy, 15(2), 499. https://doi.org/10.3390/agronomy15020499