Response to Selection for Drought Tolerance in Algerian Maize Populations for Spanish Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection Program
2.2. Field Trials
2.3. Data Recorded
2.4. Statistical Analyses
3. Results
(R2 = 0.09 *, and 0.69 ** for Conductance and WUE, respectively, being *, ** significant at p = 0.05 and 0.01, respectively)
Yield = 20.59 − 0.196 × Fo + 0.017 × Conductance − 1.010 WUE
(R2 = 0.06, 0.21 **, and 0.56 ** for Fo, Conductance and WUE, respectively)
Yield = 13.4 − 0.18 Fo (R2 = 0.65 *)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ajani, O.T.; Oluwaranti, A.; Awoniyi, A.I. Assessment of water-use efficiency of drought tolerant maize (Zea mays L.) varieties in a rainforest location. J. Agric. Ecol. Res. Int. 2016, 8, 1–10. [Google Scholar] [CrossRef]
- Huang, R.; Birch, C.J.; George, D.L. Water use efficiency in maize production—The Challenge and improvement strategies. In Water to Gold, Proceedings of the 6th Triennial Conference, Griffith, NSW, Australia, 21–23 February 2006; Maize Association of Australia: Darlington Point, NSW, Australia, 2006. [Google Scholar]
- Anami, S.; Block, M.D.; Machuka, J.; Lijsebettens, M.V. Molecular improvement of tropical maize for drought stress tolerance in Sub-Saharan Africa. Crit. Rev. Plant Sci. 2009, 28, 16–35. [Google Scholar] [CrossRef]
- Chen, J.P.; Xu, W.W.; Velten, J.; Xin, Z.G.; Stout, J. Characterization of maize inbred lines for drought and heat tolerance. J. Soil Water Conserv. 2012, 67, 354–364. [Google Scholar] [CrossRef]
- Khan, N.H.; Ahsan, M.; Naveed, M.; Hafeez, A.; Sadaqat, H.A.; Javed, I. Genetics of drought tolerance at seedling and maturity stages in Zea mays L. Span. J. Agric. Res. 2016, 14, 705–716. [Google Scholar] [CrossRef]
- Bänziger, M.; Araus, J.L. Recent advances in breeding maize for drought and salinity stress tolerance. In Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops; Jenks, M.A., Hasegawa, P.M., Jain, S.M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 587–601. [Google Scholar]
- Welcker, C.; Boussuge, B.; Bencivenni, C.; Ribaut, J.M.; Tardieu, F. Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit. J. Exp. Bot. 2007, 58, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Vinodhana, N.K.; Ganesan, K.N. Analysis of physico-genetic traits for drought tolerance in maize (Zea mays L.). Int. J. Curr. Microbiol. App. Sci. 2017, 6, 4568–4575. [Google Scholar] [CrossRef]
- Bänziger, M.; Edmeades, G.O.; Beck, D.; Bellon, M. Breeding for Drought and Nitrogen Stress Tolerance in Maize: From Theory to Practice. D.F.; CIMMYT: Mexico City, Mexico, 2000. [Google Scholar]
- Ziyomo, C.; Bernardo, R. Drought tolerance in maize: Indirect selection through secondary traits versus genome wide selection. Crop Sci. 2013, 53, 1269–1275. [Google Scholar] [CrossRef]
- Betrán, F.J.; Beck, D.; Bänziger, M.; Edmeades, G.O. Genetic analysis of inbred and hybrid grain yield under stress and non-stress environments in tropical maize. Crop Sci. 2003, 43, 807–817. [Google Scholar] [CrossRef]
- Campos, H.; Cooper, M.; Edmeades, G.O.; Löffler, C.; Schussler, J.R.; Ibañez, M. Changes in drought tolerance in maize associated with fifty years of breeding for yield in the U.S. Corn Belt. Maydica 2006, 51, 369–381. [Google Scholar]
- Witt, S.; Galicia, L.; Lisec, J.; Cairns, J.; Tiessen, A.; Araus, J.L.; Palacios-Rojasand, N.; Fernie, A.R.R. Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally well-wateredled drought stress. Mol. Plant 2012, 5, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Bolaños, J.; Edmeades, G.O. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res. 1996, 48, 65–80. [Google Scholar] [CrossRef]
- Monneveux, P.; Sanchez, C.; Beck, D.; Edmeades, G.O. Drought tolerance improvement in tropical maize source populations: Evidence of progress. Crop Sci. 2006, 46, 180–191. [Google Scholar] [CrossRef]
- Parajuli, S.; Ojha, B.R.; Ferrara, G.O. Quantification of secondary traits for drought and low nitrogen stress tolerance in inbreds and hybrids of maize (Zea mays L.). J. Plant Genet. Breed. 2018, 2, 106–118. [Google Scholar]
- Arboleda-Rivera, F.; Compton, W.A. Differential response of maize (Zea mays L.) to mass selection in diverse selection environments. Theor. Appl. Genet. 1974, 44, 77–81. [Google Scholar] [CrossRef]
- Maazou, A.R.S.; Tu, J.; Qiu, J.; Liu, Z. Breeding for Drought Tolerance in Maize (Zea mays L.). Am. J. Plant Sci. 2016, 7, 1858–1870. [Google Scholar] [CrossRef]
- Flint-Garcia, S.A.; Thuillet, A.C.; Yu, J.; Pressoir, G.; Romero, S.M.; Mitchell, S.E.; Debley, J.; Kresovich, S.; Major, M.M.; Buckler, E.S. Maize association population: A high-resolution platform for quantitative trait locus dissection. Plant J. 2005, 44, 1054–1064. [Google Scholar] [CrossRef] [PubMed]
- Hallauer, A.R.; Carena, M.J.; Miranda, J.B. Quantitative Genetics in Maize Breeding. Handb. Plant Breed 6; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Djemel, A.; Revilla, P.; Hanifi-Mekliche, L.; Malvar, R.A.; Álvarez, A.; Khelifi, L. Maize (Zea mays L.) from the Saharan oasis: Adaptation to temperate areas and agronomic performance. Genet. Resour. Crop Evol. 2012, 59, 1493–1504. [Google Scholar] [CrossRef]
- Laumont, P.; Laby, H. Le Maïs et sa Culture en Algérie. Doc et Rens Agricoles; Bulletin n° 155: Algiers, Algeria, 1950. [Google Scholar]
- Aci, M.M.; Lupini, A.; Mauceri, A.; Morsli, A.; Khelifi, L.; Sunseri, F. Genetic variation and structure of maize populations from Saoura and Gourara oasis in Algerian Sahara. BMC Genet. 2018, 19, 1–10. [Google Scholar] [CrossRef]
- Belalia, N.; Lupini, A.; Djemel, A.; Morsli, A.; Mauceri, A.; Lotti, C.; Khelifi-Slaoui, M.; Khelifi, L.; Sunseri, F. Analysis of genetic diversity and population structure in Saharan maize (Zea mays L.) populations using phenotypic traits and SSR markers. Genet Resour. Crop Evol. 2019, 66, 243–257. [Google Scholar] [CrossRef]
- Djemel, A.; Cherchali, F.Z.; Benchikh-Le-Hocine, M.; Malvar, R.A.; Revilla, P. Assessment of drought tolerance among Algerian maize populations from oases of the Saharan. Euphytica 2018, 214, 149. [Google Scholar] [CrossRef]
- Benchikh-Lehocine, M.; Revilla, P.; Malvar, R.A.; Djemel, A. Response to selection for reduced anthesis-silking interval in four Algerian maize populations. Agronomy 2021, 11, 382. [Google Scholar] [CrossRef]
- SAS Institute. The SAS System for Windows, Release 9.4; SAS Institute: Cary, NC, USA, 2015. [Google Scholar]
- Bolaños, J.; Edmeades, G.O. Eight cycles of selection for drought tolerance in lowland tropical maize. II. Responses in reproductive behavior. Field Crops Res. 1993, 31, 253–268. [Google Scholar] [CrossRef]
- Edmeades, G.O.; Bolaños, J. Value of secondary traits in selecting for drought tolerance in tropical maize. Developing Drought and Low-N Tolerant Maize. In Proceedings of a Symposium, 25–29 March 1996; CIMMYT: El Batán, Mexico, 1997; p. 222. [Google Scholar]
- Herrero, M.P.; Johnson, R.R. Drought stress and its effects on maize reproductive systems. Crop Sci. 1981, 21, 105–110. [Google Scholar] [CrossRef]
- Ribaut, J.M.; Betran, J.; Monneveux, P.; Setter, T. Drought tolerance in maize. In Handbook of Maize: Its Biology; Bennetzen, J.L., Hake, S.C., Eds.; Springer: New York, NY, USA, 2009; pp. 311–344. [Google Scholar]
- Qiao, M.; Hong, C.; Jiao, Y.; Hou, S.; Gao, H. Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants 2024, 13, 1808. [Google Scholar] [CrossRef] [PubMed]
MAW | MAD | MPW | MPD | FAW | FAD | FPW | FPD | AAW | AAD | APW | APD | PAW | PAD | PPW | PPD | YAW | YAD | YPW | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAD | 0.85 ** | ||||||||||||||||||
MPW | 0.86 ** | 0.90 ** | |||||||||||||||||
MPD | 0.73 * | 0.98 ** | 0.83 * | ||||||||||||||||
FAW | 0.99 ** | 0.83 * | 0.83 * | 0.71 * | |||||||||||||||
FAD | 0.92 ** | 0.97 ** | 0.95 ** | 0.91 ** | 0.90 ** | ||||||||||||||
FPW | 0.86 ** | 0.90 ** | 1.00 ** | 0.83 * | 0.83 * | 0.95 ** | |||||||||||||
FPD | 0.85 ** | 1.00 ** | 0.90 ** | 0.98 ** | 0.83 * | 0.97 ** | 0.90 ** | ||||||||||||
AAW | −0.87 ** | −0.78 * | −0.78 * | −0.66 | −0.85 ** | −0.79 * | −0.78 * | −0.78 * | |||||||||||
AAD | 0.86 ** | 0.60 | 0.67 | 0.48 | 0.83 * | 0.74 * | 0.67 | 0.60 | −0.68 | ||||||||||
APW | −0.97 ** | −0.77 * | −0.81 * | −0.63 | −0.96 ** | −0.84 ** | −0.81 * | −0.77 * | 0.94 ** | −0.83 * | |||||||||
APD | 0.89 ** | 0.69 | 0.76 * | 0.57 | 0.86 ** | 0.81 | 0.76 * | 0.69 | −0.79 * | 0.98 ** | −0.87 ** | ||||||||
PAW | −0.65 | −0.31 | −0.55 | −0.14 | −0.62 | −0.51 | −0.55 | −0.31 | 0.56 | −0.83 * | 0.70 | −0.81 * | |||||||
PAD | −0.29 | 0.14 | −.14 | 0.26 | −0.31 | −0.01 | −0.14 | 0.14 | 0.18 | −0.48 | 0.35 | −0.38 | 0.60 | ||||||
PPW | −0.73 * | −0.55 | −0.76 * | −0.40 | −0.67 | −0.67 | −0.76 * | −0.54 | 0.79 * | −0.76 * | 0.77 * | −0.85 ** | 0.81 * | 0.38 | |||||
PPD | −0.28 | 0.07 | −0.21 | 0.17 | −0.28 | −0.08 | −0.21 | 0.07 | 0.18 | −0.48 | 0.34 | −0.38 | 0.67 | 0.93 ** | 0.38 | ||||
YAW | 0.00 | 0.10 | −0.24 | 0.19 | 0.05 | −0.05 | −0.23 | 0.10 | −0.05 | −0.07 | 0.02 | −010 | 0.52 | 0.14 | 0.40 | 0.26 | |||
YAD | −0.52 | −0.72 * | −0.65 | −0.75 * | −0.54 | −0.70 | −0.65 | −0.72 * | 0.21 | −0.25 | 0.35 | −0.25 | 0.04 | −0.17 | 0.04 | −0.06 | 0.02 | ||
YPW | 0.07 | 0.14 | −0.17 | 0.24 | 0.12 | 0.01 | −0.17 | 0.14 | −0.07 | 0.05 | −0.4 | 0.00 | 0.40 | 0.02 | 0.36 | 0.10 | 0.98 ** | −0.04 | |
YPD | 0.46 | −0.71 * | −0.64 | −0.76 * | −0.48 | −0.67 | −0.64 | −0.71 * | 0.18 | −0.17 | 0.29 | −0.19 | −0.05 | −0.26 | 0.02 | −0.17 | 0.05 | 0.99 ** | 0.00 |
Evaluated Under Well-Watered Conditions | ||||||
---|---|---|---|---|---|---|
Genotype b | Vigor (1–9) | Female Flower (Days) | Male Flower (Days) | Plant Height (cm) | Ears per Plant | Yield (Mg ha−1) |
BTMC0 | 4.5 | 76.5 | 77.5 | 194.7 | 1.70 | 2.6 |
BTMC1 | 4.0 | 78.5 | 79.5 | 176.9 | 1.58 | 2.3 |
BTMC2 | 1.0 | 88.5 | 90.0 | 145.0 | 1.00 | 0.2 |
BTMC3 | 3.5 | 79.5 | 80.5 | 175.3 | 1.61 | 1.4 |
LOMC0 | 5.5 | 71.0 | 72.5 | 190.2 | 2.44 | 2.7 |
LOMC1 | 6.0 | 70.0 | 71.0 | 174.2 | 1.43 | 2.9 |
LOMC2 | 7.0 | 67.0 | 69.0 | 178.7 | 2.44 | 2.3 |
LOMC3 | 4.0 | 75.0 | 76.0 | 167.4 | 3.44 | 1.8 |
EPS5 | 6.5 | 65.0 | 67.0 | 198.7 | 1.09 | 4.4 |
LSD (0.05) | 2.7 | 11.0 | 10.3 | 16.1 | 2.2 | 1.8 |
CV | 23.6 | 5.4 | 5.9 | 3.6 | 49.1 | 32.2 |
Evaluated under drought conditions | ||||||
BTMC0 | 3.5 | 82.5 | 88.5 | 112.8 | 1.05 | 1.1 |
BTMC1 | 3.5 | 88 | 93 | 88.3 | 0.85 | 0.6 |
BTMC2 | 3.5 | 78.5 | 84 | 109.3 | 0.90 | 1.0 |
BTMC3 | 2.5 | 84.5 | 88 | 93.7 | 1.34 | 0.6 |
LOMC0 | 5.0 | 72.5 | 77 | 124.7 | 1.00 | 1.6 |
LOMC1 | 4.0 | 73.5 | 80.5 | 93.6 | 0.87 | 0.7 |
LOMC2 | 4.5 | 71 | 74 | 112.9 | 1.19 | 1.4 |
LOMC3 | 4.0 | 68.5 | 71.5 | 103.7 | 0.87 | 1.1 |
EPS5 | 6.0 | 64.5 | 70.5 | 145.2 | 0.84 | 2.2 |
LSD (0.05) | 1.6 | 10.8 | 10.6 | 28.2 | 0.80 | 0.8 |
CV | 16.9 | 5.7 | 6.1 | 11.2 | 35.1 | 32.6 |
Evaluated Under Well-Watered Conditions | |||||||
---|---|---|---|---|---|---|---|
Genotype | Fo | Quantum Efficiency of Photosystem Fv/Fm | Net CO2 Assimilation (AN) (µmol CO2 m−2 s−1) | Stomatal Conductance (gS) (mol H2O m−2 s−1) | Substomatal [CO2] (Ci) (µmol mol−1) | Transpiration (E) (mmol H2O m−2 s−1) | WUE (mmol CO2/ mol H2O) |
BTMC0 | 53.8 | 707 | 28.24 | 0.17 | 47.48 | 5.09 | 5.70 |
BTMC1 | 52.5 | 698 | 26.55 | 0.18 | 74.91 | 4.83 | 5.61 |
BTMC2 | 55.5 | 681 | 35.93 | 0.27 | 101.09 | 7.12 | 5.04 |
BTMC3 | 56.1 | 702 | 29.81 | 0.19 | 48.36 | 5.53 | 5.58 |
LOMC0 | 53.8 | 737 | 31.97 | 0.23 | 78.94 | 5.96 | 5.99 |
LOMC1 | 52.7 | 702 | 31.27 | 0.24 | 94.27 | 5.45 | 6.19 |
LOMC2 | 53.2 | 743 | 28.13 | 0.24 | 127.03 | 5.85 | 4.96 |
LOMC3 | 53.0 | 759 | 33.42 | 0.24 | 76.45 | 6.28 | 6.69 |
EPS5 | 53.3 | 687 | 35.44 | 0.23 | 60.01 | 5.68 | 6.61 |
CV | 5.5 | 4.9 | 11.6 | 23.0 | 42.5 | 29.8 | 25.1 |
Evaluated under drought conditions | |||||||
BTMC0 | 58.1 | 731 | 28.02 | 0.16 | 43.52 | 4.23 | 6.88 |
BTMC1 | 56.1 | 740 | 31.32 | 0.155 | 5.33 | 5.92 | |
BTMC2 | 54.3 | 725 | 29.04 | 0.16 | 26.03 | 4.73 | 6.29 |
BTMC3 | 54.2 | 740 | 25.97 | 0.15 | 37.52 | 3.49 | 7.45 |
LOMC0 | 53.2 | 716 | 32.76 | 0.21 | 62.66 | 4.17 | 8.00 |
LOMC1 | 51.7 | 761 | 26.65 | 0.15 | 36.54 | 4.01 | 6.81 |
LOMC2 | 51.5 | 733 | 28.80 | 0.185 | 68.46 | 4.24 | 6.97 |
LOMC3 | 50.9 | 749 | 28.29 | 0.145 | 7.52 | 3.96 | 7.27 |
EPS5 | 53.7 | 761 | 28.51 | 0.18 | 71.59 | 3.67 | 7.90 |
CV | 3.4 | 6.7 | 7.3 | 23.4 | 111.4 | 17.4 | 13.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benchikh-Lehocine, M.; Álvarez-Iglesias, L.; Revilla, P.; Malvar, R.A.; Djemel, A.; Laouar, M. Response to Selection for Drought Tolerance in Algerian Maize Populations for Spanish Conditions. Agronomy 2025, 15, 499. https://doi.org/10.3390/agronomy15020499
Benchikh-Lehocine M, Álvarez-Iglesias L, Revilla P, Malvar RA, Djemel A, Laouar M. Response to Selection for Drought Tolerance in Algerian Maize Populations for Spanish Conditions. Agronomy. 2025; 15(2):499. https://doi.org/10.3390/agronomy15020499
Chicago/Turabian StyleBenchikh-Lehocine, Maysoun, Lorena Álvarez-Iglesias, Pedro Revilla, Rosa Ana Malvar, Abderrahmane Djemel, and Meriem Laouar. 2025. "Response to Selection for Drought Tolerance in Algerian Maize Populations for Spanish Conditions" Agronomy 15, no. 2: 499. https://doi.org/10.3390/agronomy15020499
APA StyleBenchikh-Lehocine, M., Álvarez-Iglesias, L., Revilla, P., Malvar, R. A., Djemel, A., & Laouar, M. (2025). Response to Selection for Drought Tolerance in Algerian Maize Populations for Spanish Conditions. Agronomy, 15(2), 499. https://doi.org/10.3390/agronomy15020499