Effects of Long-Term Positioning Tillage Method and Straw Management on Crop Yield and Nutrient Accumulation and Utilization in Dryland Wheat–Maize Double-Cropping System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design
2.3. Measurements and Methods
2.3.1. Grain Yield
2.3.2. Plant N, P, K Accumulation
2.3.3. N, P, K Internal Efficiency
2.4. Statistical Analysis
3. Results
3.1. Crop Yield
3.1.1. Wheat Yield
3.1.2. Maize Yield
3.1.3. Annual Yield
3.2. Above-Ground N, P, and K Accumulation
3.3. N, P, and K Internal Efficiency
3.4. Correlation
4. Discussion
4.1. Plowing Tillage with Straw Returning Enhance Crop Yield in Dryland Wheat–Maize Double-Cropping System
4.2. Plowing Tillage with Straw Returning Enhance Crop N, P, and K Accumulation in Dryland Wheat–Maize Double-Cropping System
4.3. Straw Returning Decreases the N, P, and K Internal Efficiency in Dryland Wheat–Maize Double-Cropping System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eversole, K.; Feuillet, C.; Mayer, K.F.; Rogers, J. Slicing the wheat genome. Science 2014, 345, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Huang, X.L.; Hou, Y.Q.; Tian, W.Z.; Li, J.H.; Zhang, J.; Li, F.; LÜ, J.J.; Yao, Y.Q.; Fu, G.Z.; et al. Effects of ridge and furrow planting patterns on crop productivity and soil nitrate-N accumulation in dryland summer maize and winter wheat rotation system. Sci. Agric. Sin. 2023, 56, 2078–2091. [Google Scholar] [CrossRef]
- Wu, J.; Guan, H.Y.; Wang, Z.M.; Li, Y.J.; Fu, G.Z.; Huang, M.; Li, G.Q. Alternative furrow irrigation combined with topdressing nitrogen at jointing help yield formation and water use of winter wheat under no–till ridge furrow planting system in semi–humid drought–prone areas of China. Agronomy 2023, 13, 1390. [Google Scholar] [CrossRef]
- Han, L.P.; Steinberger, Y.; Zhao, Y.L.; Xie, G.H. Accumulation and partitioning of nitrogen, phosphorus and potassium in different varieties of sweet sorghum. Field Crop. Res. 2011, 120, 230–240. [Google Scholar] [CrossRef]
- Van Duivenbooden, N.; De Wit, C.T.; Van Keulen, H. Nitrogen, phosphorus and potassium relations in five major cereals reviewed in respect to fertilizer recommendations using simulation modelling. Fertil. Res. 1995, 44, 37–49. [Google Scholar] [CrossRef]
- Santa-María, G.E.; Moriconi, J.I.; Oliferuk, S. Internal efficiency of nutrient utilization: What is it and how to measure it during vegetative plant growth? J. Exp. Bot. 2015, 66, 3011–3018. [Google Scholar] [CrossRef]
- He, G.; Wang, Z.H.; Li, F.C.; Dai, J.; Li, Q.; Xue, C.; Cao, H.B.; Wang, S.; Liu, H.; Luo, L.C.; et al. Nitrogen, phosphorus and potassium requirement and their physiological efficiency for winter wheat affected by soil surface managements in dryland. Sci. Agric. Sin. 2016, 49, 1657–1671. [Google Scholar] [CrossRef]
- Qu, H.F.; Zhao, H.B.; Liu, J.F.; Huang, H.B.; Wang, Z.H.; Zhai, B.N. NPK requirements and their physiological efficiencies for winter wheat under different cover measures in dryland. Plant Nutr. Fertil. Sci. 2017, 23, 874–882. [Google Scholar] [CrossRef]
- Rawal, N.; Pande, K.R.; Shrestha, R.; Vista, S.P. Nutrient use efficiency (NUE) of wheat (Triticum aestivum L.) as affected by NPK fertilization. PLoS ONE 2022, 17, e0262771. [Google Scholar] [CrossRef]
- Sharma, S.; Kaur, G.; Singh, P.; Alamri, S.; Kumar, R.; Siddiqui, M.H. Nitrogen and potassium application effects on productivity, profitability and nutrient use efficiency of irrigated wheat (Triticum aestivum L.). PLoS ONE 2022, 17, e0264210. [Google Scholar] [CrossRef]
- Swanepoel, P.A.; Du Preez, C.C.; Botha, P.R.; Snyman, H.A.; Habig, J. Assessment of tillage effects on soil quality of pastures in South Africa with indexing methods. Soil Res. 2015, 53, 274–285. [Google Scholar] [CrossRef]
- Huang, M.; Zou, Y.B.; Jiang, P.; Xia, B.; Feng, Y.H.; Cheng, Z.W.; Mo, Y.L. Effect of tillage on soil and crop properties of wet–seeded flooded rice. Field Crop. Res. 2012, 129, 28–38. [Google Scholar] [CrossRef]
- Van den Putte, A.; Govers, G.; Diels, J.; Gillijns, K.; Demuzere, M. Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 2010, 33, 231–241. [Google Scholar] [CrossRef]
- Ding, J.L.; Wu, J.C.; Ding, D.Y.; Yang, Y.H.; Gao, C.; Hu, W. Effects of tillage and straw mulching on the crop productivity and hydrothermal resource utilization in a winter wheat-summer maize rotation system. Agric. Water Manag. 2021, 254, 106933. [Google Scholar] [CrossRef]
- Kuang, N.; Tan, D.; Li, H.; Gou, Q.S.; Li, Q.Q.; Han, H.F. Effects of subsoiling before winter wheat on water consumption characteristics and yield of summer maize on the North China Plain. Agric. Water Manag. 2020, 227, 105786. [Google Scholar] [CrossRef]
- Latifmanesh, H.; Zheng, C.Y.; Song, Z.W.; Deng, A.X.; Huang, J.L.; Li, L.; Chen, Z.J.; Zheng, Y.T.; Zhang, B.M.; Zhang, W.J. Integrative impacts of soil tillage on crop yield, N use efficiency and greenhouse gas emission in wheat-corn cropping system. Int. J. Plant Prod. 2016, 10, 317–334. [Google Scholar]
- Franzluebbers, A.J. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 2002, 66, 197–205. [Google Scholar] [CrossRef]
- Cid, P.; Carmona, I.; Murillo, J.M.; Gómez-Macpherson, H. No-tillage permanent bed planting and controlled traffic in a maize–cotton irrigated system under Mediterranean conditions: Effects on soil compaction, crop performance and carbon sequestration. Eur. J. Agron. 2014, 61, 24–34. [Google Scholar] [CrossRef]
- Li, C.S.; Li, M.; Wu, X.L.; Wei, H.T.; Liu, M.; Tang, Y.L.; Xiong, T. Effects of tillage and sowing practices on plant growth, soil nutrient uptake and utilization of wheat after rice. Chin. J. Appl. Ecol. 2020, 31, 1435–1442. [Google Scholar] [CrossRef]
- Li, L.L.; Zhang, N.; Zhang, Y.C.; Bi, J.J.; Liu, P.; Han, K. Phosphorus efficient utilization of summer maize under different tillage methods, straw returning and fertilizer application. Shandong Agric. Sci. 2023, 55, 94–100. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, M.J.; Pang, D.W.; Yin, Y.P.; Han, M.M.; Li, Y.X.; Luo, Y.L.; Xu, X.U.; Yong, L.I.; Wang, Z.L. Straw return and appropriate tillage method improve grain yield and nitrogen efficiency of winter wheat. J. Integr. Agr. 2017, 16, 1708–1719. [Google Scholar] [CrossRef]
- Zhang, M.; Li, L.K.; Hao, M.D. Effect of no-tillage with straw cover on corn yield and soil fertility. Acta Agric. Boreali-Occident. Sin. 2013, 22, 67–72. [Google Scholar] [CrossRef]
- Duan, Y.H.; Xu, M.G.; Gao, S.D.; Yang, X.Y.; Huang, S.M.; Liu, H.B.; Wang, B.R. Nitrogen use efficiency in a wheat-corn cropping system from 15 years of manure and fertilizer applications. Field Crop. Res. 2014, 157, 47–56. [Google Scholar] [CrossRef]
- Yang, J.H.; Luo, Y.L.; Chen, J.; Jin, M.; Wang, Z.L.; Li, Y. Effects of main food yield under straw return in China: A meta-analysis. Sci. Agric. Sin. 2020, 53, 4415–4429. [Google Scholar] [CrossRef]
- Kong, F.X.; Hu, S.F.; Wang, R.R.; Jiu, A.M.; Kan, Z.R.; Yang, H.S.; Palta, J.A.; Li, F.M. Straw return under deep tillage increases grain yield in the rice-rotated wheat cropping system. Field Crop. Res. 2024, 317, 109559. [Google Scholar] [CrossRef]
- FAO. World Soil Resources: An Explanatory Note on the FAO World Soil Resources Map at 1:25,000,000 Scale Report; W.S.R. Food and Agriculture Organization of the United Nations: Rome, Italy, 1993; p. 61. [Google Scholar]
- Ciampitti, I.A.; Vyn, T.J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crop. Res. 2012, 133, 48–67. [Google Scholar] [CrossRef]
- Zhao, M.; Li, J.G.; Zhang, B.; Dong, Z.Q.; Wang, M.Y. The compensatory mechanism in exploring crop production potential. Acta Agron. Sin. 2006, 32, 1566–1573. [Google Scholar] [CrossRef]
- Wang, Y.L.; Yu, A.Z.; Lü, H.Q.; Wang, Q.M.; Su, X.X.; Chai, Q. Effects of wheat straw returning and tillage methods on corn yield in oasis irrigation area. Acta Agron. Sin. 2022, 48, 2671–2679. [Google Scholar] [CrossRef]
- Mu, X.Y.; Zhao, Y.L.; Liu, K.; Ji, B.Y.; Guo, H.B.; Xue, Z.W.; Li, C.H. Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat-maize cropping system on the North China Plain. Eur. J. Agron. 2016, 78, 32–43. [Google Scholar] [CrossRef]
- Sui, P.X.; Tian, P.; Lian, H.L.; Wang, Z.Y.; Ma, Z.Q.; Qi, H.; Mei, N.; Sun, Y.; Wang, Y.Y.; Su, Y.H.; et al. Straw incorporation management affects maize grain yield through regulating nitrogen uptake, water use Efficiency, and root distribution. Agronomy 2020, 10, 324. [Google Scholar] [CrossRef]
- Zhan, A.; Zou, C.Q.; Ye, Y.L.; Liu, Z.H.; Cui, Z.L.; Chen, X.P. Estimating on-farm wheat yield response to potassium and potassium uptake requirement in China. Field Crop. Res. 2016, 191, 13–19. [Google Scholar] [CrossRef]
- Ji, B.Y.; Zhao, Y.L.; Mu, X.Y.; Liu, K.; Li, C.H. Effects of tillage on soil physical properties and root growth of maize in loam and clay in central China. Plant Soil Environ. 2013, 59, 295–302. [Google Scholar] [CrossRef]
- Guo, Y.; Chai, Q.; Yin, W.; Feng, F.X.; Zhao, C.; Yu, A.Z. Effect of wheat straw return to soil with zero-tillage on maize yield in irrigated oases. Chin. J. Eco-Agric. 2017, 25, 69–77. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Guo, H.B.; Xue, Z.W.; Mu, X.Y.; Li, C.H. Effects of tillage and straw returning on biomass and water use efficiency in a winter wheat and summer maize rotation system. Acta Agron. Sin. 2014, 40, 1797–1807. [Google Scholar] [CrossRef]
- Heuer, H.; Tomanová, O.; Koch, H.J.; Märländer, B. Subsoil properties and cereal growth as affected by a single pass of heavy machinery and two tillage systems on a Luvisol. J. Plant Nutr. Soil Sci. 2008, 171, 580–590. [Google Scholar] [CrossRef]
- Zhang, J.; Hang, X.N.; Lamine, S.M.; Jiang, Y.; Afreh, D.; Qian, H.Y.; Feng, X.M.; Zheng, C.Y.; Deng, A.X.; Song, Z.W.; et al. Interactive effects of straw incorporation and tillage on crop yield and greenhouse gas emissions in double rice cropping system. Agric. Ecosyst. Environ. 2017, 250, 37–43. [Google Scholar] [CrossRef]
- Farooq, M.; Flower, K.C.; Jabran, K.; Wahid, A.; Siddique, K.H. Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res. 2011, 117, 172–183. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.Q.; Linquist, B.A.; Van Groenigen, K.J.; Lee, J.; Lundy, M.E.; Van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Yin, W.; Feng, F.X.; Zhao, C.; Yu, A.Z.; Chai, Q.; Hu, F.L.; Guo, Y. Effects of wheat straw returning patterns on characteristics of dry matter accumulation, distribution and yield of rotation maize. Acta Agron. Sin. 2016, 42, 751–757. [Google Scholar] [CrossRef]
- Reicosky, D.C.; Lindstrom, M.J.; Schumacher, T.E.; Lobb, D.E.; Malo, D.D. Tillage-induced CO2 loss across an eroded landscape. Soil Tillage Res. 2005, 81, 183–194. [Google Scholar] [CrossRef]
- Tian, P.; Lian, H.L.; Wang, Z.Y.; Jiang, Y.; Li, C.F.; Sui, P.X.; Qi, H. Effects of deep and shallow tillage with straw incorporation on soil organic carbon, total nitrogen and enzyme activities in Northeast China. Sustainability 2020, 12, 8679. [Google Scholar] [CrossRef]
- Qi, X.K.; An, S.W.; Hou, N.; Wu, F.J.; Wang, Y.F.; Yang, K.J.; Fu, J. Effects of tillage and straw returning method on the nutrient accumulation, distribution and yield of maize in black soil of semi-arid region. Plant Nutr. Fertil. Sci. 2022, 28, 2214–2226. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, X.L.; Wei, T.; Yang, Z.; Jia, Z.K.; Yang, B.P.; Han, Q.F.; Ren, X.L. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China. Soil Tillage Res. 2016, 160, 65–72. [Google Scholar] [CrossRef]
- Chen, S.Y.; Zhang, X.Y.; Pei, D.; Sun, H.Y.; Chen, S.L. Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: Field experiments on the North China Plain. Ann. Appl. Biol. 2007, 150, 261–268. [Google Scholar] [CrossRef]
- Wang, W.Y.; Qiao, B.; Akhtar, K.; Yuan, S.; Ren, G.X.; Feng, Y.Z. Effects of straw returning to field on soil respiration and soil water heat in winter wheat-summer maize rotation system under no tillage. Sci. Agric. Sin. 2016, 49, 2136–2152. [Google Scholar] [CrossRef]
- Guo, Y.; Fan, H.; Li, P.; Wei, J.G.; Qiu, H.L. Photosynthetic physiological basis of no tillage with wheat straw returning to improve maize yield with plastic film mulching in arid irrigated areas. Plants 2023, 12, 1358. [Google Scholar] [CrossRef]
- Xu, J.; He, Z.K.; Feng, Q.Q.; Zhang, Y.Y.; Li, X.S.; Xu, J.J.; Lin, X.; Han, H.F.; Ning, T.Y.; Li, Z.J. Effect of tillage method on photosynthetic characteristics and annual yield formation of winter wheat-summer maize cropping system. Plant Nutr. Fertil. Sci. 2017, 23, 101–109. [Google Scholar] [CrossRef]
- Chen, H.H.; Liu, Y.; Lü, L.P.; Lei, Y.; Jia, J.C.; Chen, X.; Ma, J.; Zhao, J.X.; Liang, C.; Xie, H.T.; et al. Effects of no-tillage and stover mulching on the transformation and utilization of chemical fertilizer N in Northeast China. Soil Tillage Res. 2021, 213, 105131. [Google Scholar] [CrossRef]
- Malhi, S.S.; Lemke, R.; Wang, Z.H.; Chhabra, B.S. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Tillage Res. 2006, 90, 171–183. [Google Scholar] [CrossRef]
- Yang, N.; Wang, Z.H.; Gao, Y.J.; Zhao, H.B.; Li, K.Y.; Li, F.C.; Malhi, S.S. Effects of planting soybean in summer fallow on wheat grain yield, total N and Zn in grain and available N and Zn in soil on the Loess Plateau of China. Eur. J. Agron. 2014, 58, 63–72. [Google Scholar] [CrossRef]
- Shindo, H.; Nishio, T. Immobilization and remineralization of N following addition of wheat straw into soil: Determination of gross N transformation rates by 15N-ammonium isotope dilution technique. Soil Biol. Biochem. 2005, 37, 425–432. [Google Scholar] [CrossRef]
Soil Layer (cm) | Treatment | Soil Bulk Density (g·cm−3) | Organic Matter Content (g·kg−1) | Total N Content (g·kg−1) | Available P Content (mg·kg−1) | Available K Content (mg·kg−1) |
---|---|---|---|---|---|---|
0–5 | PTS0 | 1.39 a | 15.6 c | 0.79 d | 20.6 c | 126.2 d |
PTSR | 1.35 b | 17.5 b | 0.94 c | 24.5 b | 146.3 c | |
RTS0 | 1.39 a | 12.4 d | 0.67 e | 18.4 d | 118.4 e | |
RTSR | 1.34 b | 18.5 b | 1.15 b | 25.5 b | 155.6 b | |
NTS0 | 1.36 b | 12.2 d | 0.83 d | 17.3 d | 113.2 f | |
NTSR | 1.29 c | 20.4 a | 1.44 a | 28.4 a | 178.4 a | |
5–15 | PTS0 | 1.41 a | 14.6 c | 0.72 c | 19.2 c | 125.2 c |
PTSR | 1.37 b | 16.8 b | 0.88 b | 23.4 a | 140.6 b | |
RTS0 | 1.40 a | 11.5 d | 0.65 d | 17.6 d | 115.6 d | |
RTSR | 1.36 b | 18.1 a | 1.07 a | 24.3 a | 150.2 a | |
NTS0 | 1.42 a | 12.1 d | 0.62 d | 16.3 d | 121.4 cd | |
NTSR | 1.35 b | 15.9 b | 0.87 b | 20.9 b | 145.9 ab | |
15–35 | PTS0 | 1.45 b | 11.8 c | 0.66 bc | 14.2 b | 119.2 b |
PTSR | 1.42 bc | 14.9 a | 0.79 a | 20.9 a | 131.9 a | |
RTS0 | 1.54 a | 12.6 bc | 0.61 c | 14.6 b | 113.4 c | |
RTSR | 1.49 ab | 12.9 b | 0.71 b | 15.6 b | 132.6 a | |
NTS0 | 1.38 c | 11.5 c | 0.60 c | 13.7 c | 114.4 c | |
NTSR | 1.38 c | 12.6 bc | 0.64 c | 13.6 c | 113.6 c |
Code | Treatment | Specific Operation |
---|---|---|
PTS0 | Plowing tillage with zero straw returning | The straw of the previous crop was removed from the plot 1–3 days before tillage. The plowing tillage (30–35 cm) was carried out immediately after evenly broadcast fertilizers by hand, using a moldboard plow. Then, the rotary tillage (12–15 cm) was carried out to smooth land using a rotavator, and the seeds according to the designed amount were sown using a wheat seeder. Plowing tillage and straw removing were employed in both wheat and maize seasons. |
PTSR | Plowing tillage with straw returning | The straw of the previous crop was evenly returned to the surface of the plot and then buried by plowing tillage. The other filed managements were the same with the plowing tillage with zero straw returning treatment. |
RTS0 | Rotary tillage with zero straw returning | The straw of the previous crop was removed from the plot 1–3 days before tillage. The rotary tillage (12–15 cm) was carried out twice, immediately after evenly broadcast fertilizers by hand, using a rotavator. Then, the seeds according to the designed amount were sown using a wheat seeder. Rotary tillage and straw removing were employed in both wheat and maize seasons. |
RTSR | Rotary tillage with straw returning | The straw of the previous crop was evenly returned to the surface of the plot and then mixed to soil by rotary tillage. The other filed managements were the same with the rotary tillage with zero straw returning treatment. |
NTS0 | No-tillage with zero straw returning | The straw of the previous crop was removed from the plot 1–3 days before tillage. The seeds and fertilizers according to the designed amount were strip applied using a no-tillage fertilization and seeding integrated machine with the fertilizers in the middle of the two rows of crops. No-tillage and straw removing were employed in both wheat and maize seasons. |
NTSR | No-tillage with straw returning | The straw of the previous crop was evenly returned to the surface of the plot. The other filed managements were the same with the no-tillage with zero straw returning treatment. |
Year | Treatment | Winter Wheat | Summer Maize | ||||
---|---|---|---|---|---|---|---|
N Accumulation | P Accumulation | K Accumulation | N Accumulation | P Accumulation | K Accumulation | ||
2019–2020 | PTS0 | 154.5 b | 17.6 c | 181.2 bc | 162.9 d | 29.4 b | 229.0 c |
PTSR | 182.2 a | 22.4 a | 206.6 a | 184.6 b | 34.4 a | 325.3 a | |
RTS0 | 160.2 b | 18.3 bc | 180.6 bc | 157.5 de | 27.3 c | 238.4 c | |
RTSR | 179.6 a | 22.5 a | 203.5 ab | 178.1 c | 30.8 b | 284.7 b | |
NTS0 | 150.5 b | 19.0 b | 167.4 c | 153.7 e | 27.1 c | 229.1 c | |
NTSR | 176.5 a | 22.0 a | 208.1 a | 193.9 a | 34.8 a | 318.1 a | |
2020–2021 | PTS0 | 134.0 e | 19.8 c | 162.5 c | 153.9 c | 28.0 b | 259.9 b |
PTSR | 192.0 a | 27.2 a | 189.3 ab | 176.9 a | 33.0 a | 307.6 a | |
RTS0 | 145.5 d | 19.2 c | 160.8 c | 140.5 d | 24.6 c | 235.0 c | |
RTSR | 157.8 c | 22.0 b | 197.2 a | 166.8 b | 28.9 b | 276.8 b | |
NTS0 | 159.8 c | 19.5 c | 160.4 c | 143.6 d | 26.1 c | 229.5 c | |
NTSR | 180.8 b | 22.8 b | 174.3 bc | 177.7 a | 33.5 a | 297.9 a | |
2021–2022 | PTS0 | 174.7 b | 21.6 b | 170.4 c | 162.1 b | 29.1 b | 218.4 d |
PTSR | 216.9 a | 28.3 a | 213.9 a | 178.6 a | 32.9 a | 311.1 a | |
RTS0 | 134.4 c | 18.1 c | 140.7 d | 144.9 c | 25.5 c | 236.8 c | |
RTSR | 157.5 b | 20.8 bc | 169.4 c | 164.1 b | 28.8 b | 270.0 b | |
NTS0 | 128.7 c | 17.9 c | 134.9 d | 146.9 c | 26.3 bc | 212.9 d | |
NTSR | 161.9 b | 22.8 b | 193.1 b | 181.3 a | 33.5 a | 307.5 a | |
3-year average | PTS0 | 154.4 c | 19.6 c | 171.4 c | 159.6 c | 28.8 b | 235.7 c |
PTSR | 197.0 a | 26.0 a | 203.3 a | 180.0 a | 33.4 a | 314.7 a | |
RTS0 | 146.7 c | 18.5 c | 160.7 d | 147.6 d | 25.8 c | 236.7 c | |
RTSR | 165.0 b | 21.7 b | 190.0 b | 169.7 b | 29.5 b | 277.1 b | |
NTS0 | 146.3 c | 18.8 c | 154.2 d | 148.1 d | 26.5 c | 223.8 d | |
NTSR | 173.1 b | 22.5 b | 191.8 b | 184.3 a | 33.9 a | 307.8 a | |
F-value | Y | 3.8 | 13.0 * | 33.1 ** | 38.4 ** | 26.7 ** | 143.3 ** |
T | 21.9 ** | 20.9 ** | 9.6 ** | 43.2 ** | 62.0 ** | 32.3 ** | |
S | 225.7 ** | 276.8 ** | 127.0 ** | 981.9 ** | 191.0 ** | 781.4 ** | |
Y × T | 19.8 ** | 8.8 ** | 6.7 ** | 2.8 | 0.8 | 3.6 * | |
Y × S | 1.7 | 0.7 | 3.4 | 2.9 | 0.4 | 10.0 ** | |
T × S | 13.5 ** | 13.4 ** | 0.7 | 36.2 ** | 8.8 ** | 32.3 ** | |
S × T × Y | 3.5 * | 2.5 | 2.5 | 1.6 | 0.1 | 4.2 * |
Year | Treatment | Winter Wheat | Summer Maize | ||||
---|---|---|---|---|---|---|---|
N Internal Efficiency | P Internal Efficiency | K Internal Efficiency | N Internal Efficiency | P Internal Efficiency | K Internal Efficiency | ||
2019–2020 | PTS0 | 31.7 a | 277.7 a | 27.1 ab | 44.3 a | 244.8 bc | 31.5 a |
PTSR | 30.2 ab | 245.4 b | 26.8 ab | 42.4 b | 227.7 d | 24.0 d | |
RTS0 | 30.1 ab | 263.4 a | 26.7 ab | 44.5 a | 256.9 a | 29.4 b | |
RTSR | 28.7 b | 229.4 c | 25.5 ab | 41.2 bc | 237.8 c | 25.8 c | |
NTS0 | 31.1 a | 245.7 b | 28.0 a | 44.0 a | 249.9 ab | 29.6 b | |
NTSR | 28.5 b | 227.9 c | 24.2 b | 40.3 c | 224.4 d | 24.5 cd | |
2020–2021 | PTS0 | 37.3 a | 252.9 a | 30.8 a | 44.5 a | 244.9 b | 26.4 a |
PTSR | 29.4 c | 207.3 b | 29.9 ab | 41.6 b | 223.5 cd | 23.9 b | |
RTS0 | 33.2 b | 252.2 a | 30.1 ab | 45.2 a | 258.2 a | 27.0 a | |
RTSR | 34.3 b | 246.2 a | 27.5 bc | 40.8 b | 235.3 bc | 24.6 b | |
NTS0 | 27.0 d | 221.3 b | 26.9 c | 44.9 a | 247.1 ab | 28.1 a | |
NTSR | 27.1 d | 214.9 b | 28.1 abc | 40.4 b | 214.6 d | 24.1 b | |
2021–2022 | PTS0 | 36.8 bc | 298.2 a | 37.7 b | 54.2 ab | 302.5 abc | 40.3 a |
PTSR | 32.4 c | 248.5 b | 32.9 c | 52.5 bc | 284.9 bc | 30.1 c | |
RTS0 | 43.3 a | 321.1 a | 41.1 a | 56.4 a | 320.0 a | 34.5 b | |
RTSR | 42.1 a | 319.5 a | 39.1 ab | 50.9 c | 291.4 abc | 31.0 c | |
NTS0 | 39.5 ab | 284.4 ab | 37.7 b | 56.4 a | 317.3 ab | 38.9 a | |
NTSR | 39.6 ab | 281.0 ab | 33.0 c | 51.1 c | 276.8 c | 30.2 c | |
3-year average | PTS0 | 35.3 a | 276.2 a | 31.9 ab | 47.7 a | 264.1 ab | 32.7 a |
PTSR | 30.7 b | 233.7 c | 29.8 c | 45.5 b | 245.3 cd | 26.0 d | |
RTS0 | 35.6 a | 278.9 a | 32.6 a | 48.7 a | 278.4 a | 30.3 b | |
RTSR | 35.0 a | 265.0 ab | 30.7 c | 44.3 b | 254.8 bc | 27.1 c | |
NTS0 | 32.5 b | 250.5 bc | 30.9 bc | 48.4 a | 271.4 a | 32.2 a | |
NTSR | 31.7 b | 241.3 c | 28.4 d | 43.9 b | 238.6 d | 26.3 cd | |
F-value | Y | 444.6 ** | 254.6 ** | 1005.5 ** | 284.7 ** | 234.0 ** | 4066.0 ** |
T | 9.3 ** | 9.7 ** | 6.3 * | 0.7 | 9.9 ** | 4.3 * | |
S | 21.0 ** | 41.0 ** | 24.8 ** | 198.0 ** | 46.9 ** | 430.0 ** | |
Y × T | 13.3 ** | 4.5 * | 7.0 ** | 0.9 | 0.3 | 9.9 ** | |
Y × S | 0.1 | 0.8 | 4.4 * | 1.9 | 0.4 | 26.7 ** | |
T × S | 9.1 ** | 9.3 ** | 0.1 | 8.4 ** | 1.3 | 17.6 ** | |
S × T × Y | 4.4 * | 1.7 | 2.7 | 0.7 | 0.1 | 5.7 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.; Xiao, H.; Zhang, J.; Li, S.; Peng, Y.; Guo, J.-H.; Jiang, P.; Wang, R.; Chen, Y.; Li, C.; et al. Effects of Long-Term Positioning Tillage Method and Straw Management on Crop Yield and Nutrient Accumulation and Utilization in Dryland Wheat–Maize Double-Cropping System. Agronomy 2025, 15, 363. https://doi.org/10.3390/agronomy15020363
Huang M, Xiao H, Zhang J, Li S, Peng Y, Guo J-H, Jiang P, Wang R, Chen Y, Li C, et al. Effects of Long-Term Positioning Tillage Method and Straw Management on Crop Yield and Nutrient Accumulation and Utilization in Dryland Wheat–Maize Double-Cropping System. Agronomy. 2025; 15(2):363. https://doi.org/10.3390/agronomy15020363
Chicago/Turabian StyleHuang, Ming, Huishu Xiao, Jun Zhang, Shuang Li, Yanmin Peng, Jin-Hua Guo, Peipei Jiang, Rongrong Wang, Yushu Chen, Chunxia Li, and et al. 2025. "Effects of Long-Term Positioning Tillage Method and Straw Management on Crop Yield and Nutrient Accumulation and Utilization in Dryland Wheat–Maize Double-Cropping System" Agronomy 15, no. 2: 363. https://doi.org/10.3390/agronomy15020363
APA StyleHuang, M., Xiao, H., Zhang, J., Li, S., Peng, Y., Guo, J.-H., Jiang, P., Wang, R., Chen, Y., Li, C., Wang, H., Fu, G., Shaaban, M., Li, Y., Wu, J., & Li, G. (2025). Effects of Long-Term Positioning Tillage Method and Straw Management on Crop Yield and Nutrient Accumulation and Utilization in Dryland Wheat–Maize Double-Cropping System. Agronomy, 15(2), 363. https://doi.org/10.3390/agronomy15020363