Effect of Seed Treatment and Sowing Time on Microdochium spp. Caused Root Rot in Winter Wheat Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Severity of Root Rot
2.3. Pathogen Identification In Vitro
2.4. Meteorological Conditions
2.5. Statistical Analysis
3. Results
3.1. Pathogens on Winter Wheat Stem Base
3.2. Optimal Sowing Time
3.3. Late Sowing Time
3.4. Interactions Between Tested Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yanagi, M. Climate Change Impacts on Wheat Production: Reviewing Challenges and Adaptation Strategies. Adv. Resour. Res. 2024, 4, 89–107. [Google Scholar] [CrossRef]
- Jonavičienė, A.; Supronienė, S.; Semaškienė, R. Microdochium nivale and M. Majus as Causative Agents of Seedling Blight in Spring Cereals. Zemdirb. Agric. 2016, 103, 363–368. [Google Scholar] [CrossRef]
- Xu, F.; Yang, G.; Wang, J.; Song, Y.; Liu, L.; Zhao, K.; Li, Y.; Han, Z. Spatial Distribution of Root and Crown Rot Fungi Associated With Winter Wheat in the North China Plain and Its Relationship with Climate Variables. Front. Microbiol. 2018, 9, 1054. [Google Scholar] [CrossRef] [PubMed]
- Hudec, K.; Muchová, D. Influence of Temperature and Species Origin on Fusarium spp. and Microdochium nivale Pathogenicity to Wheat Seedlings. Plant Prot. Sci. 2010, 46, 59–65. [Google Scholar] [CrossRef]
- Murray, T.D.; Jones, S.S.; Adams, E. Snow Mold Diseases of Winter Wheat in Washington; Washington State University, Cooperative Extension Pullman: Pullman, WA, USA, 1999. [Google Scholar]
- Ponomareva, M.L.; Gorshkov, V.Y.; Ponomarev, S.N.; Korzun, V.; Miedaner, T. Snow Mold of Winter Cereals: A Complex Disease and a Challenge for Resistance Breeding. Theor. Appl. Genet. 2021, 134, 419–433. [Google Scholar] [CrossRef]
- Glinushkin, A.P.; Ovsyankina, A.V.; Kiseleva, M.I.; Kolomiets, T.M. Distribution of Fungi from the Genus Fusarium Link. on Cereals. Russ. Agric. Sci. 2018, 44, 235–240. [Google Scholar] [CrossRef]
- Matsumoto, N.; Hsiang, T. Snow Mold; Springer: Singapore, 2016; ISBN 978-981-10-0757-6. [Google Scholar]
- Bankina, B.; Bimšteine, G.; Paulovska, L.; Paura, L.; Pavloviča, O.; Kaņeps, J.; Neusa-Luca, I.; Roga, A.; Fridmanis, D. Effects of Soil Tillage and Crop Rotation on the Development of Wheat Stem Base Diseases. Can. J. Plant Pathol. 2019, 41, 435–442. [Google Scholar] [CrossRef]
- Zheng, B.; Chenu, K.; Fernanda Dreccer, M.; Chapman, S.C. Breeding for the Future: What Are the Potential Impacts of Future Frost and Heat Events on Sowing and Flowering Time Requirements for Australian Bread Wheat (Triticum aestivium) Varieties? Glob. Change Biol. 2012, 18, 2899–2914. [Google Scholar] [CrossRef]
- Dueri, S.; Brown, H.; Asseng, S.; Ewert, F.; Webber, H.; George, M.; Craigie, R.; Guarin, J.R.; Pequeno, D.N.L.; Stella, T.; et al. Simulation of Winter Wheat Response to Variable Sowing Dates and Densities in a High-Yielding Environment. J. Exp. Bot. 2022, 73, 5715–5729. [Google Scholar] [CrossRef]
- Tronsmo, A.M. Snow Moulds in a Changing Environment—A Scandinavian Perspective. In Plant and Microbe Adaptations to Cold in a Changing World; Springer: New York, NY, USA, 2013; pp. 305–317. [Google Scholar]
- Glynn, N.C.; Hare, M.C.; Edwards, S.G. Fungicide Seed Treatment Efficacy against Microdochium nivale and M. Majus In Vitro and In Vivo. Pest. Manag. Sci. 2008, 64, 793–799. [Google Scholar] [CrossRef]
- Matušinsky, P.; Svačinová, I.; Jonavičienė, A.; Tvarůžek, L. Long-Term Dynamics of Causative Agents of Stem Base Diseases in Winter Wheat and Reaction of Czech Oculimacula spp. and Microdochium spp. Populations to Prochloraz. Eur. J. Plant Pathol. 2017, 148, 199–206. [Google Scholar] [CrossRef]
- Váňová, M.; Matušinsky, P.; Javůrek, M.; Vach, M. Effect of Soil Tillage Practices on Severity of Selected Diseases in Winter Wheat. Plant Soil. Environ. 2011, 57, 245–250. [Google Scholar] [CrossRef]
- Ruza, A.; Bankina, B.; Strikauska, S. The Impact of Sowing Time on Sugar Content and Snow Mould in Winter Wheat. Acta Biol. Univ. Daugavp. 2011, 11, 88–95. [Google Scholar]
- Serenius, M.; Huusela-Veistola, E.; Avikainen, H.; Pahkala, K.; Laine, A. Effects of Sowing Time on Pink Snow Mould, Leaf Rust and Winter in Winter Rye Varieties in Finland. Agric. Food Sci. 2005, 14, 362–376. [Google Scholar] [CrossRef]
- Temirbekova, S.K.; Kulikov, I.M.; Ashirbekov, M.Z.; Afanasyeva, Y.V.; Beloshapkina, O.O.; Tyryshkin, L.G.; Zuev, E.V.; Kirakosyan, R.N.; Glinushkin, A.P.; Potapova, E.S.; et al. Evaluation of Wheat Resistance to Snow Mold Caused by Microdochium nivale (Fr) Samuels and I.C. Hallett under Abiotic Stress Influence in the Central Non-Black Earth Region of Russia. Plants 2022, 11, 699. [Google Scholar] [CrossRef]
- Bertrand, A.; Castonguay, Y.; Azaiez, A.; Hsiang, T.; Dionne, J. Cold-Induced Responses in Annual Bluegrass Genotypes with Differential Resistance to Pink Snow Mold (Microdochium nivale). Plant Sci. 2011, 180, 111–119. [Google Scholar] [CrossRef]
- Gaudet, D.A.; Wang, Y.; Frick, M.; Puchalski, B.; Penniket, C.; Ouellet, T.; Robert, L.; Singh, J.; Laroche, A. Low Temperature Induced Defence Gene Expression in Winter Wheat in Relation to Resistance to Snow Moulds and Other Wheat Diseases. Plant Sci. 2011, 180, 99–110. [Google Scholar] [CrossRef]
- Gołębiowska-Pikania, G.; Dziurka, M.; Wąsek, I.; Wajdzik, K.; Dyda, M.; Wędzony, M. Changes in Phenolic Acid Abundance Involved in Low Temperature and Microdochium nivale (Samuels and Hallett) Cross-Tolerance in Winter Triticale (x Triticosecale Wittmack). Acta Physiol. Plant 2019, 41, 38. [Google Scholar] [CrossRef]
- The State Plant Service Under the Ministry of Agriculture. Available online: https://vatzum.lrv.lt/public/canonical/1732878850/22434/Beicai%202024-11-29.pdf (accessed on 10 December 2024).
- Walker, A.; Auclair, C.; Gredt, M.; Leroux, P. First Occurrence of Resistance to Strobilurin Fungicides in Microdochium nivale and Microdochium majus from French Naturally Infected Wheat Grains. Pest. Manag. Sci. 2009, 65, 906–915. [Google Scholar] [CrossRef]
- Nielsen, L.K.; Justesen, A.F.; Jensen, J.D.; Jørgensen, L.N. Microdochium nivale and Microdochium majus in Seed Samples of Danish Small Grain Cereals. Crop Prot. 2013, 43, 192–200. [Google Scholar] [CrossRef]
- Kochiieru, M.; Veršulienė, A.; Feiza, V.; Feizienė, D.; Shatkovska, K.; Deveikytė, I. The Action of Environmental Factors on Carbon Dioxide Efflux per Growing Season and Non-Growing Season. Sustainability 2024, 16, 4391. [Google Scholar] [CrossRef]
- Lancashire, P.D.; Bleiholder, H.; van den Boom, T.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A Uniform Decimal Code for Growth Stages of Crops and Weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- EPPO. European and Mediterranean Plant Protection Organization Standart: PP-1/19(4)); EPPO: Luxembourg, 2003. [Google Scholar]
- Winter, M.; Koopmann, B.; Döll, K.; Karlovsky, P.; Kropf, U.; Schlüter, K.; von Tiedemann, A. Mechanisms Regulating Grain Contamination with Trichothecenes Translocated from the Stem Base of Wheat (Triticum aestivum) Infected with Fusarium culmorum. Phytopathology 2013, 103, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Dabkevičius, Z.; Gaurilčikienė, I. Augalų Ligų Apskaitos Metodai. In Žemės Ūkio Augalų Kenkėjai Ligos Ir Jų Apskaita; Lithuanian Institute of Agriculture: Vilnius, Lithuania, 2002; pp. 12–14. [Google Scholar]
- Mathur, S.B.; Kongsdal, O. Common Laboratory Seed Health Testing Methods for Detecting Fungi. Int. Seed Health Test. Assoc. 2003, 89–96. [Google Scholar]
- Leslie, J.F.; Summerell, B.A. (Eds.) The Fusarium Laboratory Manual; Wiley: Hoboken, NJ, USA, 2006; ISBN 9780813819198. [Google Scholar]
- Spiertz, H. Avenues to Meet Food Security. The Role of Agronomy on Solving Complexity in Food Production and Resource Use. Eur. J. Agron. 2012, 43, 1–8. [Google Scholar] [CrossRef]
- Bankina, B.; Kaneps, J.; Neusa-Luca, I.; Bimsteine, G.; Roga, A.; Fridmanis, D. Diversity of Fungi Associated with Wheat Stem Base Diseases. Agric. Food 2022, 10, 400–408. [Google Scholar]
- McBeath, J.B. Snow Mold-Plant-Antagonist Interactions: Survival of the Fittest under the Snow. Plant Health Instr. 2002, 1–4. [Google Scholar] [CrossRef]
- Kanapickas, A.; Vagusevičienė, I.; Sujetovienė, G. The Effects of Different Sowing Dates on the Autumn Development and Yield of Winter Wheat in Central Lithuania. Atmosphere 2024, 15, 738. [Google Scholar] [CrossRef]
- Bankina, B.; Ruza, A.; Katamadze, M.; Kreita, D.; Paura, L. Snow Mould Development under Conditions of Central Part of Latvia. Proc. Latv. Univ. Agric. 2012, 27, 1–5. [Google Scholar] [CrossRef]
- Jonavičienė, A. Beicų Įtaka Žieminių Kviečių Pašaknio Puviniams Ir Pavasariniam Pelėsiui. Žemės Ūkio Moksl. 2016, 23, 149–158. [Google Scholar] [CrossRef]
- Mao, Y.; Wu, J.; Song, W.; Zhao, B.; Zhao, H.; Cai, Y.; Wang, J.; Zhou, M.; Duan, Y. Occurrence and Chemical Control Strategy of Wheat Brown Foot Rot Caused by Microdochium Majus. Plant Dis. 2023, 107, 3523–3530. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.; Jayaweera, D.P.; Hunt, A.; Woodhall, J.W.; Ray, R.V. Yield Losses and Control by Sedaxane and Fludioxonil of Soilborne Rhizoctonia, Microdochium, and Fusarium Species in Winter Wheat. Plant Dis. 2021, 105, 2521–2530. [Google Scholar] [CrossRef] [PubMed]
- Hockemeyer, K.; Koch, P.L. Field Evaluations and in Vitro Sensitivity of Microdochium nivale to Succinate Dehydrogenase (SDHI) Fungicides. Int. Turfgrass Soc. Res. J. 2022, 14, 951–957. [Google Scholar] [CrossRef]
- Müllenborn, C.; Steiner, U.; Ludwig, M.; Oerke, E.-C. Effect of Fungicides on the Complex of Fusarium Species and Saprophytic Fungi Colonizing Wheat Kernels. Eur. J. Plant Pathol. 2008, 120, 157–166. [Google Scholar] [CrossRef]
Seed Treatment Fungicide | Active Ingredients, g L−1 | Dose, L t−1 |
---|---|---|
Bariton Super | Protioconazole 50; Tebuconazole 10; Fludioxonil 37.5 | 1.0 |
Kinto Plus | Fluxapyroxad 33.3; Triticonazole 33.3; Fludioxonil 33.3 | 2.0 |
Maxim 025 FS | Fludioxonil 25 | 1.5 |
Vibrance Star | Sedaxane 25; Fludioxonil 25; Triticonazole 20 | 2.0 |
September | October | November | December | January | February | March | |
---|---|---|---|---|---|---|---|
Average temperature, °C | |||||||
2020–2021 | 15.0 | 10.2 | 5.3 | 0.6 | −3.6 | −5.9 | 1.9 |
2021–2022 | 11.7 | 8.1 | 3.9 | −3.6 | −0.2 | 1.1 | 1.8 |
2022–2023 | 10.6 | 9.8 | 2.8 | −3.1 | 0.3 | −0.3 | 2.5 |
2023–2024 | 16.6 | 7.9 | 2.2 | 0.2 | −4.4 | 2.3 | 4.3 |
Long term average 1924–2023 | 12.2 | 6.9 | 2.0 | −2.2 | −4.6 | −4.1 | −0.5 |
Sum of precipitation, mm | |||||||
2020–2021 | 14.8 | 49.4 | 33.3 | 24.4 | 49.4 (28) * | 2.2 (27) * | 16.3 (2) * |
2021–2022 | 28.2 | 35.0 | 87.9 (10) * | 24.4 (28) * | 35.4 (4) * | 49.9 (4) * | 2.9 |
2022–2023 | 28.8 | 19.2 | 25.5 (13) * | 42.6 (19) * | 52.1 (17) * | 20.1 (24) * | 37.3 (17) * |
2023–2024 | 8.6 | 98 | 30.8 | 41.1 | 24.2 (27) * | 54.5 (9) * | 10.6 |
Long term average 1924–2023 | 50.0 | 49.6 | 44.9 | 38 | 32.0 | 26.2 | 28.1 |
Pathogens on Stem Base, % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sowing Time | Cultivar | 2022 | 2023 | 2024 | ||||||
Microdochium spp. | Fusarium spp. | sig. | Microdochium spp. | Fusarium spp. | sig. | Microdochium spp. | Fusarium spp. | sig. | ||
Optimal | Ada | 41.3 ± 6.3 | 2.5 ± 2.9 | <0.001 | 18.8 ± 6.3 | 0.0 ± 0.0 | <0.001 | 3.8 ± 2.5 | 1.3 ± 2.5 | 0.207 |
KWS Emil | 15.0 ± 9.1 | 1.3 ± 2.5 | 0.530 | 27.5 ± 8.7 | 0.0 ± 0.0 | 0.008 | 2.5 ± 2.9 | 2.5 ± 2.9 | 1.000 | |
Etana | 25.0 ± 9.1 | 3.8 ± 4.8 | 0.006 | 26.3 ± 6.3 | 0.0 ± 0.0 | <0.001 | 2.5 ± 2.9 | 0.0 ± 0.0 | 0.134 | |
Skagen | 40.0 ± 9.1 | 10.0 ± 5.8 | 0.001 | 11.3 ± 2.5 | 13.8 ± 7.5 | 0.356 | 0.0 ± 0.0 | 1.3 ± 2.5 | 0.391 | |
Patras | 16.3 ± 8.5 | 3.8 ± 4.8 | 0.032 | 25.0 ± 10 | 6.3 ± 4.8 | 0.0148 | 1.3 ± 2.5 | 0.0 ± 0.0 | 0.391 | |
Late | Ada | 41.3 ± 11.1 | 21.3 ± 7.5 | 0.024 | 66.3 ± 8.5 | 3.8 ± 2.5 | <0.001 | 5.0 ± 4.1 | 2.5 ± 2.9 | 0.356 |
KWS Emil | 5.0 ± 4.1 | 5.0 ± 4.1 | 1.000 | 60.0 ± 7.1 | 31.3 ± 13.1 | 0.008 | 5.0 ± 0.0 | 0.0 ± 0.0 | NA | |
Etana | 3.8 ± 4.8 | 2.5 ± 2.9 | 0.670 | 8.8 ± 4.8 | 8.8 ± 7.5 | 1 | 2.5 ± 2.9 | 0.0 ± 0.0 | NA | |
Skagen | 30.0 ± 9.1 | 11.3 ± 6.3 | 0.015 | 37.5 ± 11.9 | 28.8 ± 10.3 | 0.309 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.215 | |
Patras | 13.8 ± 4.8 | 5.0 ± 5.8 | 0.043 | 86.3 ± 8.5 | 12.5 ± 2.9 | <0.001 | 1.3 ± 2.5 | 1.3 ± 2.5 | 0.391 |
Year | Seed Treatment Fungicide | Cultivar | |||||
---|---|---|---|---|---|---|---|
Ada | Etana | KWS Emil | Patras | Skagen | Mean | ||
2021 | Control | 61.9 aA ± 6.3 | 47.2 bcA ± 2.3 | 52.2 bA ± 5.9 | NA | 43.9 cA ± 3.8 | 51.3 A ± 8.3 |
Bariton Super | 56.7 aAB ± 7.4 | 42.2 bA ± 2.0 | 48.6 abA ± 4.0 | NA | 42.5 bA ± 6.4 | 47.5 AB ± 7.8 | |
Kinto Plus | 45.6 abC ± 7.8 | 42.2 abA ± 1.6 | 49.7 aA ± 4.3 | NA | 41.4 bA ± 3.4 | 44.7 B ± 5.5 | |
Maxim | 47.8 aBC ± 8.7 | 41.7 aA ± 5.5 | 52.8 aA ± 2.9 | NA | 47.5 aA ± 9.7 | 47.4 AB ± 7.6 | |
Vibrance Star | 45.3 abC ± 1.9 | 42.5 bA ± 5.0 | 51.1 aA ± 4.8 | NA | 41.9 bA ± 3.2 | 45.2 B ± 5.1 | |
Mean | 51.4 a ± 9.2 | 43.2 b ± 3.9 | 50.9 a ± 4.3 | NA | 43.4 b ± 5.7 | ||
2022 | Control | 31.4 bA ± 3.3 | 39.2 aA ± 1.4 | 32.2 bA ± 3.7 | 34.2 bA ± 1.9 | 40.3 aA ± 3.7 | 35.4 A ± 4.6 |
Bariton Super | 31.4 aA ± 2.6 | 29.2 aBC ± 4.6 | 27.2 aAB ± 1.4 | 31.7 aA ± 3.5 | 31.7 aB ± 1.4 | 30.2 BC ± 3.2 | |
Kinto Plus | 31.1 abA ± 2.4 | 24.2 bcC ± 5.8 | 21.9 cB ± 8.7 | 31.4 abA ± 1.4 | 32.8 aB ± 1.9 | 28.3 C ± 6.2 | |
Maxim | 31.4 aA ± 1.7 | 34.2aAB ± 1.9 | 26.4 bAB ± 5.3 | 31.4 aA ± 1.7 | 33.3 aB ± 2.4 | 31.3 A ± 3.8 | |
Vibrance Star | 31.1 abA ± 1.3 | 25.3 cC ± 2.9 | 27.8 bcAB ± 4.0 | 31.9 aA ± 2.3 | 31.1 abB ± 0.1 | 29.4 BC ± 3.4 | |
Mean | 31.3 ab ± 2.1 | 30.4 b ± 6.6 | 27.1 c ± 5.7 | 32.1 ab ± 2.3 | 33.8 a ± 3.9 | ||
2023 | Control | 51.1 aA ± 4.7 | 49.4 aA ± 3.2 | 35.8 bA ± 3.6 | 26.4 cA ± 4.6 | 46.4 aA ± 9.6 | 41.8 A ± 10.8 |
Bariton Super | 34.7 aB ± 4.2 | 39.7 aA ± 5.5 | 35.1 aA ± 6.4 | 21.4 bA ± 2.9 | 38.9 aAB ± 4.0 | 34.0 B ± 8 | |
Kinto Plus | 34.4 bB ± 2.9 | 41.9 aA ± 4.2 | 24.4 cB ± 4.0 | 15.3 dB ± 2.5 | 33.3 bB ± 3.3 | 29.9 B ± 9.9 | |
Maxim | 35.6 aB ± 2.2 | 42.8 aA ± 12.8 | 21.1 bB ± 1.5 | 10.8 bB ± 4.8 | 42.5 aAB ± 6.8 | 30.6 B ± 14.3 | |
Vibrance Star | 35.0 bB ± 4.6 | 43.6 aA ± 5.0 | 20.3 cB ± 3.7 | 10.6 dB ± 3.7 | 34.7 bB ± 5.8 | 28.8 B ± 12.8 | |
Mean | 38.2 b ± 7.5 | 43.5 a ± 7.1 | 27.3 c ± 7.9 | 16.9 d ± 7.2 | 39.2 ab ± 7.5 | ||
2024 | Control | 27.8 bcA ± 4.7 | 33.1 bA ± 2.3 | 48.3 aA ± 6.6 | 20.6 cA ± 6.7 | 25.6 bcA ± 9 | 31.1 A ± 11.3 |
Bariton Super | 16.9 bcBC ± 1.9 | 23.9 bB ± 2.3 | 35.0 aB ± 7.3 | 13.9 cAB ± 2.1 | 14.4 cB ± 7.2 | 20.8 B ± 9.2 | |
Kinto Plus | 13.6 bC ± 4.2 | 23.9 aB ± 3.5 | 28.9aB ± 3.0 | 9.7 bB ± 3.9 | 12.2 bB ± 6.5 | 17.7 B ± 8.5 | |
Maxim | 19.4 bB ± 2.9 | 28.9 aAB ± 3.7 | 33.3 aB ± 4.2 | 15.3bcAB ± 3.4 | 13.1 cB ± 3.1 | 22.0 B ± 8.6 | |
Vibrance Star | 18.1 bBC ± 2.9 | 25.6 aB ± 4.0 | 32.5 aB ± 6.9 | 13.3 bcAB ± 5.5 | 7.8 cB ± 2.4 | 19.4 B ± 9.9 | |
Mean | 19.2 c ± 5.7 | 27.1 b ± 4.6 | 35.6 a ± 8.6 | 14.6 d ± 5.5 | 14.6 d ± 8.2 |
Year | Seed Treatment Fungicide | Cultivar | |||||
---|---|---|---|---|---|---|---|
Ada | Etana | KWS Emil | Patras | Skagen | Mean | ||
2021 | Control | 23.1 bAB ± 10.6 | 13.4 bA ± 2.1 | 45.0 aA ± 7.9 | NA | 38.9 aA ± 13.6 | 30.1 A ± 15.5 |
Bariton Super | 18.6 bB ± 2.9 | 6.3 cB ± 0.6 | 30.3 aB ± 9.6 | NA | 20.6 abB ± 9.1 | 18.9 B ± 10.7 | |
Kinto Plus | 27.2 aAB ± 3.2 | 5.1 cB ± 1.2 | 24.2 abB ± 1.7 | NA | 20.0 bB ± 6.5 | 19.1 B ± 9.4 | |
Maxim | 23.6 aAB ± 7.0 | 6.3 bB ± 1.2 | 30.0 aB ± 5.2 | NA | 25.8 aAB ± 9.7 | 21.4 B ± 11 | |
Vibrance Star | 30.8 aA ± 6.2 | 5.0 cB ± 0.6 | 26.9 abB ± 4.5 | NA | 22.8 bB ± 5.3 | 21.4 B ± 11 | |
Mean | 24.7 b ± 7.3 | 7.2 c ± 3.4 | 31.3 a ± 9.3 | NA | 25.6 b ± 10.9 | ||
2022 | Control | 22.8 bA ± 1.9 | 5.6 dA ± 1.3 | 21.4 bA ± 3.7 | 14.2 cA ± 4.0 | 32.5 aA ± 8.4 | 19.3 A ± 10.1 |
Bariton Super | 19.4 aA ± 5.6 | 8.3 bA ± 5.8 | 20 aAB ± 3.6 | 11.1 bA ± 3.3 | 12.8 bB ± 2.3 | 14.3 B ± 6.1 | |
Kinto Plus | 19.4 aA ± 2.6 | 9.2 cA ± 2.3 | 15.3 bB ± 1.9 | 10.8 cA ± 3.9 | 12.2 bcB ± 2.2 | 13.4 B ± 4.4 | |
Maxim | 20.6 aA ± 5.8 | 7.2 bA ± 5.0 | 15.6 abB ± 2.4 | 11.9 bA ± 5.4 | 14.4 abB ± 3.3 | 13.9 B ± 6.5 | |
Vibrance Star | 20.0 aA ± 2.7 | 6.1 cA ± 0.6 | 15.0 bB ± 4.5 | 12.8 bA ± 2.3 | 12.5 bB ± 3.2 | 13.3 B ± 5.3 | |
Mean | 20.4 a ± 3.8 | 7.3 d ± 4.2 | 17.4 ab ± 4.1 | 12.2 c ± 3.7 | 16.9 b ± 9 | ||
2023 | Control | 57.5 aA ± 1.7 | 32.5 cA ± 11 | 52.2 aA ± 7.4 | 49.2 abA ± 4.2 | 36.7 bcA ± 12.2 | 45.6 A ± 12.2 |
Bariton Super | 42.2 aB ± 8.0 | 15.8 bB ± 7.9 | 46.4 aAB ± 23.3 | 34.4 abB ± 5.4 | 31.1 abAB ± 4.4 | 34.0 B ± 15.2 | |
Kinto Plus | 32.5 aC ± 7.9 | 10.0 bB ± 7.2 | 32.2 aB ± 2.4 | 25.0 aBC ± 6.7 | 31.4 aAB ± 4.5 | 26.2 B ± 10.3 | |
Maxim | 35.0b BC ± 2.3 | 8.3 dB ± 4.3 | 44.7 aAB ± 4.4 | 31.1 bBC ± 6.3 | 23.9 cB ± 4.9 | 28.6 B ± 13.1 | |
Vibrance Star | 34.2 abBC ± 5.1 | 15 cB ± 10.4 | 38.1 aAB ± 3.5 | 23.9 bcC ± 7.1 | 27.8 abAB ± 8.4 | 27.8 B ± 10.5 | |
Mean | 40.3 a ± 10.7 | 16.3 c ± 11.6 | 42.7 a ± 12.3 | 32.7 b ± 10.8 | 30.2 b ± 8 | ||
2024 | Control | 11.7 bA ± 2.9 | 7.5 bA ± 3.7 | 21.9 aA ± 8.8 | 23.9 aA ± 2.6 | 8.1 bA ± 3.6 | 14.6 A ± 8.3 |
Bariton Super | 8.6 abAB ± 2.9 | 3.1 bAB ± 2.6 | 10.6 aB ± 3.5 | 8.6 abC ± 5.9 | 5.8 abA ± 2.5 | 7.3 B ± 4.2 | |
Kinto Plus | 6.7 abB ± 2.7 | 3.1 bAB ± 3.0 | 10.6 aB ± 3.5 | 6.7 abC ± 3.0 | 5.6 bA ± 3.0 | 6.5 B ± 3.7 | |
Maxim | 6.1 bcB ± 1.1 | 2.5 cB ± 1.4 | 14.4 aAB ± 4.7 | 17.2 aB ± 3.5 | 7.5 bA ± 1.9 | 9.6 B ± 6.1 | |
Vibrance Star | 8.9 aAB ± 3.5 | 3.1 bAB ± 2.5 | 8.6 aB ± 3.6 | 9.4 aC ± 2.6 | 6.1 abA ± 2.1 | 7.2 B ± 3.6 | |
Mean | 8.4 b ± 3.2 | 3.8 c ± 3.1 | 13.2 a ± 6.7 | 13.2 a ± 7.4 | 6.6 bc ± 2.6 |
Interaction | DF | Mean Square | F Value | Significance | DF | Mean Square | F Value | Significance |
---|---|---|---|---|---|---|---|---|
2021 | 2023 | |||||||
sowing time × cultivar | 3 | 678.189 | 18.81 | <0.001 | 4 | 3271.884 | 71.21 | <0.001 |
sowing time × STF | 4 | 59.486 | 1.65 | 0.166 | 4 | 77.353 | 1.68 | 0.157 |
cultivar × STF | 12 | 20.055 | 0.56 | 0.873 | 16 | 63.578 | 1.38 | 0.157 |
sowing time × cultivar × STF | 12 | 137.628 | 3.82 | <0.001 | 16 | 66.589 | 1.45 | 0.126 |
2022 | 2024 | |||||||
sowing time × cultivar | 4 | 334.381 | 23.83 | <0.001 | 4 | 893.191 | 49.74 | <0.001 |
sowing time × STF | 4 | 7.945 | 0.57 | 0.688 | 4 | 40.664 | 2.26 | 0.065 |
cultivar × STF | 16 | 48.149 | 3.43 | <0.001 | 16 | 26.523 | 1.48 | 0.115 |
sowing time × cultivar × STF | 16 | 42.359 | 3.02 | <0.001 | 16 | 31.440 | 1.75 | 0.043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabeckis, A.; Semaškienė, R.; Jonavičienė, A.; Venslovas, E.; Lavrukaitė, K.; Almogdad, M. Effect of Seed Treatment and Sowing Time on Microdochium spp. Caused Root Rot in Winter Wheat Cultivars. Agronomy 2025, 15, 330. https://doi.org/10.3390/agronomy15020330
Sabeckis A, Semaškienė R, Jonavičienė A, Venslovas E, Lavrukaitė K, Almogdad M. Effect of Seed Treatment and Sowing Time on Microdochium spp. Caused Root Rot in Winter Wheat Cultivars. Agronomy. 2025; 15(2):330. https://doi.org/10.3390/agronomy15020330
Chicago/Turabian StyleSabeckis, Aurimas, Roma Semaškienė, Akvilė Jonavičienė, Eimantas Venslovas, Karolina Lavrukaitė, and Mohammad Almogdad. 2025. "Effect of Seed Treatment and Sowing Time on Microdochium spp. Caused Root Rot in Winter Wheat Cultivars" Agronomy 15, no. 2: 330. https://doi.org/10.3390/agronomy15020330
APA StyleSabeckis, A., Semaškienė, R., Jonavičienė, A., Venslovas, E., Lavrukaitė, K., & Almogdad, M. (2025). Effect of Seed Treatment and Sowing Time on Microdochium spp. Caused Root Rot in Winter Wheat Cultivars. Agronomy, 15(2), 330. https://doi.org/10.3390/agronomy15020330