Effects of Hydrothermal Carbonization Conditions on the Characteristics of Hydrochar and Its Application as a Soil Amendment: A Review
Abstract
:1. Introduction
2. Process Parameters on HC Characteristics
2.1. Feedstocks
Feedstock | Temperature (°C) | Time (h) | Solid-Liquid Ratio | Reference |
---|---|---|---|---|
Microcrystalline cellulose, hemicellulose lignin | 225, 245, 265 | 20 | 1:3 | [51] |
Microcrystalline cellulose | 220, 260, 300, 340, 380, 420 | 0.5 | 1:10 | [13] |
Cabbage slurry | 190, 260 | 1, 6, 12 | Self | [52] |
Corn straw | 240 | 2 | 1:1, 1:2, 1:3, 1:4,1:5, 1:10 | [53] |
Corn straw | 160, 190, 220, 250, 280 | 3 | 1:5, 1:10, 1:15, 1:20, 1:25 | [54] |
Date palm leaflets | 250 | 3 | 1:3 | [55] |
Garden, park waste | 180 | 1 | 1:4 | [27] |
Maize silage feedstock | 190, 210, 230 | 6 | 1:6 | [56] |
Orange peel | 200 | 2, 4, 8, 12, 24 | Self (60%) | [57] |
Rice straw | 200, 250, 300 | 2 | 1:10 | [22] |
Rice straw, corn straw, poplar wood, Enteromorpha | 300 | 2 | 1:6 | [21] |
Straw | 150, 300 | 0.5, 2, 8 | 1:30 | [58] |
Spent mushroom substrate | 220 | 1 | 1:10 | [59] |
Sweet grasses, sedge, herb, rushes | 180, 200, 220, 240 | 0.25, 1, 5, 12 | 1:2.5 | [60] |
Watermelon peel | 190, 260 | 1, 6, 12 | self | [35] |
Wetland plant samples | 200, 220, 240, 260 | 2 | 1:10 | [61] |
Wheat straw | 260 | 2 | 1:10 | [62] |
Wheat straw | 260 | 1 | 1:10 | [63] |
Cow manure | 180, 260 | 1 | 1:10 | [46] |
Cow manure | 200, 220, 240, 260, 280 | 4 | 1:20 | [64] |
Cow manure, corn stalk, Myriophyllum aquaticum | 220 | 1 | 1:9 | [10] |
Cow manure, reed straw | 260 | 2 | 1:10 | [65] |
Cow manure, reed straw | 260 | 1 | 1:10 | [66] |
Cow manure, sesbania straw, reed straw | 220 | 1 | 1:10 | [67] |
Cow manure, pig manure | 180, 220, 260 | 1 | 1:10 | [44,45,68] |
Yak dung | 150, 250, 300 | 0.5 | 1:11 | [69] |
Agro-industrial sludge | 190 | 2 | Self | [70] |
Agro-industrial thickened digested sludge | 190 | 1 | 1:20 | [71] |
Dairy Processing Sludge | 160, 180, 200, 220 | 1 | Self (80–90%) | [36] |
Digestate sludge | 200 | 3 | self | [72,73] |
Freshwater sludge | 140, 160, 180, 200 | 4 | 1.5:20 | [74] |
Municipal sludge | 220 | 1 | Self | [37] |
Paper sludge | 200 | 2 | Self | [75] |
Paper sludge | 180, 210, 240, 270, 300 | 0.5 | 1:15 | [76] |
Sewage sludge | 190 | 4 | self | [50] |
Sewage sludge | 120, 150, 180, 210, 240, 270, 300 | 0.5, 1, 2, 3 | Self (85) | [16] |
Waste activated sludge | 250 | 2 | Self (85–95%) | [47] |
Waste activated sludge | 200, 250, 300 | 0.5,1, 2 | 1:10 | [48] |
Cattle paunch waste | 150, 180, 200 | 1, 4 | 1:4, 1:9 | [77] |
Grape pomace | 175, 200, 225, 250, 275 | 0.16,0.5, 1 | 1:4 | [78] |
Grape pomace | 180, 220, 250 | 0.5, 1, 3, 8 | 1:1 | [79] |
Kitchen waste (cellulose, skeleton, protein, and starch) | 180, 220, 260 | 1 | 1:10 | [39] |
Vinasse and sugarcane bagasse | 230 | 13 | 1:20 | [43,80] |
2.2. HTC Parameters
2.2.1. Temperature
2.2.2. Residence Times
2.2.3. Solid–Liquid Ratio
3. Impact of HC on Soil
3.1. WHC
3.2. Nutrients
3.3. pH
3.4. Harmful Compounds and Improvements
4. Future
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Feng, Y.; Xie, H.; Wu, P.; Wang, M.; Wang, B.; Zhang, Q.; Zhang, S.; Liu, Z. A bibliographic study reviewing the last decade of hydrochar in environmental application: History, status quo, and trending research paths. Biochar 2023, 5, 12. [Google Scholar] [CrossRef]
- Wang, B.; Shang, C.; Xie, H.; Sun, H.; Zhang, Q.; Xue, L.; Tack, F.M.G.; Hou, D.; Feng, Y.; Rinklebe, J. Unraveling natural aging-induced properties change of sludge-derived hydrochar and enhanced cadmium sorption site heterogeneity. Biochar 2022, 4, 34. [Google Scholar] [CrossRef]
- Song, C.; Shan, S.; Yang, C.; Zhang, C.; Zhou, X.; Ma, Q.; Yrjala, K.; Zheng, H.; Cao, Y. The comparison of dissolved organic matter in hydrochars and biochars from pig manure. Sci. Total Environ. 2020, 720, 137423. [Google Scholar] [CrossRef]
- Dan, Y.; Wang, X.; Ji, M.; Sang, W.; Shen, Z.; Zhang, Y. Influence of temperature change on the immobilization of soil Pb and Zn by hydrochar: Roles of soil microbial modulation. Environ. Pollut. 2023, 320, 121109. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Sun, R.; Cao, Y. Neutralization of red mud using bio-acid generated by hydrothermal carbonization of waste biomass for potential soil application. J. Clean. Prod. 2020, 271, 122525. [Google Scholar] [CrossRef]
- Belete, Y.Z.; Mau, V.; Spitzer, R.Y.; Posmanik, R.; Jassby, D.; Iddya, A.; Kassem, N.; Tester, J.W.; Gross, A. Hydrothermal carbonization of anaerobic digestate and manure from a dairy farm on energy recovery and the fate of nutrients. Bioresour. Technol. 2021, 333, 125164. [Google Scholar] [CrossRef]
- Huang, R.X.; Fang, C.; Lu, X.W.; Jiang, R.F.; Tang, Y.Z. Transformation of Phosphorus during (Hydro)thermal Treatments of Solid Biowastes: Reaction Mechanisms and Implications for P Reclamation and Recycling. Environ. Sci. Technol. 2017, 51, 10284–10298. [Google Scholar] [CrossRef]
- Gupta, D.; Mahajani, S.M.; Garg, A. Hydrothermal carbonization of household wet waste-characterization of hydrochar and process wastewater stream. Bioresour. Technol. 2021, 342, 125972. [Google Scholar] [CrossRef]
- Khosravi, A.; Zheng, H.; Liu, Q.; Hashemi, M.; Tang, Y.; Xing, B. Production and characterization of hydrochars and their application in soil improvement and environmental remediation. Chem. Eng. J. 2022, 430, 133142. [Google Scholar] [CrossRef]
- Lang, Q.; Guo, X.; Zou, G.; Wang, C.; Li, Y.; Xu, J.; Zhao, X.; Li, J.; Liu, B.; Sun, Q. Hydrochar reduces oxytetracycline in soil and Chinese cabbage by altering soil properties, shifting microbial community structure and promoting microbial metabolism. Chemosphere 2023, 338, 139578. [Google Scholar] [CrossRef]
- Cui, Z.; Shah, A. Energy and Element Fate of Hydrochar from Hydrothermal Carbonization of Dairy Manure Digestate. Bioenergy Res. 2022, 17, 1167–1178. [Google Scholar] [CrossRef]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefin.-Biofpr. 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Saha, N.; McGaughy, K.; Reza, M.T. Elucidating hydrochar morphology and oxygen functionality change with hydrothermal treatment temperature ranging from subcritical to supercritical conditions. J. Anal. Appl. Pyrolysis 2020, 152, 104965. [Google Scholar] [CrossRef]
- Xia, Y.; Luo, H.; Li, D.; Chen, Z.; Yang, S.; Liu, Z.; Yang, T.; Gai, C. Efficient immobilization of toxic heavy metals in multi-contaminated agricultural soils by amino-functionalized hydrochar: Performance, plant responses and immobilization mechanisms. Environ. Pollut. 2020, 261, 114217. [Google Scholar] [CrossRef]
- Roehrdanz, M.; Greve, T.; de Jager, M.; Buchwald, R.; Wark, M. Co-composted hydrochar substrates as growing media for horticultural crops. Sci. Hortic. 2019, 252, 96–103. [Google Scholar] [CrossRef]
- Wang, L.; Chang, Y.; Liu, Q. Fate and distribution of nutrients and heavy metals during hydrothermal carbonization of sewage sludge with implication to land application. J. Clean. Prod. 2019, 225, 972–983. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.-J.; Hao, X.; Peng, P.; Shi, J.-Y.; Peng, F.; Sun, R.-C. Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: A review. Adv. Compos. Hybrid Mater. 2020, 3, 267–284. [Google Scholar] [CrossRef]
- Ischia, G.; Berge, N.D.; Bae, S.; Marzban, N.; Roman, S.; Farru, G.; Wilk, M.; Kulli, B.; Fiori, L. Advances in Research and Technology of Hydrothermal Carbonization: Achievements and Future Directions. Agronomy 2024, 14, 955. [Google Scholar] [CrossRef]
- Teng, F.; Zhang, Y.; Wang, D.; Shen, M.; Hu, D. Iron-modified rice husk hydrochar and its immobilization effect for Pb and Sb in contaminated soil. J. Hazard. Mater. 2020, 398, 122977. [Google Scholar] [CrossRef]
- Yu, S.; Xue, L.; Feng, Y.; Liu, Y.; Song, Z.; Mandal, S.; Yang, L.; Sun, Q.; Xing, B. Hydrochar reduced NH3 volatilization from rice paddy soil: Microbial-aging rather than water-washing is recommended before application. J. Clean. Prod. 2020, 268, 122233. [Google Scholar] [CrossRef]
- Miao, J.; Ji, M.; Xiao, L.; Liu, F.; Wu, M.; Sang, W. Unraveling the fascinating connection between hydrochar feedstock and methane emissions in rice paddy soil: Insights from microorganisms and organic matter. Chem. Eng. J. 2023, 472, 144957. [Google Scholar] [CrossRef]
- Ji, M.; Sang, W.; Tsang, D.C.W.; Usman, M.; Zhang, S.; Luo, G. Molecular and microbial insights towards understanding the effects of hydrochar on methane emission from paddy soil. Sci. Total Environ. 2020, 714, 136769. [Google Scholar] [CrossRef]
- Lang, Q.; Zhang, B.; Liu, Z.; Jiao, W.; Xia, Y.; Chen, Z.; Li, D.; Ma, J.; Gai, C. Properties of hydrochars derived from swine manure by CaO assisted hydrothermal carbonization. J. Environ. Manag. 2019, 233, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Mariuzza, D.; Lin, J.-C.; Volpe, M.; Fiori, L.; Ceylan, S.; Goldfarb, J.L. Impact of Co-Hydrothermal carbonization of animal and agricultural waste on hydrochars’ soil amendment and solid fuel properties. Biomass Bioenergy 2022, 157, 106329. [Google Scholar] [CrossRef]
- Wang, L.; Chi, Y.; Du, K.; Zhou, Z.; Wang, F.; Huang, Q. Hydrothermal treatment of food waste for bio-fertilizer production: Formation and regulation of humus substances in hydrochar. Sci. Total Environ. 2022, 838, 155900. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.R.; Cunha, O.d.M.; Bisinoti, M.C.; Ferreira, O.P.; Moreira, A.B.; Melo, C.A. Hydrochars produced with by-products from the sucroenergetic industry: A study of extractor solutions on nutrient and organic carbon release. Environ. Sci. Pollut. Res. 2019, 26, 9137–9145. [Google Scholar] [CrossRef] [PubMed]
- Suarez, E.; Tobajas, M.; Mohedano, A.F.F.; Reguera, M.; Esteban, E.; de la Rubia, A. Effect of garden and park waste hydrochar and biochar in soil application: A comparative study. Biomass Convers. Biorefinery 2023, 13, 16479–16493. [Google Scholar] [CrossRef]
- Karatas, O.; Khataee, A.; Kalderis, D. Recent progress on the phytotoxic effects of hydrochars and toxicity reduction approaches. Chemosphere 2022, 298, 134357. [Google Scholar] [CrossRef]
- Sharma, R.; Jasrotia, K.; Singh, N.; Ghosh, P.; Srivastava, S.; Sharma, N.R.; Singh, J.; Kanwar, R.; Kumar, A. A Comprehensive Review on Hydrothermal Carbonization of Biomass and its Applications. Chem. Afr. 2020, 3, 1–19. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J.; Qian, J.; Zhao, Y.; Wang, T.; Zhai, Y. Biowaste hydrothermal carbonization for hydrochar valorization: Skeleton structure, conversion pathways and clean biofuel applications. Bioresour. Technol. 2021, 324, 124686. [Google Scholar] [CrossRef]
- Mahmood Al-Nuaimy, M.N.; Azizi, N.; Nural, Y.; Yabalak, E. Recent advances in environmental and agricultural applications of hydrochars: A review. Environ. Res. 2023, 250, 117923. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Yang, L.; Leng, S.; Zhang, W.; Zhou, Y.; Peng, H.; Li, H.; Hu, Y.; Jiang, S.; Li, H. A review on nitrogen transformation in hydrochar during hydrothermal carbonization of biomass containing nitrogen. Sci. Total Environ. 2021, 756, 143679. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wei, W.; Wang, D.; Ni, B.-J. Improving nutrients removal and energy recovery from wastes using hydrochar. Sci. Total Environ. 2021, 783, 146980. [Google Scholar] [CrossRef]
- Roy, P.; Dutta, A.; Gallant, J. Evaluation of the life cycle of hydrothermally carbonized biomass for energy and horticulture application. Renew. Sustain. Energy Rev. 2020, 132, 110046. [Google Scholar] [CrossRef]
- Chen, X.; Lin, Q.; He, R.; Zhao, X.; Li, G. Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresour. Technol. 2017, 241, 236–243. [Google Scholar] [CrossRef]
- Kwapinska, M.; Pisano, I.; Leahy, J.J. Hydrothermal carbonization of milk/dairy processing sludge: Fate of plant nutrients. J. Environ. Manag. 2023, 345, 118931. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tian, X.; Zhang, Q.; Xie, H.; Wang, B.; Feng, Y. Hydrochar-embedded carboxymethyl cellulose-g-poly(acrylic acid) hydrogel as stable soil water retention and nutrient release agent for plant growth. J. Bioresour. Bioprod. 2022, 7, 116–127. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Ramirez, J.A.; Outram, J.G.; Dunn, K.; Jensen, P.D.; O’Hara, I.M.; Zhang, Z. Effects of lignocellulosic biomass type on the economics of hydrothermal treatment of digested sludge for solid fuel and soil amendment applications. Waste Manag. 2023, 156, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, B.; Ding, S.; Zhao, M.; Ji, Y.; Xie, W.; Feng, Z.; Feng, Y. Hydrothermal carbonization of kitchen waste: An analysis of solid and aqueous products and the application of hydrochar to paddy soil. Sci. Total Environ. 2022, 850, 157953. [Google Scholar] [CrossRef] [PubMed]
- Sliz, M.; Tuci, F.; Czerwinska, K.; Fabrizi, S.; Lombardi, L.; Wilk, M. Hydrothermal carbonization of the wet fraction from mixed municipal solid waste: Hydrochar characteristics and energy balance. Waste Manag. 2022, 151, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; Su, L.; Cheng, H.; Wang, Y.; Min, J.; Chen, M.; Li, H.; Chen, S.; Wang, S.; Yu, G.; et al. Insights into the potential release of dissolved organic matter from different agro-forest waste-derived hydrochars: A pilot study. J. Clean. Prod. 2021, 319, 128676. [Google Scholar] [CrossRef]
- Xiong, J.-b.; Pan, Z.-q.; Xiao, X.-f.; Huang, H.-j.; Lai, F.-y.; Wang, J.-x.; Chen, S.-w. Study on the hydrothermal carbonization of swine manure: The effect of process parameters on the yield/properties of hydrochar and process water. J. Anal. Appl. Pyrolysis 2019, 144, 104692. [Google Scholar] [CrossRef]
- Melo, C.A.; Soares Junior, F.H.; Bisinoti, M.C.; Moreira, A.B.; Ferreira, O.P. Transforming Sugarcane Bagasse and Vinasse Wastes into Hydrochar in the Presence of Phosphoric Acid: An Evaluation of Nutrient Contents and Structural Properties. Waste Biomass Valoriz. 2017, 8, 1139–1151. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, N.; Fu, H.; Xie, H.; Xue, L.; Feng, Y.; Poinern, G.E.J.; Chen, D. Manure-derived hydrochar superior to manure: Reducing non-point pollution risk by altering nitrogen and phosphorus fugacity in the soil-water system. Waste Manag. 2023, 168, 440–451. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, N.; Xie, H.; Li, J.; Li, G.; Xue, L.; Fu, H.; Feng, Y.; Poinern, G.E.J.; Chen, D. Livestock manure-derived hydrochar is more inclined to mitigate soil Global Warming Potential than raw materials based on soil stoichiometry analysis. Biol. Fertil. Soils 2023, 59, 459–472. [Google Scholar] [CrossRef]
- Ding, S.; Wang, B.; Feng, Y.; Fu, H.; Feng, Y.; Xie, H.; Xue, L. Livestock manure-derived hydrochar improved rice paddy soil nutrients as a cleaner soil conditioner in contrast to raw material. J. Clean. Prod. 2022, 372, 133798. [Google Scholar] [CrossRef]
- Xue, G.; Zhang, L.; Fan, X.; Luo, K.; Guo, S.; Chen, H.; Li, X.; Jian, Q. Responses of soil fertility and microbiomes of atrazine contaminated soil to remediation by hydrochar and persulfate. J. Hazard. Mater. 2022, 435, 128944. [Google Scholar] [CrossRef] [PubMed]
- Khoury, O.; Gaur, R.; Zohar, M.; Erel, R.; Laor, Y.; Posmanik, R. Phosphorus recycling from waste activated sludge using the hydrothermal platform: Recovery, solubility and phytoavailability. Waste Manag. 2023, 169, 23–31. [Google Scholar] [CrossRef]
- Fang, J.; Zhan, L.; Ok, Y.S.; Gao, B. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J. Ind. Eng. Chem. 2018, 57, 15–21. [Google Scholar] [CrossRef]
- Melo, T.M.; Bottlinger, M.; Schulz, E.; Leandro, W.M.; de Aguiar Filho, A.M.; Wang, H.; Ok, Y.S.; Rinklebe, J. Plant and soil responses to hydrothermally converted sewage sludge (sewchar). Chemosphere 2018, 206, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Li, X.; Fan, J.; Chang, J. Characterization of Hydrochars Produced by Hydrothermal Carbonization of Lignin, Cellulose, D-Xylose, and Wood Meal. Ind. Eng. Chem. Res. 2012, 51, 9023–9031. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.; Lin, Q.; Li, G.; Zhao, X. Dispose of Chinese cabbage waste via hydrothermal carbonization: Hydrochar characterization and its potential as a soil amendment. Environ. Sci. Pollut. Res. 2023, 30, 4592–4602. [Google Scholar] [CrossRef]
- Si, H.; Zhao, C.; Wang, B.; Liang, X.; Gao, M.; Jiang, Z.; Yu, H.; Yang, Y.; Gu, Z.; Ogino, K.; et al. Liquid-solid ratio during hydrothermal carbonization affects hydrochar application potential in soil: Based on characteristics comparison and economic benefit analysis. J. Environ. Manag. 2023, 335, 117567. [Google Scholar] [CrossRef]
- Jiang, H.; Deng, F.; Luo, Y.; Xie, Z.; Chen, Y.; Zhou, P.; Liu, X.; Li, D. Hydrothermal carbonization of corn straw in biogas slurry. J. Clean. Prod. 2022, 353, 131682. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Rafique, M.I.; Ahmad, M.; Ahmad, M.; Hussain, A.; Usman, A.R.A. Pyrolytic and hydrothermal carbonization of date palm leaflets: Characteristics and ecotoxicological effects on seed germination of lettuce. Saudi J. Biol. Sci. 2019, 26, 665–672. [Google Scholar] [CrossRef] [PubMed]
- de Jager, M.; Schroeter, F.; Wark, M.; Giani, L. The stability of carbon from a maize-derived hydrochar as a function of fractionation and hydrothermal carbonization temperature in a Podzol. Biochar 2022, 4, 52. [Google Scholar] [CrossRef]
- Kalderis, D.; Papameletiou, G.; Kayan, B. Assessment of Orange Peel Hydrochar as a Soil Amendment: Impact on Clay Soil Physical Properties and Potential Phytotoxicity. Waste Biomass Valoriz. 2019, 10, 3471–3484. [Google Scholar] [CrossRef]
- Ghanim, B.M.; Pandey, D.S.; Kwapinski, W.; Leahy, J.J. Hydrothermal carbonisation of poultry litter: Effects of treatment temperature and residence time on yields and chemical properties of hydrochars. Bioresour. Technol. 2016, 216, 373–380. [Google Scholar] [CrossRef]
- Shan, G.; Li, W.; Liu, J.; Zhu, L.; Hu, X.; Yang, W.; Tan, W.; Xi, B. Nitrogen loss, nitrogen functional genes, and humification as affected by hydrochar addition during chicken manure composting. Bioresour. Technol. 2023, 369, 128512. [Google Scholar] [CrossRef]
- Roehrdanz, M.; Rebling, T.; Ohlert, J.; Jasper, J.; Greve, T.; Buchwald, R.; von Frieling, P.; Wark, M. Hydrothermal carbonization of biomass from landscape management—Influence of process parameters on soil properties of hydrochars. J. Environ. Manag. 2016, 173, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Lu, M.; Khan, M.B.; Lai, C.; Yang, X.; He, Z.; Chen, G.; Yan, B. Hydrothermal carbonization of different wetland biomass wastes: Phosphorus reclamation and hydrochar production. Waste Manag. 2020, 102, 106–113. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, S.; Han, L.; Wang, B.; Sun, H.; Xie, W.; Lu, Q.; Feng, Y.; Poinern, G.E.J.; Xue, L. Hydrochar and microplastics disturb soil dissolved organic matter and prominently mitigate ammonia volatilization from wheat growing soil. Appl. Soil Ecol. 2022, 178, 104552. [Google Scholar] [CrossRef]
- Feng, Y.; He, H.; Xue, L.; Liu, Y.; Sun, H.; Guo, Z.; Wang, Y.; Zheng, X. The inhibiting effects of biochar-derived organic materials on rice production. J. Environ. Manag. 2021, 293, 112909. [Google Scholar] [CrossRef]
- Wu, K.; Gao, Y.; Zhu, G.; Zhu, J.; Yuan, Q.; Chen, Y.; Cai, M.; Feng, L. Characterization of dairy manure hydrochar and aqueous phase products generated by hydrothermal carbonization at different temperatures. J. Anal. Appl. Pyrolysis 2017, 127, 335–342. [Google Scholar] [CrossRef]
- Yin, S.; Zhang, X.; Suo, F.; You, X.; Yuan, Y.; Cheng, Y.; Zhang, C.; Li, Y. Effect of biochar and hydrochar from cow manure and reed straw on lettuce growth in an acidified soil. Chemosphere 2022, 298, 134191. [Google Scholar] [CrossRef]
- Sun, R.; Zheng, H.; Yin, S.; Zhang, X.; You, X.; Wu, H.; Suo, F.; Han, K.; Cheng, Y.; Zhang, C.; et al. Comparative study of pyrochar and hydrochar on peanut seedling growth in a coastal salt-affected soil of Yellow River Delta, China. Sci. Total Environ. 2022, 833, 155183. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kong, Q.; Cheng, Y.; Xie, C.; Yuan, Y.; Zheng, H.; Yu, X.; Yao, H.; Quan, Y.; You, X.; et al. Cattle manure hydrochar posed a higher efficiency in elevating tomato productivity and decreasing greenhouse gas emissions than plant straw hydrochar in a coastal soil. Sci. Total Environ. 2024, 912, 168749. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Wang, B.; Wang, H.; Liu, H.; Xie, H.; Han, L.; Wang, N.; Sun, X.; Feng, Y.; Xue, L. Assessment of livestock manure-derived hydrochar as cleaner products: Insights into basic properties, nutrient composition, and heavy metal content. J. Clean. Prod. 2022, 330, 129820. [Google Scholar] [CrossRef]
- Song, C.; Yuan, W.; Shan, S.; Ma, Q.; Zhang, H.; Wang, X.; Niazi, N.K.; Wang, H. Changes of nutrients and potentially toxic elements during hydrothermal carbonization of pig manure. Chemosphere 2020, 243, 125331. [Google Scholar] [CrossRef] [PubMed]
- Bona, D.; Bertoldi, D.; Borgonovo, G.; Mazzini, S.; Ravasi, S.; Silvestri, S.; Zaccone, C.; Giannetta, B.; Tambone, F. Evaluating the potential of hydrochar as a soil amendment. Waste Manag. 2023, 159, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Bona, D.; Lucian, M.; Feretti, D.; Silvestri, S.; Zerbini, I.; Merzari, F.; Messineo, A.; Volpe, M. Phytotoxicity and genotoxicity of agro-industrial digested sludge hydrochar: The role of heavy metals. Sci. Total Environ. 2023, 871, 162138. [Google Scholar] [CrossRef]
- de Jager, M.; Roehrdanz, M.; Giani, L. The influence of hydrochar from biogas digestate on soil improvement and plant growth aspects. Biochar 2020, 2, 177–194. [Google Scholar] [CrossRef]
- de Jager, M.; Giani, L. An investigation of the effects of hydrochar application rate on soil amelioration and plant growth in three diverse soils. Biochar 2021, 3, 349–365. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, J.; Yi, Y. Biochar and hydrochar derived from freshwater sludge: Characterization and possible applications. Sci. Total Environ. 2021, 763, 144550. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Anukam, A.I.; Granstrom, K.; Eskandari, S.; Zywalewska, M.; Sandberg, M.; Aladejana, E.B. Effects of wood ash on physicochemical and morphological characteristics of sludge-derived hydrochar pellets relevant to soil and energy applications. Biomass Bioenergy 2022, 163, 106531. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, X.; Peng, X.; Hu, S.; Yu, Z.; Fang, S. Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge. Appl. Therm. Eng. 2015, 91, 574–582. [Google Scholar] [CrossRef]
- Saverettiar, G.; Li, D.; Gross, A.; Ho, G. Hydrothermal Carbonization of Cattle Paunch Waste: Process Conditions and Product Characteristics. J. Environ. Chem. Eng. 2020, 8, 104487. [Google Scholar] [CrossRef]
- Pala, M.; Kantarli, I.C.; Buyukisik, H.B.; Yanik, J. Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation. Bioresour. Technol. 2014, 161, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Basso, D.; Weiss-Hortala, E.; Patuzzi, F.; Baratieri, M.; Fiori, L. In Deep Analysis on the Behavior of Grape Marc Constituents during Hydrothermal Carbonization. Energies 2018, 11, 1379. [Google Scholar] [CrossRef]
- Fregolente, L.G.; dos Santos, J.V.; Mazzati, F.S.; Miguel, T.B.A.R.; Miguel, E.d.C.; Moreira, A.B.; Ferreira, O.P.; Bisinoti, M.C. Hydrochar from sugarcane industry by-products: Assessment of its potential use as a soil conditioner by germination and growth of maize. Chem. Biol. Technol. Agric. 2021, 8, 16. [Google Scholar] [CrossRef]
- Petrovic, J.; Ercegovic, M.; Simic, M.; Koprivica, M.; Dimitrijevic, J.; Jovanovic, A.; Jankovic Pantic, J. Hydrothermal Carbonization of Waste Biomass: A Review of Hydrochar Preparation and Environmental Application. Processes 2024, 12, 207. [Google Scholar] [CrossRef]
- Gupta, D.; Mahajani, S.M.; Garg, A. Investigation on hydrochar and macromolecules recovery opportunities from food waste after hydrothermal carbonization. Sci. Total Environ. 2020, 749, 142294. [Google Scholar] [CrossRef]
- Peterson, A.A.; Vogel, F.; Lachance, R.P.; Froeling, M.; Antal, M.J., Jr.; Tester, J.W. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ. Sci. 2008, 1, 32–65. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Q.; Fang, M.; Wu, D.; Cui, D.; Pan, S.; Bai, J.; Xu, F.; Wang, Z. Hydrothermal carbonization of food waste for sustainable biofuel production: Advancements, challenges, and future prospects. Sci. Total Environ. 2023, 897, 165327. [Google Scholar] [CrossRef] [PubMed]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A. A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renew. Sustain. Energy Rev. 2020, 119, 109546. [Google Scholar] [CrossRef]
- Li, C.-s.; Cai, R.-r.; Hasan, A.; Lu, X.-l.; Yang, X.-x.; Zhang, Y.-g. Fertility assessment and nutrient conversion of hydrochars derived from co-hydrothermal carbonization between livestock manure and corn cob. J. Environ. Chem. Eng. 2023, 11, 109166. [Google Scholar] [CrossRef]
- Shen, Y.F. A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass Bioenergy 2020, 134, 105479. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, R.; Tan, S.; Zhang, K.; Yin, Q.; Zhao, Z.; Gao, P. Nitrogen-doped hydrochar prepared by biomass and nitrogen-containing wastewater for dye adsorption: Effect of nitrogen source in wastewater on the adsorption performance of hydrochar. J. Environ. Manag. 2023, 334, 117503. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, M.; Qu, J.; Akindolie, M.S.; Bi, F.; Liu, Y.; Jiang, Z.; Wang, L.; Zhang, B.; Zhang, Y. Hydrothermal carbonization of alfalfa: Role of processing variables on hydrochar properties. Environ. Sci. Pollut. Res. 2022, 29, 85300–85311. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Li, X.; Liu, Y. Distribution and transformation behaviors of heavy metals and phosphorus during hydrothermal carbonization of sewage sludge. Environ. Sci. Pollut. Res. 2020, 27, 17109–17122. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.A.; Saud, A.S.; Jamari, S.S.; Ab Rahim, M.H.; Park, J.-W.; Kim, H.-J. Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: A review. Biomass Bioenergy 2019, 130, 105384. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Wang, J.; Zhao, X.; Zhao, Y.; Qian, J.; Wang, T. Pyrolysis and hydrothermal carbonization of biowaste: A comparative review on the conversion pathways and potential applications of char product. Sustain. Chem. Pharm. 2023, 33, 101106. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.-H.; Yang, H.-P.; Chen, H.-P. Characterization of products from hydrothermal treatments of cellulose. Energy 2012, 42, 457–465. [Google Scholar] [CrossRef]
- Li, X.; Wang, R.; Shao, C.; Li, D.; Bai, S.; Hou, N.; Zhao, X. Biochar and Hydrochar from Agricultural Residues for Soil Conditioning: Life Cycle Assessment and Microbially Mediated C and N Cycles. ACS Sustain. Chem. Eng. 2022, 10, 3574–3583. [Google Scholar] [CrossRef]
- Hamalainen, A.; Kokko, M.; Kinnunen, V.; Hilli, T.; Rintala, J. Hydrothermal carbonisation of mechanically dewatered digested sewage sludge-Energy and nutrient recovery in centralised biogas plant. Water Res. 2021, 201, 117284. [Google Scholar] [CrossRef]
- Huezo, L.; Shah, A. Effect of Hydrochar from Anaerobically Digested Sewage Sludge and Manure as a Soil Amendment on Soil Properties and Plant Responses. Bioenergy Res. 2023, 16, 1195–1204. [Google Scholar] [CrossRef]
- Mau, V.; Arye, G.; Gross, A. Poultry litter hydrochar as an amendment for sandy soils. J. Environ. Manag. 2020, 271, 110959. [Google Scholar] [CrossRef]
- Bento, L.R.; Ramiro Castro, A.J.; Moreira, A.B.; Ferreira, O.P.; Bisinoti, M.C.; Melo, C.A. Release of nutrients and organic carbon in different soil types from hydrochar obtained using sugarcane bagasse and vinasse. Geoderma 2019, 334, 24–32. [Google Scholar] [CrossRef]
- Hou, P.; Feng, Y.; Wang, N.; Petropoulos, E.; Li, D.; Yu, S.; Xue, L.; Yang, L. Win-win: Application of sawdust-derived hydrochar in low fertility soil improves rice yield and reduces greenhouse gas emissions from agricultural ecosystems. Sci. Total Environ. 2020, 748, 142457. [Google Scholar] [CrossRef]
- Li, H.; Li, D.; Xu, S.; Wang, Z.; Chen, X.; Ding, Y.; Chu, Q.; Sha, Z. Hydrothermal carbonization of biogas slurry and cattle manure into soil conditioner mitigates ammonia volatilization from paddy soil. Chemosphere 2023, 344, 140378. [Google Scholar] [CrossRef]
- Malghani, S.; Jueschke, E.; Baumert, J.; Thuille, A.; Antonietti, M.; Trumbore, S.; Gleixner, G. Carbon sequestration potential of hydrothermal carbonization char (hydrochar) in two contrasting soils; results of a 1-year field study. Biol. Fertil. Soils 2015, 51, 123–134. [Google Scholar] [CrossRef]
- Fei, Y.H.; Zhao, D.; Liu, Y.; Zhang, W.H.; Tang, Y.Y.; Huang, X.X.; Wu, Q.H.; Wang, Y.X.; Xiao, T.F.; Liu, C.S. Feasibility of sewage sludge derived hydrochars for agricultural application: Nutrients (N, P, K) and potentially toxic elements (Zn, Cu, Pb, Ni, Cd). Chemosphere 2019, 236, 124841. [Google Scholar] [CrossRef]
- Feng, Y.; Du, H.; Wulandari, T.; Poinern, G.E.J.; Jiang, Z.-T.; Fawcett, D.; Hassan, N.; Xue, L.; Yang, L. Hydrochar amendments stimulate soil nitrous oxide emission by increasing production of hydroxyl radicals and shifting nitrogen functional genes in the short term: A culture experiment. Chemosphere 2022, 302, 134771. [Google Scholar] [CrossRef] [PubMed]
- Enders, A.; Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 2012, 114, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Breulmann, M.; Schulz, E.; Ruser, R. Effects of sewage sludge hydrochar on emissions of the climate-relevant trace gases N2O and CO2 from loamy sand soil. Heliyon 2022, 8, e10855. [Google Scholar] [CrossRef] [PubMed]
- Bargmann, I.; Rillig, M.C.; Kruse, A.; Greef, J.-M.; Kuecke, M. Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. J. Plant Nutr. Soil Sci. 2014, 177, 48–58. [Google Scholar] [CrossRef]
- Luutu, H.; Rose, M.T.; McIntosh, S.; Van Zwieten, L.; Rose, T. Plant growth responses to soil-applied hydrothermally-carbonised waste amendments: A meta-analysis. Plant Soil 2022, 472, 1–15. [Google Scholar] [CrossRef]
- Islam, M.A.; Paul, J.; Akter, J.; Islam, M.A.; Limon, S.H. Conversion of chicken feather waste via hydrothermal carbonization: Process optimization and the effect of hydrochar on seed germination of Acacia auriculiformis. J. Mater. Cycles Waste Manag. 2021, 23, 1177–1188. [Google Scholar] [CrossRef]
- Luutu, H.; Rose, M.T.; McIntosh, S.; Van Zwieten, L.; Weng, H.H.; Pocock, M.; Rose, T.J. Phytotoxicity induced by soil-applied hydrothermally-carbonised waste amendments: Effect of reaction temperature, feedstock and soil nutrition. Plant Soil 2023, 493, 647–661. [Google Scholar] [CrossRef]
- Wu, Y.; Hou, P.; Guo, Z.; Sun, H.; Li, D.; Xue, L.; Feng, Y.; Yu, S.; Yang, L.; Xing, B. Raw material of water-washed hydrochar was critical for the mitigation of GHGI in infertile paddy soil: A column experiment. Biochar 2021, 3, 381–390. [Google Scholar] [CrossRef]
- Chen, D.; Zhou, Y.; Xu, C.; Lu, X.; Liu, Y.; Yu, S.; Feng, Y. Water-washed hydrochar in rice paddy soil reduces N2O and CH4 emissions: A whole growth period investigation. Environ. Pollut. 2021, 274, 116573. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Feng, Y.; Xue, L.; Sun, H.; Han, L.; Yang, L.; Sun, Q.; Chu, Q. Biowaste to treasure: Application of microbial-aged hydrochar in rice paddy could improve nitrogen use efficiency and rice grain free amino acids. J. Clean. Prod. 2019, 240, 118180. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, H.; Guo, Y.; Liu, Z.; Jiao, W. Immobilization of heavy metals in contaminated soils by modified hydrochar: Efficiency, risk assessment and potential mechanisms. Sci. Total Environ. 2019, 685, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zimmerman, A.R.; Zheng, Y.; Yang, Y.; Huang, J.; Zhang, Y.; Hu, X.; Yu, Z.; Huang, J.; Gao, B. P-enriched hydrochar for soil remediation: Synthesis, characterization, and lead stabilization. Sci. Total Environ. 2021, 783, 146983. [Google Scholar] [CrossRef]
- Scrinzi, D.; Bona, D.; Denaro, A.; Silvestri, S.; Andreottola, G.; Fiori, L. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 1. production and chemical characterization. J. Environ. Manag. 2022, 309, 114688. [Google Scholar] [CrossRef]
- Bona, D.; Scrinzi, D.; Tonon, G.; Ventura, M.; Nardin, T.; Zottele, F.; Andreis, D.; Andreottola, G.; Fiori, L.; Silvestri, S. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 2. agro-environmental properties. J. Environ. Manag. 2022, 312, 114894. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, L.; Li, A. Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrient-rich hydrochar production: Synergistic effects and products characterization. J. Environ. Manag. 2017, 201, 52–62. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Friedl, J.; Vahidi, M.; Rowlings, D.W.; Bai, Z.; Dunn, K.; O’Hara, I.M.; Zhang, Z. Effects of hydrochar derived from hydrothermal treatment of sludge and lignocellulose mixtures on soil properties, nitrogen transformation, and greenhouse gases emissions. Chemosphere 2022, 307, 135792. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Duo, J.; Jin, Z.; Yang, F.; Lai, T.; Collins, E. Effects of Hydrothermal Carbonization Conditions on the Characteristics of Hydrochar and Its Application as a Soil Amendment: A Review. Agronomy 2025, 15, 327. https://doi.org/10.3390/agronomy15020327
Wang X, Duo J, Jin Z, Yang F, Lai T, Collins E. Effects of Hydrothermal Carbonization Conditions on the Characteristics of Hydrochar and Its Application as a Soil Amendment: A Review. Agronomy. 2025; 15(2):327. https://doi.org/10.3390/agronomy15020327
Chicago/Turabian StyleWang, Xuyang, Jia Duo, Zhengzhong Jin, Fan Yang, Tianyi Lai, and Elendu Collins. 2025. "Effects of Hydrothermal Carbonization Conditions on the Characteristics of Hydrochar and Its Application as a Soil Amendment: A Review" Agronomy 15, no. 2: 327. https://doi.org/10.3390/agronomy15020327
APA StyleWang, X., Duo, J., Jin, Z., Yang, F., Lai, T., & Collins, E. (2025). Effects of Hydrothermal Carbonization Conditions on the Characteristics of Hydrochar and Its Application as a Soil Amendment: A Review. Agronomy, 15(2), 327. https://doi.org/10.3390/agronomy15020327