Effects of Different Nitrogen Topdressing Ratios on Soil Nitrate-Nitrogen and Summer Maize Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Information
2.2. Experimental Design
2.3. Sampling, Measurement, and Calculations
2.3.1. Soil Moisture Content
2.3.2. Soil Nitrate-Nitrogen
2.3.3. Crop Growth Index
2.3.4. Determination of Crop Yield
2.3.5. Determination of Plant Nitrogen
2.3.6. Nitrogen Use Efficiency Index
2.4. Statistical Analysis
3. Results
3.1. Soil Water Change
3.2. Effects of Different Treatments on Soil Nitrate-Nitrogen
3.3. Effects of Different Treatments on Growth Indexes of Summer Maize
3.4. Effects of Different Treatments on Summer Maize Yield
3.5. Effects of Different Nitrogen Application Treatments on Nitrogen Use Efficiency
4. Discussion
4.1. Soil Water Change During the Experimental Period
4.2. Effects of Different Treatments on Soil Nitrate-Nitrogen
4.3. Effects of Different Treatments on Growth of Summer Maize and Nitrogen Use Efficiency
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, G.; Gou, Z.; Tian, G.; Sima, W.; Zhou, J.; Bo, Z.; Zhang, Z.; Gao, Q. Study on the effectiveness and mechanism of a sustainable dual slow-release model to improve N utilization efficiency and reduce N pollution in black soil. Sci. Total Environ. 2024, 907, 168033. [Google Scholar] [CrossRef]
- Rodriguez, A.; van Grinsven, H.J.M.; van Loon, M.P.; Doelman, J.C.; Beusen, A.H.W.; Lassaletta, L. Costs and benefits of synthetic nitrogen for global cereal production in 2015 and in 2050 under contrasting scenarios. Sci. Total Environ. 2024, 912, 12. [Google Scholar] [CrossRef]
- Yang, Z.R.; Cao, Y.B.; Shi, Y.T.; Qin, F.; Jiang, C.F.; Yang, S.H. Genetic and molecular exploration of maize environmental stress resilience: Toward sustainable agriculture. Mol. Plant. 2023, 16, 1496–1517. [Google Scholar] [CrossRef]
- Ladha, J.K.; Tirol-Padre, A.; Reddy, C.K.; Cassman, K.G.; Verma, S.; Powlson, D.S.; van Kessel, C.; Richter, D.D.; Chakraborty, D.; Pathak, H. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Sci. Rep. 2016, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.Y.; Li, Y.H.; Zhang, J.W.; Liu, P.; Zhao, B.; Dong, S.T. Increased plant density and reduced N rate lead to more grain yield and higher resource utilization in summer maize. J. Integr. Agric. 2016, 15, 2515–2528. [Google Scholar] [CrossRef]
- Ahmad, S.; Wang, G.Y.; Muhammad, I.; Chi, Y.X.; Zeeshan, M.; Nasar, J.; Zhou, X.B. Interactive Effects of Melatonin and Nitrogen Improve Drought Tolerance of Maize Seedlings by Regulating Growth and Physiochemical Attributes. Antioxidants 2022, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Zhang, Y.P.; Li, Y.; Luo, J.F.; Gao, X.H.; Jing, Y.P.; Bo, L.J. Water pollution risk from nitrate migration in the soil profile as affected by fertilization in a wheat-maize rotation system. Agric. Water Manag. 2018, 210, 124–129. [Google Scholar] [CrossRef]
- Chen, L.Y.; Liu, X.D.; Hua, Z.L.; Xue, H.Q.; Mei, S.C.; Wang, P.; Wang, S.W. Comparison of Nitrogen Loss Weight in Ammonia Volatilization, Runoff, and Leaching Between Common and Slow-Release Fertilizer in Paddy Field. Water Air Soil Pollut. 2021, 232, 11. [Google Scholar] [CrossRef]
- Luo, X.S.; Kou, C.L.; Wang, Q. Optimal Fertilizer Application Reduced Nitrogen Leaching and Maintained High Yield in Wheat-Maize Cropping System in North China. Plants 2022, 11, 1963. [Google Scholar] [CrossRef] [PubMed]
- Ingraham, P.A.; Salas, W.A. Assessing nitrous oxide and nitrate leaching mitigation potential in US corn crop systems using the DNDC model. Agric. Syst. 2019, 175, 79–87. [Google Scholar] [CrossRef]
- Jagdeep, S.; Varinderpal, S. Chlorophyll meter based precision nitrogen management in spring maize. J. Plant Nutr. 2022, 46, 17–27. [Google Scholar] [CrossRef]
- Ranjbar, A.; Rahimikhoob, A.; Ebrahimian, H.; Varavipour, M. Simulation of nitrogen uptake and distribution under furrows and ridges during the maize growth period using HYDRUS-2D. Irrig Sci. 2019, 37, 495–509. [Google Scholar] [CrossRef]
- Dhakal, D.; Nelson, K.A. Polymer-coated urea rates, timings, and ratio combinations with non-coated urea for corn. J. Plant Nutr. 2019, 42, 1072–1085. [Google Scholar] [CrossRef]
- Shao, G.D.; Cheng, H.; Dai, H.C.; Zhang, H.; Ai, J.J.; Liu, K.C.; Li, Z.X.; Zamanian, K.; Qian, X. Nitrogen uptake and utilization of two maize hybrids with contrasting nitrogen use efficiencies depending on fertilization amount. Arch. Agron. Soil Sci. 2023, 69, 2202–2217. [Google Scholar] [CrossRef]
- Lu, J.S.; Hu, T.T.; Zhang, B.C.; Wang, L.; Yang, S.H.; Fan, J.L.; Yan, S.C.; Zhang, F.C. Nitrogen fertilzier management effects on soil nitrate leaching, grain yield and economic benefit of summer maize in Northwest China. Agric. Water Manag. 2021, 247, 106739. [Google Scholar] [CrossRef]
- Zheng, Y.; Ji, J.; Liu, S. Effect of topdressing time on spring maize yield and nitrogen utilization in black soil of northeast China. Sci. Rep. 2023, 13, 11841. [Google Scholar] [CrossRef]
- Fu, C.X.; Wang, J.D.; Gong, S.H.; Zhang, Y.Q.; Wang, C.J.; Mo, Y. Optimization of irrigation and fertilization of drip-irrigated corn in the chernozem area of north-east China based on the CERES-Maize model. Irrig Drain. 2020, 69, 714–731. [Google Scholar] [CrossRef]
- Ma, R.; Jiang, C.; Shou, N.; Gao, W.; Yang, X. An Optimized Nitrogen Application Rate and Basal Topdressing Ratio Improves Yield, Quality, and Water- and N-use Efficiencies for Forage Maize (Zea mays L.). Agronomy 2023, 13, 181. [Google Scholar] [CrossRef]
- Nafziger, E.D.; Rapp, D. Corn yield response to late-split nitrogen fertilizer. Agron. J. 2021, 113, 527–536. [Google Scholar] [CrossRef]
- Liu, P.Z.; Fan, Z.; Yan, Z.N.; Ren, X.L.; Zhao, X.N.; Zhang, J.J.; Chen, X.L. Evaluation of N nutrition and optimal fertilizer rate for ridge-furrow mulched maize based on critical N dilution curve under different water conditions. Agric. Water Manag. 2024, 296, 108801. [Google Scholar] [CrossRef]
- Du, Y.L.; Lu, Y.; Guo, S.L.; Wang, R.; Song, X.T.; Ju, X.T. Enhanced efficiency nitrogen fertilizers (EENFs) can reduce nitrous oxide emissions and maintain high grain yields in a rain-fed spring maize cropping system. Field Crops Res. 2024, 312, 109408. [Google Scholar] [CrossRef]
- Sharma, V.; Irmak, S. Comparative ananlyses of variable and fixed rate irrigation and nitrogen management for maize in different soil types: Part I. impact on soil-water dynamics and crop evapotranspiration. Agric. Water Manag. 2021, 245, 106644. [Google Scholar] [CrossRef]
- Huang, N.; Lin, X.M.; Lun, F.; Zeng, R.Y.; Sassenrath, G.F.; Pan, Z.H. Nitrogen fertilizer use and climate interactions: Implications for maize yields in Kansas. Agric. Syst. 2024, 220, 104079. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.-B.; Xu, J.-L.; Li, Y.-S. Provenance of groundwater solute and its controlling factors in Yancheng area. Huanjing Kexue 2022, 43, 1908–1919. [Google Scholar]
- Zhang, L.C.; Meng, F.C.; Zhang, X.Y.; Gao, Q.; Yan, L. Optimum management strategy for improving maize water productivity and partial factor productivity for nitrogen in China: A meta-analysis. Agric. Water Manag. 2021, 245, 106644. [Google Scholar] [CrossRef]
- China Meteorological Data Network. National Meteorological Information Center—China Meteorological Data. Available online: http://data.cma.cn (accessed on 21 August 2024).
- Shan, Y.Y.; Li, G.; Tan, S.; Su, L.J.; Sun, Y.; Mu, W.Y.; Wang, Q.J. Optimizing the Maize Irrigation Strategy and Yield Prediction under Future Climate Scenarios in the Yellow River Delta. Agronomy 2023, 13, 960. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Huang, G. The Effect of Nitrogen Rates on Yields and Nitrogen Use Efficiencies during Four Years of Wheat–Maize Rotation Cropping Seasons. Agron. J. 2016, 108, 2076–2088. [Google Scholar] [CrossRef]
- Ochieng’, I.O.; Ranjan, S.; Seleiman, M.F.; Padhan, S.R.; Psiwa, R.; Sow, S.; Wasonga, D.O.; Gitari, H.I. Increasing rainwater use efficiency, gross return, and grain protein of rain-fed maize under nitrate and urea nitrogen forms. Not. Bot. Horti Agrobot. Cluj-Napoca 2023, 51, 13293. [Google Scholar] [CrossRef]
- Li, G.H.; Fu, P.X.; Cheng, G.G.; Lu, W.P.; Lu, D.L. Delaying application time of slow-release fertilizer increases soil rhizosphere nitrogen content, root activity, and grain yield of spring maize. Crop J. 2022, 10, 1798–1806. [Google Scholar] [CrossRef]
- Nasar, J.; Zhao, C.J.; Khan, R.; Gul, H.; Gitari, H.; Shao, Z.; Abbas, G.; Haider, I.; Iqbal, Z.; Ahmed, W.; et al. Maize-soybean intercropping at optimal N fertilization increases the N uptake, N yield and N use efficiency of maize crop by regulating the N assimilatory enzymes. Front. Plant Sci. 2023, 13, 1077948. [Google Scholar] [CrossRef]
- Mohammed, A.T.; Irmak, S. Maize response to coupled irrigation and nitrogen fertilization under center pivot, subsurface drip and surface (furrow) irrigation: Soil-water dynamics and crop evapotranspiration. Agric. Water Manag. 2022, 267, 107634. [Google Scholar] [CrossRef]
- Ning, D.F.; Chen, H.Q.; Qin, A.Z.; Gao, Y.; Zhang, J.Y.; Duan, A.W.; Wang, X.P.; Liu, Z.D. Optimizing irrigation and N fertigation regimes achieved high yield and water productivity and low N leaching in a maize field in the North China Plain. Agric. Water Manag. 2024, 301, 108945. [Google Scholar] [CrossRef]
- Lu, J.S.; Xiang, Y.Z.; Fan, J.L.; Zhang, F.C.; Hu, T.T. Sustainable high grain yield, nitrogen use efficiency and water productivity can be achieved in wheat-maize rotation system by changing irrigation and fertilization strategy. Agric. Water Manag. 2021, 258, 107177. [Google Scholar] [CrossRef]
- Gu, X.T.; Ding, M.Q.; Lu, W.P.; Lu, D.L. Nitrogen topdressing at the jointing stage affects the nutrient accumulation and translocation in rainfed waxy maize. J. Plant Nutr. 2019, 42, 657–672. [Google Scholar] [CrossRef]
- Yang, W.; Feng, G.; Adeli, A.; Tewolde, H.; Qu, Z. Simulated long-term effect of wheat cover crop on soil nitrogen losses from no-till corn-soybean rotation under different rainfall patterns. J. Clean. Prod. 2021, 280, 124255. [Google Scholar] [CrossRef]
- Li, Z.W.; Wang, G.Y.; Khan, K.; Yang, L.; Chi, Y.X.; Wang, Y.; Zhou, X.B. Irrigation combines with nitrogen application to optimize soil carbon and nitrogen, increase maize yield, and nitrogen use efficiency. Plant Soil. 2024, 16, 605–620. [Google Scholar] [CrossRef]
- Ran, J.J.; Ran, H.; Ma, L.F.; Jennings, S.A.; Yu, T.G.; Deng, X.; Yao, N.; Hu, X.T. Quantifying water productivity and nitrogen uptake of maize under water and nitrogen stress in arid Northwest China. Agric. Water Manag. 2023, 285, 108370. [Google Scholar] [CrossRef]
- Song, X.Y.; Zhou, G.S.; He, Q.J.; Zhou, H.L. Quantitative Response of Maize Vcmax25 to Persistent Drought Stress at Different Growth Stages. Water 2021, 13, 1971. [Google Scholar] [CrossRef]
- Liao, Q.; Ding, R.S.; Du, T.S.; Kang, S.Z.; Tong, L.; Li, S.E. Stomatal conductance drives variations of yield and water use of maize under water and nitrogen stress. Agric. Water Manag. 2022, 268, 107651. [Google Scholar] [CrossRef]
- Yang, K.M.; Li, Y.R. Effects of water stress and fertilizer stress on maize growth and spectral identification of different stresses. Spectroc. Acta Pt A-Molec. Biomolec. Spectr. 2023, 297, 11. [Google Scholar] [CrossRef]
- Li, T.A.; Ma, F.; Wang, J.; Qiu, P.P.; Zhang, N.; Guo, W.W.; Xu, J.Z.; Dai, T.Y. Study on the Mechanism of Rainfall-Runoff Induced Nitrogen and Phosphorus Loss in Hilly Slopes of Black Soil Area, China. Water 2023, 15, 3148. [Google Scholar] [CrossRef]
- Mushore, T.; Manatsa, D.; Pedzisai, E.; Muzenda-Mudavanhu, C.; Mushore, W.; Kudzotsa, I. Investigating the implications of meteorological indicators of seasonal rainfall performance on maize yield in a rain-fed agricultural system: Case study of Mt. Darwin District in Zimbabwe. Theor. Appl. Climatol. 2017, 129, 1167–1173. [Google Scholar] [CrossRef]
- Li, Y.; Guan, K.Y.; Schnitkey, G.D.; DeLucia, E.; Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Change Biol. 2019, 25, 2325–2337. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.C.; Kemanian, A.R.; Mortensen, D.A. Cover crop effects on maize drought stress and yield. Agric. Ecosyst. Environ. 2021, 311, 10. [Google Scholar] [CrossRef]
- Sirisuntornlak, N.; Ullah, H.; Sonjaroon, W.; Arirob, W.; Anusontpornperm, S.; Datta, A. Effect of seed priming with silicon on growth, yield and nutrient uptake of maize under water-deficit stress. J. Plant Nutr. 2021, 44, 1869–1885. [Google Scholar] [CrossRef]
- Wang, Y.S.; Janz, B.; Engedal, T.; de Neergaard, A. Effect of irrigation regimes and nitrogen rates on water use efficiency and nitrogen uptake in maize. Agric. Water Manag. 2017, 179, 271–276. [Google Scholar] [CrossRef]
- Schillaci, C.; Tadiello, T.; Acutis, M.; Perego, A. Reducing Topdressing N Fertilization with Variable Rates Does Not Reduce Maize Yield. Sustainability 2021, 13, 8059. [Google Scholar] [CrossRef]
Soil Depth/cm | Unit Weight/g cm−3 | Field Water Retention/cm3 cm−3 | Saturated Moisture Content/cm3 cm−3 | Soil Texture |
---|---|---|---|---|
0–20 | 1.41 | 0.37 | 0.44 | Loam |
20–40 | 1.36 | 0.29 | 0.35 | Sandy loam |
40–60 | 1.54 | 0.34 | 0.40 | Sandy loam |
60–80 | 1.40 | 0.37 | 0.44 | Silty loam |
80–100 | 1.47 | 0.38 | 0.45 | Silty loam |
Treatment | Total N Application/kg hm−2 | Base Fertilizer/kg hm−2 | Topdressing/kg hm−2 | |
---|---|---|---|---|
Jointing Stage | Filling Stages | |||
T1 | 250 | 50 | 60 | 140 |
T2 | 140 | 60 | ||
CK | 100 | 100 |
Year | Treatment | 100-Grain Weight/(g) | Cob Length/(cm) | Cob Diameter/(cm) | Yield/(t/hm2) |
---|---|---|---|---|---|
2022 | T1 | 29.68 ± 1.64 a | 15.83 ± 0.42 ab | 4.57 ± 0.15 a | 7.11 ± 0.42 a |
T2 | 28.77 ± 1.46 a | 16.06 ± 0.33 a | 4.72 ± 0.10 a | 8.07 ± 0.44 a | |
CK | 28.91 ± 1.04 a | 14.68 ± 0.30 b | 4.88 ± 0.16 a | 7.23 ± 0.41 a | |
2023 | T1 | 22.90 ± 2.06 b | 16.37 ± 0.95 ab | 4.23 ± 0.21 b | 6.27 ± 0.67 b |
T2 | 25.98 ± 2.48 a | 16.58 ± 0.60 a | 4.38 ± 0.17 ab | 7.35 ± 0.81 a | |
CK | 24.58 ± 2.12 a | 15.62 ± 0.82 b | 4.46 ± 0.14 a | 6.45 ± 0.66 b |
Year | Treatment | N Uptake by Maize Plant | N Partial Factor Productivity (NPFP)/(kg kg−1) | N Uptake Efficiency (NUPE)/(%) | N Utilization Efficiency (NUTE)/(kg kg−1) |
---|---|---|---|---|---|
2022 | T1 | 89.47 ± 7.89 a | 28.41 ± 1.84 a | 35.79 ± 3.15 a | 79.40 ± 11.87 a |
T2 | 100.09 ± 14.48 a | 32.34 ± 1.09 a | 40.04 ± 5.79 a | 80.77 ± 3.07 a | |
CK | 89.21 ± 9.45 a | 28.91 ± 2.03 a | 35.68 ± 3.78 a | 81.02 ± 7.56 a | |
2023 | T1 | 199.64 ± 25.13 a | 24.46 ± 1.93 b | 79.85 ± 10.05 a | 31.49 ± 3.39 a |
T2 | 242.59 ± 22.79 a | 29.37 ± 1.63 a | 97.04 ± 9.11 a | 31.47 ± 4.39 a | |
CK | 243.91 ± 13.82 a | 25.37 ± 1.15 b | 97.56 ± 5.53 a | 26.05 ± 0.37 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Ouyang, Y.; Chen, Y.; Wang, J. Effects of Different Nitrogen Topdressing Ratios on Soil Nitrate-Nitrogen and Summer Maize Growth. Agronomy 2025, 15, 303. https://doi.org/10.3390/agronomy15020303
Li Y, Ouyang Y, Chen Y, Wang J. Effects of Different Nitrogen Topdressing Ratios on Soil Nitrate-Nitrogen and Summer Maize Growth. Agronomy. 2025; 15(2):303. https://doi.org/10.3390/agronomy15020303
Chicago/Turabian StyleLi, Yan, Yingqi Ouyang, Yu Chen, and Juan Wang. 2025. "Effects of Different Nitrogen Topdressing Ratios on Soil Nitrate-Nitrogen and Summer Maize Growth" Agronomy 15, no. 2: 303. https://doi.org/10.3390/agronomy15020303
APA StyleLi, Y., Ouyang, Y., Chen, Y., & Wang, J. (2025). Effects of Different Nitrogen Topdressing Ratios on Soil Nitrate-Nitrogen and Summer Maize Growth. Agronomy, 15(2), 303. https://doi.org/10.3390/agronomy15020303