Effects of Hexanal Supplementation on Volatile Compound Profiles and Quality Parameters of ‘Fuji Kiku’ Apples During Cold Storage and Shelf Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Treatments, and Storage
2.2. Flesh Firmness
2.3. Colour Measurements
2.4. Extraction of the VOCs from the Apple Fruit Headspace in the Storage Chambers During the Cold Storage
2.5. Extraction of VOCs from the Apple Fruit Headspace During Shelf Life
2.6. Extraction of VOCs from the Apple Juice Headspace During Shelf Life
2.7. Determination of VOCs
2.8. Data Analysis
3. Results
3.1. Flesh Firmness and Colour
3.2. VOCs Profile from the Apple Fruit Headspace in the Storage Chambers During Cold Storage
3.3. VOCs Profile from the Apple Fruit Headspace During Shelf Life
Plus 1 Day of Shelf Life | Plus 7 Days of Shelf Life | Plus 14 Days of Shelf Life | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
+1 °C | +20 °C | +1 °C | +20 °C | +1 °C | +20 °C | |||||||||||||||||||
Control | Hexanal | Control | Hexanal | Control | Hexanal | Control | Hexanal | Control | Hexanal | Control | Hexanal | |||||||||||||
VOC (OT (mg/L)) | avg | sd | avg | sd | avg | sd | avg | sd | avg | sd | avg | sd | avg | sd | avg | sd | avg | sd | avg | sd | avg | sd | avg | sd |
Ethyl acetate (3280 a) | /a | / | 0.09 b | 0.01 | /a | / | 0.18 b | 0.16 | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / |
Ethyl butanoate (9 b) | /a | / | 0.11 b | 0.07 | /a | / | 0.08 b | 0.01 | / | / | 0.05 | 0.04 | / | / | 0.01 | 0.01 | / | / | 0.02 | 0.01 | / | / | 0.01 | 0.00 |
Propyl propanoate (880 a) | 0.02 | 0.01 | 0.06 | 0.06 | 0.13 | 0.03 | 0.17 | 0.01 | / | / | 0.06 | 0.06 | 0.03 | 0.02 | 0.02 | 0.02 | / | / | 0.03 | 0.03 | 0.03 | 0.02 | 0.06 | 0.00 |
Butyl acetate (66 a) | 0.26 a | 0.06 | 0.97 b | 0.03 | 0.46 a | 0.06 | 5.71 b | 0.23 | 0.15 a | 0.01 | 1.21 b | 0.62 | 0.08 | 0.03 | 0.13 | 0.07 | 0.07 | 0.01 | 0.81 | 0.52 | 0.06 | 0.03 | 0.18 | 0.01 |
Butyl butanoate (100 c) | 0.02 a | 0.00 | 0.21 b | 0.11 | 0.20 a | 0.03 | 0.87 b | 0.07 | 0.02 | / | 0.21 | 0.14 | 0.03 | 0.01 | 0.04 | 0.03 | 0.01 | / | 0.11 | 0.09 | 0.03 | 0.01 | 0.08 | 0.01 |
Hexyl acetate (2 c) | 0.93 a | 0.17 | 7.07 b | 2.06 | 2.25 a | 0.19 | 28.56 b | 1.24 | 0.38 a | 0.04 | 6.26 b | 1.34 | 0.40 a | 0.07 | 1.74 b | 0.44 | 0.14 a | 0.02 | 3.03 b | 1.58 | 0.12 a | 0.05 | 1.55 b | 0.29 |
Propyl hexanoate (nf) | 0.01 | 0.00 | 0.01 | 0.01 | 0.04 | 0.01 | 0.04 | 0.01 | 0.01 | / | 0.01 | 0.01 | 0.03 | 0.01 | 0.02 | 0.03 | 0.01 | 0.01 | / | / | 0.03 | 0.02 | 0.07 | 0.01 |
Hexyl propanoate (8 b) | 0.09 | 0.02 | 0.10 | 0.02 | 0.91 a | 0.21 | 2.11 b | 0.49 | 0.03 | 0.01 | 0.11 | 0.06 | 0.06 a | 0.02 | 0.22 b | 0.08 | 0.02 | / | 0.05 | 0.03 | 0.02 a | 0.01 | 0.25 b | 0.02 |
Butyl hexanoate (700 b) | 0.05 | 0.01 | 0.04 | 0.01 | 0.30 | 0.07 | 0.33 | 0.03 | 0.07 a | 0.01 | 0.04 b | 0.01 | 0.10 | 0.04 | 0.10 | 0.10 | 0.05 | 0.02 | 0.03 | 0.01 | 0.08 | 0.04 | 0.31 | 0.37 |
Hexyl butanoate (250 b) | 0.05 a | 0.01 | 0.41 b | 0.09 | 0.54 a | 0.24 | 2.28 b | 0.21 | 0.03 a | / | 0.23 b | 0.10 | 0.08 | 0.03 | 0.30 | 0.20 | 0.02 | / | 0.09 | 0.07 | 0.03 | 0.01 | 0.19 | 0.02 |
Hexyl hexanoate (6400 a) | 0.14 | 0.03 | 0.22 | 0.10 | 0.76 a | 0.37 | 1.89 b | 0.12 | 0.10 a | 0.01 | 0.15 b | 0.01 | 0.19 | 0.08 | 0.58 | 0.38 | 0.07 | 0.01 | 0.08 | 0.01 | 0.07 | 0.03 | 0.27 | 0.02 |
Total linear estres | 1.56 a | 0.15 | 9.29 b | 1.91 | 5.58 a | 1.08 | 42.23 b | 1.41 | 0.79 a | 0.06 | 8.33 b | 2.12 | 1.01 a | 0.32 | 3.16 b | 0.96 | 0.39 a | 0.03 | 4.25 b | 2.28 | 0.46 | 0.21 | 3.14 | 0.21 |
Methyl 2-methylbutanoate (0.048 d) | / | / | / | / | 0.01 a | 0.00 | /b | / | / | / | / | / | 0.04 | 0.02 | 0.09 | 0.08 | / | / | / | / | 0.04 | 0.02 | 0.32 | 0.49 |
2-Methylpropyl acetate (25 a) | 0.06 a | 0.01 | 0.02 b | 0.01 | 0.09 a | 0.01 | 0.05 b | 0.01 | 0.04 | 0.00 | 0.04 | 0.01 | 0.03 | 0.01 | 0.04 | 0.01 | 0.03 | 0.00 | 0.03 | 0.01 | 0.01 | 0.00 | 0.07 | 0.00 |
Ethyl 2-methylbutanoate (0.13 b) | /a | / | 0.19 b | 0.08 | /a | / | 0.12 b | 0.03 | / | / | 0.08 | 0.07 | / | / | 0.21 | 0.36 | / | / | 0.03 | 0.03 | / | / | 0.14 | 0.03 |
2-Methylbutyl acetate (11 c) | 9.30 a | 1.67 | 4.57 b | 1.59 | 19.20 | 0.66 | 18.64 | 0.99 | 7.26 | 1.34 | 7.91 | 0.53 | 7.77 | 1.80 | 11.84 | 2.47 | 5.23 | 0.94 | 6.90 | 0.98 | 3.35 a | 0.99 | 12.65 b | 1.16 |
Propyl 2-methylbutanoate (0.02 d) | 0.02 | 0.00 | 0.17 | 0.11 | 0.07 a | 0.01 | 0.30 b | 0.05 | 0.01 | 0.00 | 0.18 | 0.15 | 0.07 | 0.03 | 0.05 | 0.05 | 0.01 | 0.01 | 0.10 | 0.09 | 0.14 | 0.09 | 0.26 | 0.04 |
Isopentyl acetate (7.2 d) | 0.04 a | 0.00 | 0.03 b | 0.00 | 0.13 a | 0.01 | 0.21 b | 0.02 | 0.02 a | 0.00 | 0.05 b | 0.01 | 0.03 | 0.01 | 0.04 | 0.01 | 0.01 | 0.00 | 0.03 | 0.02 | 0.01 | 0.01 | 0.05 | 0.00 |
2-Methylbutyl propionate (nf) | 0.03 a | 0.02 | /b | / | 0.65 a | 0.12 | 0.13 b | 0.03 | 0.04 a | 0.01 | 0.01 b | 0.01 | 0.20 | 0.05 | 0.23 | 0.09 | 0.02 a | 0.01 | /b | / | 0.08 a | 0.03 | 0.32 b | 0.02 |
Butyl 2-methylbutanoate (17 b) | 0.05 a | 0.01 | 0.26 b | 0.09 | 0.26 a | 0.06 | 0.94 b | 0.14 | 0.07 | 0.01 | 0.32 | 0.19 | 0.19 | 0.09 | 0.29 | 0.23 | 0.05 | 0.01 | 0.22 | 0.15 | 0.25 | 0.14 | 0.73 | 0.16 |
2-Methylbutyl 2-methylbutanoate (nf) | 0.07 | 0.03 | 0.12 | 0.03 | 0.45 | 0.08 | 0.54 | 0.07 | 0.12 | 0.03 | 0.17 | 0.08 | 0.89 a | 0.30 | 2.20 b | 0.76 | 0.13 | 0.03 | 0.14 | 0.06 | 0.72 | 0.29 | 3.42 | 0.70 |
Pentyl 2-methylbutanoate (nf) | 0.01 a | 0.00 | /b | / | 0.06 | 0.01 | 0.02 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.07 | 0.04 | 0.10 | 0.06 | 0.01 a | 0.00 | /b | 0.00 | 0.06 | 0.03 | 0.21 | 0.05 |
Hexyl 2-methylbutanoate (22 c) | 0.73 a | 0.03 | 1.98 b | 0.08 | 3.66 a | 0.58 | 8.97 b | 0.78 | 0.70 a | 0.11 | 2.34 b | 0.28 | 1.94 a | 0.84 | 8.81 b | 1.69 | 0.56 a | 0.07 | 1.73 b | 0.36 | 1.00 a | 0.47 | 11.58 b | 0.91 |
Isopentyl hexanoate (nf) | 0.04 a | 0.02 | 0.02 b | 0.00 | 0.44 a | 0.10 | 0.14 b | 0.02 | 0.08 a | 0.02 | 0.02 b | 0.00 | 0.30 | 0.10 | 0.43 | 0.21 | 0.10 a | 0.02 | 0.02 b | 0.00 | 0.12 | 0.04 | 0.48 | 0.09 |
Total branched estres | 10.35 | 1.76 | 7.36 | 1.27 | 25.03 a | 1.22 | 30.06 b | 0.52 | 8.36 a | 1.49 | 11.12 b | 0.24 | 11.53 a | 3.17 | 24.32 b | 2.89 | 6.15 | 1.07 | 9.21 | 1.65 | 5.78 | 1.87 | 29.95 | 0.79 |
Ethanol (10,000 a) | 0.22 | 0.10 | 0.52 | 0.26 | 0.76 | 1.09 | 0.91 | 0.56 | 0.23 | 0.16 | 0.13 | 0.03 | 0.30 | 0.40 | 0.37 | 0.57 | 0.11 | 0.09 | 0.09 | 0.02 | 0.03 | 0.01 | 0.22 | 0.08 |
2-Pentanol (nf) | 0.01 a | 0.00 | 0.07 b | 0.00 | 0.03 a | 0.01 | 0.15 b | 0.03 | 0.01 a | 0.00 | 0.09 b | 0.01 | 0.03 a | 0.01 | 0.28 b | 0.05 | 0.01 a | 0.00 | 0.07 b | 0.00 | 0.02 a | 0.00 | 0.42 b | 0.02 |
1-Butanol (492 a) | 0.25 a | 0.06 | 1.82 b | 0.85 | 0.71 a | 0.13 | 3.33 b | 0.27 | 0.15 | 0.03 | 1.65 | 0.95 | 0.14 | 0.02 | 0.20 | 0.11 | 0.05 | 0.02 | 0.94 | 0.67 | 0.08 | 0.04 | 0.35 | 0.03 |
2-Methyl-1-butanol (1200 a) | 7.76 | 0.40 | 5.35 | 0.86 | 10.28 a | 2.47 | 8.97 b | 0.52 | 8.08 | 1.91 | 7.89 | 1.24 | 9.56 | 1.57 | 11.22 | 1.24 | 6.89 | 0.62 | 6.97 | 1.61 | 7.66 | 1.58 | 17.60 | 1.70 |
1-Pentanol (150 a) | 0.05 | 0.01 | 0.05 | 0.02 | 0.10 | 0.02 | 0.12 | 0.02 | 0.03 a | 0.01 | 0.07 b | 0.02 | 0.04 | 0.01 | 0.07 | 0.02 | 0.02 a | 0.00 | 0.05 b | 0.02 | 0.03 | 0.01 | 0.12 | 0.03 |
1-Hexanol (2500 a) | 0.74 a | 0.16 | 7.31 b | 0.44 | 1.01 a | 0.17 | 12.84 b | 0.69 | 0.29 a | 0.10 | 4.65 b | 0.83 | 0.35 a | 0.09 | 1.85 b | 0.02 | 0.14 | 0.03 | 2.25 | 0.89 | 0.13 a | 0.04 | 2.59 b | 0.00 |
Total alcohols | 9.03 a | 0.35 | 15.12 b | 1.99 | 12.89 | 3.64 | 26.31 | 0.83 | 8.78 | 2.00 | 14.47 | 2.94 | 10.42 a | 1.87 | 13.99 b | 0.49 | 7.22 | 0.73 | 10.37 | 3.20 | 7.94 | 1.51 | 20.81 | 0.64 |
2-Pentanone (2300 d) | 0.03 a | 0.01 | 0.19 b | 0.02 | 0.03 a | 0.01 | 0.30 b | 0.13 | 0.02 a | 0.00 | 0.17 b | 0.02 | 0.01 a | 0.01 | 0.13 b | 0.05 | 0.01 a | / | 0.13 b | 0.02 | /a | / | 0.17 b | 0.01 |
Hexanal (5 a) | /a | / | 11.72 b | 2.34 | /a | / | 0.67 b | 0.10 | /a | / | 0.55 b | 0.06 | / | / | / | / | /a | / | 0.14 b | 0.01 | / | / | / | / |
α -Farnesene (87 a) | 1.33 a | 0.02 | 0.21 b | 0.00 | 9.63 a | 0.32 | 1.92 b | 0.26 | 1.21 | 0.20 | 0.24 | 0.01 | 6.79 | 1.32 | 4.30 | 1.91 | 1.00 a | 0.05 | 0.18 b | 0.03 | 4.20 | 1.51 | 7.01 | 4.95 |
Total other | 1.36 a | 0.01 | 12.13 b | 2.36 | 9.66 a | 0.33 | 2.89 b | 0.15 | 1.22 | 0.20 | 0.96 | 0.08 | 6.80 | 1.32 | 4.43 | 1.95 | 1.01 a | 0.05 | 0.44 b | 0.05 | 4.21 | 1.51 | 6.45 | 4.96 |
3.4. VOCs from the Apple Juice Headspace During Shelf Life
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
RT | ION | |
---|---|---|
Ethyl acetate | 10.04 | 61.0, 70.1, 88.1 |
Ethanol | 11.81 | 31.1. 45.1, 43.0 |
Ethyl propanoate | 12.78 | 102.1. 75.00, 87.1 |
Propyl acetate | 13.49 | 61.10, 73.10 |
2-Pentanone | 13.682 | 86.1, 71.1, 58.1 |
Methyl butanoate | 13.97 | 74.0, 87.10, 58.90 |
Methyl 2-methylbutanoate | 14.92 | 88.1, 101.10, 69.00 |
2-Methylpropyl acetate | 15.04 | 73.00, 61.10, 101.10 |
Ethyl butanoate | 16.04 | 71.10, 88.10, 101.00 |
Propyl propanoate | 16.37 | 75.00, 86.90, 59.10 |
Ethyl 2-methylbutanoate | 16.66 | 102.10, 85.10, 115.10 |
Butyl acetate | 17.6 | 73.10, 61.10, 87.10 |
Hexanal | 18.12 | 72.10, 82.00, 67.10 |
2-Pentanol | 19.29 | 73.10, 87.00, 40.90 |
2-Methylbutyl acetate | 19.64 | 70.10, 61.10, 85.10 |
Propyl 2-methylbutanoate | 20.26 | 85.10, 103.10, 74.10 |
1-Butanol | 20.4 | 56.10, 41.10, 75.10 |
Isopentyl acetate | 21.76 | 70.10, 61.00, 73.10 |
2-Methylbutyl propionate | 22.32 | 70.1, 87.00, 75.10 |
3-Hexanol | 22.36 | 59.10, 73.10, 55.10 |
2-Methyl-1-butanol | 22.88 | 70.10, 57.10, 53.10 |
Butyl butanoate | 23.49 | 71.10, 89.10, 101.1 |
Trans-2-hexenal | 23.94 | 69.10, 83.10, 98.20 |
Butyl 2-methylbutanoate | 23.99 | 103.1, 85.10, 130.00 |
1-Pentanol | 24.57 | 55.10, 70.10, 31.10 |
Hexyl acetate | 25.6 | 84.10, 69.10, 101.10 |
2-Methylbutyl 2-methylbutanoate | 25.84 | 70.10, 85.00, 103.10 |
2-Heptanol | 27.05 | 83.10, 70.10, 98.10 |
Propyl hexanoate | 27.3 | 99.10, 117,310, 61.00 |
2-Methyl-2-butenol | 27.34 | 71.10, 86.10, 53.10 |
Pentyl 2-methylbutanoate | 27.61 | 103.00, 85.10, 70.10 |
Hexyl propanoate | 28.06 | 75.10, 84.20, 69.10 |
1-Hexanol | 28.41 | 56.10, 69.10, 84.10 |
Butyl hexanoate | 30.67 | 117.10, 99.10, 71.10 |
Hexyl butanoate | 30.76 | 89.10, 84.10, 71.10 |
Hexyl 2-methylbutanoate | 31.11 | 103.10, 85.10, 74.10 |
Heptanol | 31.96 | 70.1, 56.20, 83.10 |
Isopentyl hexanoate | 32.01 | 70.10, 99.10, 117.10 |
6-Methyl-5-hepten-2-ol | 32.2 | 95.10, 69.10, 111.10 |
Ethylhexanol | 33.09 | 57.2, 83.20, 112.20 |
Hexyl hexanoate | 37.11 | 117.10, 99.10, 84.10 |
α-Farnesene | 41.33 | 93.10, 107.10, 119.10 |
References
- Fedrigotti, V.B.; Fischer, C. Why per capita apple consumption is falling: Insights from the literature and case evidence from south tyrol. Horticulturae 2020, 6, 79. [Google Scholar] [CrossRef]
- Espino-Díaz, M.; Sepúlveda, D.R.; González-Aguilar, G.; Olivas, G.I. Biochemistry of apple aroma: A review. Food Technol. Biotechnol. 2016, 54, 375. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, S.; Wang, Y.; Zeng, W.; Jin, B. Floral Scents and Fruit Aromas: Functions, Compositions, Biosynthesis, and Regulation. Front. Plant Sci. 2022, 13, 860157. [Google Scholar] [CrossRef]
- Roberts, G.; Spadafora, N.D. Analysis of Apple Flavours: The Use of Volatile Organic Compounds to Address Cultivar Differences and the Correlation between Consumer Appreciation and Aroma Profiling. J. Food Qual. 2020, 2020. [Google Scholar] [CrossRef]
- Yang, S.; Hao, N.; Meng, Z.; Li, Y.; Zhao, Z. Identification, comparison and classification of volatile compounds in peels of 40 apple cultivars by hs–spme with gc–ms. Foods 2021, 10, 1051. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, D.; Mi, H.; Pristijono, P.; Ge, Y.; Lv, J.; Li, Y.; Liu, B. Tissue-Specific Recovery Capability of Aroma Biosynthesis in ‘Golden Delicious’ Apple Fruit after Low Oxygen Storage. Agronomy 2022, 12, 2794. [Google Scholar] [CrossRef]
- Ashitha, G.N.; Sunny, A.C.; Nisha, R. Effect of Pre-harvest and Post-harvest Hexanal Treatments on Fruits and Vegetables: A Review. Agric. Rev. 2020, 41, 124–131. [Google Scholar] [CrossRef]
- FDA. NOF/\LAB Laboratories Voe (Volatile Organic Compounds); FDA: Silver Spring, MD, USA, 2019. [Google Scholar]
- Sulaimankhil, Z.; Sethi, S.; Sharma, R.R.; Verma, M.K.; Bhowmik, A. Influence of hexanal concentration and exposure time on quality of cold stored apples (Malus domestica). Indian J. Agric. Sci. 2021, 91, 713–717. [Google Scholar] [CrossRef]
- Vasil’ev, V.G.; Bykova, T.A.; Lebedev, B.V. Thermodynamics of hexanal at 0–330 K. Russ. J. Phys. Chem. 1991, 65, 51–54. [Google Scholar]
- Ranjan, S.; Chandrasekaran, R.; Paliyath, G.; Lim, L.T.; Subramanian, J. Effect of hexanal loaded electrospun fiber in fruit packaging to enhance the post harvest quality of peach. Food Packag. Shelf Life 2020, 23, 100447. [Google Scholar] [CrossRef]
- Fan, L.; Song, J.; Beaudry, R.M.; Hildebrand, P.D. Effect of hexanal vapor on spore viability of Penicillin expansum, lesion development on whole apples and fruit volatile biosynthesis. J. Food Sci. 2006, 71, M105–M109. [Google Scholar] [CrossRef]
- Song, J.; Bangerth, F. Fatty acids as precursors for aroma volatile biosynthesis in pre-climacteric and climacteric apple fruit. Postharvest Biol. Technol. 2003, 30, 113–121. [Google Scholar] [CrossRef]
- Sulaimankhil, Z.; Sethi, S.; Sharma, R.R.; Verma, M.K.; Dahuja, A.; Bhowmik, A. Influence of aqueous hexanal on quality of ‘Royal Delicious’ apple during cold storage. Acta Physiol. Plant. 2021, 43, 134. [Google Scholar] [CrossRef]
- Yumbya, P.; Ambuko, J.; Hutchinson, M.; Owino, W.; Juma, J.; Machuka, E.; Mutuku, J.M. Transcriptome analysis to elucidate hexanal’s mode of action in preserving the post-harvest shelf life and quality of banana fruits (Musa acuminata). J. Agric. Food Res. 2021, 3, 100114. [Google Scholar] [CrossRef]
- Nagarajan, V.; Kizhaeral, S.S.; Subramanian, M.; Rajendran, S.; Ranjan, J. Encapsulation of a Volatile Biomolecule (Hexanal) in Cyclodextrin Metal-Organic Frameworks for Slow Release and Its Effect on Preservation of Mangoes. ACS Food Sci. Technol. 2021, 1, 1936–1944. [Google Scholar] [CrossRef]
- Hutchinson, M.J.; Ouko, J.R.; Yumbya, P.M.; Ambuko, J.L.; Owino, W.O.; Subramanian, J. Efficacy of Hexanal Field Spray on the Postharvest Life and Quality of Papaya Fruit (Carica papaya L.) in Kenya. Adv. Agric. 2022, 2022. [Google Scholar] [CrossRef]
- Öz, A.T.; Kafkas, E. Volatile compositions of strawberry fruit during shelf life using pre and postharvest hexanal treatment. J. Food Process. Preserv. 2022, 46, e16464. [Google Scholar] [CrossRef]
- Wu, X.; Bi, J.; Fauconnier, M.L. Characteristic Volatiles and Cultivar Classification in 35 Apple Varieties: A Case Study of Two Harvest Years. Foods 2022, 11, 690. [Google Scholar] [CrossRef]
- Ma, N.; Zhu, J.; Wang, H.; Qian, M.C.; Xiao, Z. Comparative Investigation of Aroma-Active Volatiles in (“Ruixue”, “Liangzhi”, “Crystal Fuji,” and “Guifei”) Apples by Application of Gas Chromatography-Mass Spectrometry-Olfactometry (GC-MS-O) and Two-Dimensional Gas Chromatography-Quadrupole Mass Spectrometry (GC × GC-qMS) Coupled with Sensory Molecular Science. J. Agric. Food Chem. 2024, 72, 25229–25250. [Google Scholar]
- Kreissl, J.; Mall, V.; Steinhaus, P.; Steinhaus, M. Leibniz-LSB@TUM Odorant Database, Version 1.2; Leibniz Institute for Food Systems Biology at the Technical University of Munich: Freising, Germany, 2022. [Google Scholar]
- Cheema, A.; Padmanabhan, P.; Amer, A.; Parry, M.J.; Lim, L.-T.; Subramanian, J.; Paliyath, G. Postharvest hexanal vapor treatment delays ripening and enhances shelf life of greenhouse grown sweet bell pepper (Capsicum annum L.). Postharvest Biol. Technol. 2017, 136, 80–89. [Google Scholar] [CrossRef]
- Cheema, A.; Padmanabhan, P.; Subramanian, J.; Blom, T.; Paliyath, G. Improving quality of greenhouse tomato (Solanum lycopersicum L.) by pre- and postharvest applications of hexanal-containing formulations. Postharvest Biol. Technol. 2014, 95, 13–19. [Google Scholar] [CrossRef]
- Öz, A.T.; Eryol, B.; Ali, M.A. Postharvest hexanal application delays senescence and maintains quality in persimmon fruit during low temperature storage. J. Sci. Food Agric. 2023, 103, 7653–7663. [Google Scholar] [CrossRef]
- Tiwari, K.; Paliyath, G. Microarray analysis of ripening-regulated gene expression and its modulation by 1-MCP and hexanal. Plant Physiol. Biochem. 2011, 49, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.G.; Do Prado, S.B.R.; Andrade, S.C.S.; Fabi, J.P. Systems biology applied to the study of papaya fruit ripening: The influence of ethylene on pulp softening. Cells 2021, 10, 2339. [Google Scholar] [CrossRef]
- Sriskantharajah, K.; El Kayal, W.; Ayyanath, M.M.; Saxena, P.K.; Sullivan, A.J.; Paliyath, G.; Subramanian, J. Preharvest spray hexanal formulation enhances postharvest quality in ‘Honeycrisp’ apples by regulating phospholipase d and calcium sensor proteins genes. Plants 2021, 10, 2332. [Google Scholar] [CrossRef]
- Ashwini, T.; Ganapathy, S.; Subramanian, K.S.; Indu Rani, C.; Guru Meenakshi, G. Effect of Hexanal Vapour on Postharvest Quality and Shelf Life of Banana var. Grand Naine. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2441–2450. [Google Scholar] [CrossRef]
- Sharma, M.; Jacob, J.K.; Subramanian, J.; Paliyath, G. Hexanal and 1-MCP treatments for enhancing the shelf life and quality of sweet cherry (Prunus avium L.). Sci. Hortic. 2010, 125, 239–247. [Google Scholar] [CrossRef]
- Pott, D.M.; Osorio, S.; Vallarino, J.G. From Central to Specialized Metabolism: An Overview of Some Secondary Compounds Derived From the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Characteristics to Fruit. Front. Plant Sci. 2019, 10, 835. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Dong, L.; Zhou, Q.; Wang, J.W.; Chang, N.; Liu, Z.Y.; Ji, S.J. Effects of intermittent warming on aroma-related esters of 1-methylcyclopropene-treated “Nanguo” pears during ripening at room temperature. Sci. Hortic. 2015, 185, 82–89. [Google Scholar] [CrossRef]
- Zhu, D.; Ren, X.; Wei, L.; Cao, X.; Ge, Y.; Liu, H.; Li, J. Collaborative analysis on difference of apple fruits flavour using electronic nose and electronic tongue. Sci. Hortic. 2020, 260, 108879. [Google Scholar] [CrossRef]
- Pontesegger, N.; Rühmer, T.; Siegmund, B. Physicochemical Attributes, Aroma Profile, and Sensory Quality of Organic Crimson Crisp Apples after Storage. Foods 2023, 12, 1876. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.; Hewett, E.W. Factors affecting apple aroma/flavour volatile concentration: A review. New Zealand J. Crop Hortic. Sci. 2000, 28, 155–173. [Google Scholar] [CrossRef]
- Contreras, C.; Beaudry, R. Lipoxygenase-associated apple volatiles and their relationship with aroma perception during ripening. Postharvest Biol. Technol. 2013, 82, 28–38. [Google Scholar] [CrossRef]
- Li, D.; Guo, J.; Ma, H.; Pei, L.; Liu, X.; Wang, H.; Chen, R.; Zhao, Z.; Gao, H. Changes in the VOC of Fruits at Different Refrigeration Stages of ‘Ruixue’ and the Participation of Carboxylesterase MdCXE20 in the Catabolism of Volatile Esters. Foods 2023, 12, 1977. [Google Scholar] [CrossRef] [PubMed]
- Ferenczi, A.; Sugimoto, N.; Beaudry, R.M. Emission patterns of esters and their precursors throughout ripening and senescence in ‘Redchief Delicious’ apple fruit and implications regarding biosynthesis and aroma perception. J. Am. Soc. Hortic. Sci. 2021, 146, 297–328. [Google Scholar] [CrossRef]
- Yang, S.; Yu, J.; Yang, H.; Zhao, Z. Genetic analysis and QTL mapping of aroma volatile compounds in the apple progeny ‘Fuji’ × ‘Cripps Pink’. Front. Plant Sci. 2023, 14, 1048846. [Google Scholar] [CrossRef] [PubMed]
- Donadel, J.Z.; Thewes, F.R.; de Oliveira Anese, R.; Schultz, E.E.; Berghetti, M.R.P.; Ludwig, V.; Klein, B.; Cichoski, A.J.; Barin, J.S.; Both, V.; et al. Key volatile compounds of ‘Fuji Kiku’ apples as affected by the storage conditions and shelf life: Correlation between volatile emission by intact fruit and juice extracted from the fruit. Food Res. Int. 2019, 125, 108625. [Google Scholar] [CrossRef]
- Souleyre EJ, F.; Greenwood, D.R.; Friel, E.N.; Karunairetnam, S.; Newcomb, R.D. An alcohol acyl transferase from apple (cv. Royal Gala), MpAAT1, produces esters involved in apple fruit flavor. FEBS J. 2005, 272, 3132–3144. [Google Scholar] [CrossRef]
- Qi, W.; Wang, H.; Zhou, Z.; Yang, P.; Wu, W.; Li, Z.; Li, X. Ethylene Emission as a Potential Indicator of Fuji Apple Flavor Quality Evaluation Under Low Temperature. Hortic. Plant J. 2020, 6, 231–239. [Google Scholar] [CrossRef]
- Song, J.; Leepipattanawit, R.; Deng, W.; Beaudry, R.M. Hexanal Vapor Is a Natural, Metabolizable Fungicide: Inhibition of Fungal Activity and Enhancement of Aroma Biosynthesis in Apple Slices. J. Am. Soc. Hort. Sci. 1996, 121, 937–942. [Google Scholar] [CrossRef]
- Rowan, D.D.; Allen, J.M.; Fielder, S.; Hunt, M.B. Biosynthesis of straight-chain ester volatiles in Red Delicious and Granny Smith apples using deuterium-labeled precursors. J. Agric. Food Chem. 1999, 47, 2553–2562. [Google Scholar] [CrossRef] [PubMed]
Control | Hexanal | |
---|---|---|
L | 75.08 ± 2.40 | 75.51 ± 2.64 |
a* | −4.42 ± 3.65 | −6.35 ± 2.86 |
b* | 45.55 ± 1.99 | 44.39 ± 2.29 |
ΔL | 2.24 ± 1.97 | |
Δa* | 2.99 ± 2.10 | |
Δb* | 1.16 ± 2.01 | |
ΔE | 5.62 ± 2.95 | |
Firmness (kg/cm2) | 6.92 ± 0.71 | 6.59 ± 0.66 |
Plus 1 Day Shelf Life | Plus 7 Days Shelf Life | |||
---|---|---|---|---|
Control | Hexanal | Control | Hexanal | |
2-Pentanone | /a | 0.04 ± 0.01 b | /a | 0.01 ± 0.00 b |
2-Methylpropyl acetate | 0.01 ± 0.01 a | 0.03 ± 0.00 b | / | / |
Butyl acetate | 0.02 ± 0.03 a | 0.20 ± 0.12 b | / | / |
Hexanal | 1.61 ± 0.59 a | 1.89 ± 0.68 a | 1.24 ± 0.46 a | 1.38 ± 0.57 a |
2-Pentanol | 0.02 ± 0.00 a | 0.19 ± 0.03 b | 0.02 ± 0.00 a | 0.14 ± 0.02 b |
2-Methylbutyl acetate | 2.70 ± 1.50 a | 7.19 ± 1.81 b | 0.99 ± 0.66 a | 0.95 ± 0.36 a |
1-Butanol | 0.04 ± 0.03 a | 0.12 ± 0.12 a | 0.04 ± 0.03 a | 0.02 ± 0.01 a |
Isopentyl acetate | /a | 0.01 ± 0.01 b | / | / |
2-Methylbutyl propionate | 0.01 ± 0.00 a | 0.01 ± 0.00 a | / | / |
3-Hexanol | /a | 0.04 ± 0.00 b | /a | 0.02 ± 0.00 b |
2-Methyl-1-butanol | 2.03 ± 0.70 a | 5.80 ± 2.25 b | 1.16 ± 0.45 a | 1.25 ± 0.80 a |
trans-2-Hexenal | 0.34 ± 0.08 a | 0.32 ± 0.07 a | 0.29 ± 0.05 a | 0.29 ± 0.12 a |
Hexyl acetate | 0.02 ± 0.01 a | 0.16 ± 0.09 b | /a | 0.01 ± 0.01 a |
2-Methylbutyl 2-methylbutanoate | /a | 0.01 ± 0.00 b | / | / |
2-Methyl-2-butenol | 0.03 ± 0.01 a | 0.03 ± 0.01 a | 0.02 ± 0.01 a | 0.02 ± 0.01 a |
1-Hexanol | 0.12 ± 0.06 a | 0.41 ± 0.13 b | 0.15 ± 0.04 a | 0.18 ± 0.12 a |
Heptanol | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.02 ± 0.00 a |
6-Methyl-5-hepten-2-ol | 0.03 ± 0.02 a | 0.06 ± 0.02 b | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
Ethylhexanol | 0.10 ± 0.03 a | 0.08 ± 0.02 a | 0.06 ± 0.03 a | 0.04 ± 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesenko, E.; Vidrih, R.; Zlatić, E. Effects of Hexanal Supplementation on Volatile Compound Profiles and Quality Parameters of ‘Fuji Kiku’ Apples During Cold Storage and Shelf Life. Agronomy 2025, 15, 292. https://doi.org/10.3390/agronomy15020292
Jesenko E, Vidrih R, Zlatić E. Effects of Hexanal Supplementation on Volatile Compound Profiles and Quality Parameters of ‘Fuji Kiku’ Apples During Cold Storage and Shelf Life. Agronomy. 2025; 15(2):292. https://doi.org/10.3390/agronomy15020292
Chicago/Turabian StyleJesenko, Erika, Rajko Vidrih, and Emil Zlatić. 2025. "Effects of Hexanal Supplementation on Volatile Compound Profiles and Quality Parameters of ‘Fuji Kiku’ Apples During Cold Storage and Shelf Life" Agronomy 15, no. 2: 292. https://doi.org/10.3390/agronomy15020292
APA StyleJesenko, E., Vidrih, R., & Zlatić, E. (2025). Effects of Hexanal Supplementation on Volatile Compound Profiles and Quality Parameters of ‘Fuji Kiku’ Apples During Cold Storage and Shelf Life. Agronomy, 15(2), 292. https://doi.org/10.3390/agronomy15020292