Sown Diversity Effects on the C and N Cycle and Interactions with Fertilization
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
Rationale
2.2. Irrigation and Fertilization
2.3. Plant Yield Determination and Soil Sampling
2.4. Isotopic Composition of C and N
2.4.1. Plant and Soil Sampling
2.4.2. Measurement of Greenhouse Gas C and N Concentration and C Isotope Signatures
2.4.3. Inputs Description
2.4.4. Isotopic Signals Calculation
2.4.5. Calculation of N Balances and N Isotope Balances
2.5. Data Analysis
3. Results
3.1. Carbon Dynamics
3.1.1. δ13C in Plant Material, Soil Organic Matter, and Respired CO2 (‰)
3.1.2. C Content (mg/mg)
3.2. Nitrogen Dynamics
3.2.1. δ15N (‰)
3.2.2. Estimation of the N Source
3.2.3. N Content (mg/mg)
3.3. Carbon/Nitrogen (C/N)
3.4. Dry Matter Yield
4. Discussion
4.1. Carbon Dynamics
4.2. Nitrogen Dynamics
4.3. Carbon and Nitrogen Balance (C/N)
4.4. Dry Matter Yield (DMY)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sanderson, M.A.; Skinner, R.H.; Barker, D.J.; Edwards, G.R.; Tracy, B.F.; Wedin, D.A. Plant Species Diversity and Management of Temperate Forage and Grazing Land Ecosystems. Crop Sci. 2004, 44, 1132–1144. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Martins, C.S.C.; Delgado-Baquerizo, M.; Jayaramaiah, R.H.; Tao, D.; Wang, J.T.; Sáez-Sandino, T.; Liu, H.; Maestre, F.T.; Reich, P.B.; Singh, B.K. Aboveground and Belowground Biodiversity Have Complementary Effects on Ecosystem Functions Across Global Grasslands. 22 August 2024. Available online: https://digital.csic.es/handle/10261/366521 (accessed on 21 November 2024).
- Maughan, B.; Provenza, F.D.; Tansawat, R.; Maughan, C.; Martini, S.; Ward, R.; Clemensen, A.; Song, X.; Cornforth, D.; Villalba, J.J. Importance of grass-legume choices on cattle grazing behavior, performance, and meat characteristics. J. Anim. Sci. 2014, 92, 2309–2324. [Google Scholar] [CrossRef] [PubMed]
- Provenza. (PDF) Value of Plant Diversity for Diet Mixing and Sequencing in Herbivores. ResearchGate. 22 October 2024. Available online: https://www.researchgate.net/publication/305199612_Value_of_Plant_Diversity_for_Diet_Mixing_and_Sequencing_in_Herbivores (accessed on 21 November 2024).
- Franzluebbers, A.; Martin, G. Farming with forages can reconnect crop and livestock operations to enhance circularity and foster ecosystem services. Grass Forage Sci. 2023, 31, 87. [Google Scholar] [CrossRef]
- Jhariya, M.K.; Banerjee, A.; Meena, R.S.; Kumar, S.; Raj, A. (Eds.) Sustainable Intensification for Agroecosystem Services and Management; Springer: Singapore, 2021; Available online: https://link.springer.com/10.1007/978-981-16-3207-5 (accessed on 21 November 2024).
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 2014, 26, 1–20. [Google Scholar] [CrossRef]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of legume-based grassland-livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef]
- Taube, F.; Gierus, M.; Hermann, A.; Loges, R.; Schönbach, P. Grassland and globalization—Challenges for north-west European grass and forage research. Grass Forage Sci. 2013, 69, 2–16. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/gfs.12043 (accessed on 21 November 2024). [CrossRef]
- Kirwan, L.; Lüscher, A.; Sebastià, M.T.; Finn, J.A.; Collins, R.P.; Porqueddu, C.; Helgadottir, A.; Baadshaug, O.H.; Brophy, C.; Coran, C.; et al. Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J. Ecol. 2007, 95, 530–539. [Google Scholar] [CrossRef]
- Ribas, A.; Llurba, R.; Gouriveau, F.; Altimir, N.; Connolly, J.; Sebastià, M.T. Plant identity and evenness affect yield and trace gas exchanges in forage mixtures. Plant Soil 2015, 391, 93–108. [Google Scholar] [CrossRef]
- Mahmud, K.; Panday, D.; Mergoum, A.; Missaoui, A. Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem. Sustainability 2021, 13, 2400. [Google Scholar] [CrossRef]
- Canfield, D.E.; Glazer, A.N.; Falkowski, P.G. The evolution and future of earth’s nitrogen cycle. Science 2010, 330, 192–196. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef]
- Suter, M.; Connolly, J.; Finn, J.A.; Loges, R.; Kirwan, L.; Sebastià, M.; Lüscher, A. Nitrogen yield advantage from grass-legume mixtures is robust over a wide range of legume proportions and environmental conditions. Glob. Change Biol. 2015, 21, 2424–2438. [Google Scholar] [CrossRef]
- Neher, D.A. Soil community composition and ecosystem processes: Comparing agricultural ecosystems with natural ecosystems. Agrofor. Syst. 1999, 45, 159–185. [Google Scholar] [CrossRef]
- Ashworth, A.J.; Toler, H.D.; Allen, F.L.; Augé, R.M. Correction: Global meta-analysis reveals agro-grassland productivity varies based on species diversity over time. PLoS ONE 2020, 15, e0233402. [Google Scholar] [CrossRef] [PubMed]
- Malhi, S.S.; Wang, Z.H.; Schnitzer, M.; Monreal, C.M.; Harapiak, J.T. Nitrogen Fertilization Effects on Quality of Organic Matter in a Grassland Soil. Nutr. Cycl. Agroecosyst. 2005, 73, 191–199. [Google Scholar] [CrossRef]
- Ribeiro, P.C.; Menendez, E.; da Silva, D.L.; Bonieck, D.; Ramírez-Bahena, M.H.; Resende-Stoianoff, M.A.; Peix, A.; Velázquez, E.; Mateos, P.F.; Scotti, M.R. Invasion of the Brazilian campo rupestre by the exotic grass Melinis minutiflora is driven by the high soil N availability and changes in the N cycle–ScienceDirect. Sci. Total Environ. 2017, 577, 202–211. [Google Scholar] [CrossRef]
- Foster, A.; Vera, C.L.; Malhi, S.S.; Clarke, F.R. Forage yield of simple and complex grass–legume mixtures under two management strategies. Can. J. Plant Sci. 2014, 94, 41–50. [Google Scholar] [CrossRef]
- Rusdy, M.R. Effect of Phosphate Fertilization on Biological Compatibility of Chlorisgayana and Centrosemapubescens Mixture. Int. J. Sci. Res. 2016, 5, 208–211. [Google Scholar]
- Jørgensen, M.; Bakken, A.K.; Østrem, L.; Brophy, C. The effects of functional trait diversity on productivity of grass-legume swards across multiple sites and two levels of nitrogen fertiliser. Eur. J. Agron. 2023, 151, 126993. [Google Scholar] [CrossRef]
- Gou, X.; Reich, P.B.; Qiu, L.; Shao, M.; Wei, G.; Wang, J.; Wei, X. Leguminous plants significantly increase soil nitrogen cycling across global climates and ecosystem types. Glob. Change Biol. 2023, 29, 4028–4043. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Reich, P.B.; Hobbie, S.E. Legumes regulate grassland soil N cycling and its response to variation in species diversity and N supply but not CO2. Glob. Change Biol. 2019, 25, 2396–2409. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, U.A.; Heim, I.; Lüscher, A.; Nösberger, J. The nitrogen-sink is involved in the regulation of nitrogenase activity in white clover after defoliation–Hartwig–1994–Physiologia Plantarum–Wiley Online Library. Physiol. Plant. 1994, 92, 375–382. [Google Scholar] [CrossRef]
- Meza, K.; Vanek, S.J.; Sueldo, Y.; Olivera, E.; Ccanto, R.; Scurrah, M.; Fonte, S.J. Grass–Legume Mixtures Show Potential to Increase Above- and Belowground Biomass Production for Andean Forage-Based Fallows. Agronomy 2022, 12, 142. [Google Scholar] [CrossRef]
- Scherer-Lorenzen, M.; Gessner, M.O.; Beisner, B.E.; Messier, C.; Paquette, A.; Petermann, J.S.; Soininen, J.; Nock, C.A. Pathways for cross-boundary effects of biodiversity on ecosystem functioning. Trends Ecol. Evol. 2022, 37, 454–467. [Google Scholar] [CrossRef] [PubMed]
- Spehn, E.M.; Joshi, J.; Schmid, B.; Alphei, J.; Körner, C. Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil 2000, 224, 217–230. [Google Scholar] [CrossRef]
- Houlton, B.Z.; Bai, E. Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc. Natl. Acad. Sci. USA 2009, 106, 21713–21716. [Google Scholar] [CrossRef]
- Yang, Y.; Siegwolf, R.T.; Körner, C. Frontiers|Species Specific and Environment Induced Variation of δ13C and δ15N in Alpine Plants. Front. Plant Sci. 2015, 6, 423. Available online: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2015.00423/full (accessed on 22 November 2024). [CrossRef]
- Kahmen, A.; Wanek, W.; Buchmann, N. Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient–PubMed. Oecologia 2008, 156, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Aljazairi, S.; Arias, C.; Nogués, S. Carbon and nitrogen allocation and partitioning in traditional and modern wheat genotypes under pre-industrial and future CO2 conditions. Plant Biol. 2015, 17, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Handley, L.; Raven, J. The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ. 1992, 15, 965–985. [Google Scholar] [CrossRef]
- Högberg, P. Tansley Review No. 95 15 N natural abundance in soil-plant systems. N. Phytol. 1997, 137, 179–203. [Google Scholar] [CrossRef] [PubMed]
- Watzka, M.; Buchgraber, K.; Wanek, W. Natural 15N abundance of plants and soils under different management practices in a montane grassland–ScienceDirect. Soil Biol. Biochem. 2006, 38, 1564–1576. [Google Scholar] [CrossRef]
- Hobbie, E.A.; Högberg, P. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. N. Phytol. 2012, 196, 367–382. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Guntenspergen, G.R.; Morris, J.T. Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Glob. Change Biol. 2009, 15, 1982–1989. [Google Scholar] [CrossRef]
- Lüscher, A.; Finn, J.A.; Connolly, J.; Sebastià, M.T.; Collins, R.; Fothergill, M.; Porqueddu, C.; Brophy, C.; Huguenin-Elie, O.; Kirwan, L.; et al. Benefits of sward diversity for agricultural grasslands. Biodiversity 2008, 9, 29–32. [Google Scholar] [CrossRef]
- Carlsson, G.; Huss-Danell, K. Nitrogen fixation in perennial forage legumes in the field. Plant Soil 2003, 253, 353–372. [Google Scholar] [CrossRef]
- Nyfeler, D.; Huguenin-Elie, O.; Suter, M.; Frossard, E.; Lüscher, A. Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric. Ecosyst. Environ. 2011, 140, 155–163. [Google Scholar] [CrossRef]
- Nyfeler, D.; Huguenin-Elie, O.; Suter, M.; Frossard, E.; Connolly, J.; Lüscher, A. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J. Appl. Ecol. 2009, 46, 683–691. [Google Scholar] [CrossRef]
- Chalk, P.M.; Inácio, C.T.; Chen, D. An overview of contemporary advances in the usage of 15N natural abundance (δ15N) as a tracer of agro-ecosystem N cycle processes that impact the environment. Agric. Ecosyst. Environ. 2019, 283, 106570. [Google Scholar] [CrossRef]
- Papadopoulos, Y.A.; McElroy, M.S.; Fillmore, S.A.E.; McRae, K.B.; Duyinsveld, J.L.; Fredeen, A.H. Sward complexity and grass species composition affect the performance of grass-white clover pasture mixtures. Can. J. Plant Sci. 2012, 92, 1199–1205. [Google Scholar] [CrossRef]
- Picasso, V.D.; Brummer, E.C.; Liebman, M.; Dixon, P.M.; Wilsey, B.J. Diverse perennial crop mixtures sustain higher productivity over time based on ecological complementarity. Renew. Agric. Food Syst. 2011, 26, 317–327. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Sardans, J.; Musavi, T.; Migliavacca, M.; Iturrate-Garcia, M.; Scholes, R.J.; Peñuelas, J.; Janssens, I.A. The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance. Glob. Change Biol. 2020, 26, 7067–7078. [Google Scholar] [CrossRef]
- Mellado-Vázquez, P.G.; Lange, M.; Bachmann, D.; Gockele, A.; Karlowsky, S.; Milcu, A.; Piel, C.; Roscher, C.; Roy, J.; Gleixner, G. Plant diversity generates enhanced soil microbial access to recently photosynthesized carbon in the rhizosphere. Soil Biol. Biochem. 2016, 94, 122–132. [Google Scholar] [CrossRef]
- Kimak, A.; Kern, Z.; Leuenberger, M.C. Qualitative Distinction of Autotrophic and Heterotrophic Processes at the Leaf Level by Means of Triple Stable Isotope (C–O–H) Patterns. Front. Plant Sci. 2015, 6, 1008. Available online: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2015.01008/full (accessed on 21 November 2024). [CrossRef] [PubMed]
- Keeler, A.M. Tritrophic Mutualisms in a Changing Climate. UC Riverside. 2022. Available online: https://escholarship.org/uc/item/2r01m840 (accessed on 21 November 2024).
- Vallis, I.; Henzell, E.; Evans, T. Uptake of soil nitrogen by legumes in mixed swards. Aust. J. Agric. Res. 1977, 28, 413–425. [Google Scholar] [CrossRef]
- Adkins, J.S. Population-Level Differences in Pinus monophylla Whole-Plant Seedling Strategies Under Varying Precipitation Pulses. Master’s Thesis, University of Nevada, Reno, NV, USA, 2023. Available online: https://scholarwolf.unr.edu/server/api/core/bitstreams/957db2ca-e335-4bb3-82bb-e704f2507842/content (accessed on 21 November 2024).
- Kirwan, L.; Connolly, J.; Brophy, C.; Baadshaug, O.; Belanger, G.; Black, A.; Carnus, T.; Collins, R.; Čop, J.; Delgado, I.; et al. The Agrodiversity Experiment: Three years of data from a multisite study in intensively managed grasslands. Ecology 2014, 95, 2680. [Google Scholar] [CrossRef]
- Llovet, A.; Llurba, R.; Aljazairi, S.; Mattana, S.; Plaixats, J.; Nogués, S.; Sebastià, M.; Ribas, A. Nitrogen facilitation was maintained in sown Mediterranean forage mixtures despite drought stress conditions with concurrent general benefits upon plant aboveground water status and yield. Agric. Ecosyst. Environ. 2024, 375, 109187. [Google Scholar] [CrossRef]
- Ayanz, A.S.M. Leguminosas de interés para la implantación de praderas. In Ecología y Pautas Básicas de Utilización; Universidad Politécnica de Madrid: Madrid, Spain, 2007. [Google Scholar]
- Ayanz, A.S.M. Gramíneas de interés para la implantación de praderas y la revegetación de zonas degradadas. In Ecología y Pautas Básicas de Utilización; Universidad Politécnica de Madrid: Madrid, Spain, 2008. [Google Scholar]
- Oliva, C.A.R. Selectividad bajo Pastoreo Ovino en una Pradera Polifítica, Incluyendo Plantago lanceolata L. y Cichorium intybus L. en Inicio y Final de la estación Primaveral en Valdivia. Doctoral Dissertation, Universidad Austral de Chile, Valdivia, Chile, 2016. [Google Scholar]
- Nogués, S.; Tcherkez, G.; Cornic, G.; Ghashghaie, J. Respiratory Carbon Metabolism following Illumination in Intact French Bean Leaves Using 13C/12C Isotope Labeling. Plant Physiol. 2004, 136, 3245–3254. [Google Scholar] [CrossRef]
- Mohn, J.; Biasi, C.; Bodé, S.; Boeckx, P.; Brewer, P.J.; Eggleston, S.; Geilmann, H.; Guillevic, M.; Kaiser, J.; Kantnerová, K.; et al. Isotopically characterised N2O reference materials for use as community standards. Rapid Commun. Mass Spectrom. 2022, 36, e9296. [Google Scholar] [CrossRef]
- McAuliffe, C.; Chamblee, D.S.; Uribe-Arango, H.; Woodhouse, W.W., Jr. Influence of Inorganic Nitrogen on Nitrogen Fixation by Legumes as Revealed by N151. Agron. J. 1958, 50, 334–337. [Google Scholar] [CrossRef]
- Sheehan, C.; Kirwan, L.; Connolly, J.; Bolger, T. The effects of earthworm functional group diversity on nitrogen dynamics in soils. Soil Biol. Biochem. 2006, 38, 2629–2636. [Google Scholar] [CrossRef]
- Dawson, T.E.; Mambelli, S.; Plamboeck, A.H.; Templer, P.H.; Tu, K.P. Stable Isotopes in Plant Ecology. Annu. Rev. Ecol. Syst. 2002, 33, 507–559. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Fischer, C.; Leimer, S.; Roscher, C.; Ravenek, J.; de Kroon, H.; Kreutziger, Y.; Baade, J.; Beßler, H.; Eisenhauer, N.; Weigelt, A.; et al. Plant species richness and functional groups have different effects on soil water content in a decade-long grassland experiment. J. Ecol. 2018, 107, 127–141. [Google Scholar] [CrossRef]
- Bremer, C.; Braker, G.; Matthies, D.; Reuter, A.; Engels, C.; Conrad, R. Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil. Appl. Environ. Microbiol. 2007, 73, 6876–6884. [Google Scholar] [CrossRef]
- Lozano, Y.; Aguilar-Trigueros, C.; Rilling, M. Root Trait Responses to Drought Depend on Plant Functional Group|bioRxiv. Functional Ecology. 2020. Available online: https://www.biorxiv.org/content/10.1101/801951v1 (accessed on 21 November 2024).
- Marshall, E.; Randhir, T.O. Effect of climate change on watershed system: A regional analysis. Clim. Change 2008, 89, 263–280. [Google Scholar] [CrossRef]
- Marshall, J.D.; Brooks, J.R.; Lajtha, K. Sources of Variation in the Stable Isotopic Composition of Plants. 2017. Available online: https://andrewsforest.oregonstate.edu/publications/4334 (accessed on 21 November 2024).
- Goldman, R. Spatial Variation of Stable Carbon, and Nitrogen Isotope Ratios and C:N of Perennial Plant Species in the Steppe Grassland of Northern Mongolia. Master’s Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2010. Available online: https://repository.upenn.edu/handle/20.500.14332/40157 (accessed on 21 November 2024).
- Aranjuelo, I.; Irigoyen, J.J.; Perez, P.; Martinez-Carrasco, R.; Sanchez-Díaz, M. The use of temperature gradient tunnels for studying the combined effect of CO2, temperature and water availability in N2 fixing alfalfa plants. Ann. Appl. Biol. 2005, 146, 51–60. [Google Scholar] [CrossRef]
- O’Leary, M.H. Carbon isotope fractionation in plants. Phytochemistry 1981, 20, 553–567. [Google Scholar] [CrossRef]
- Aljazairi, S.; Arias, C.; Sánchez, E.; Lino, G.; Nogués, S. Effects of pre-industrial, current and future [CO2] in traditional and modern wheat genotypes. J. Plant Physiol. 2014, 171, 1654–1663. [Google Scholar] [CrossRef] [PubMed]
- Aljazairi, S.; Manikan, B.; Serrat, X.; Nogués, S. C and N allocation on wheat under the effects of depleted, current and elevated [CO2] are modulated by water availability. Plant Stress 2024, 14, 100663. [Google Scholar] [CrossRef]
- Aljazairi, S.; Nogués, S. The effects of depleted, current and elevated growth [CO2] in wheat are modulated by water availability. Environ. Exp. Bot. 2015, 112, 55–66. [Google Scholar] [CrossRef]
- Gouveia, C.S.; Ganança, J.F.; Slaski, J.; Lebot, V.; de Carvalho, M.Â.P. Variation of carbon and isotope natural abundances (δ15N and δ13C) of whole-plant sweet potato (Ipomoea batatas L.) subjected to prolonged water stress. J. Plant Physiol. 2019, 243, 153052. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, T.; Ohtani, T. Variations of Natural 13C Abundances in Leguminous Plants. Plant Cell Physiol. 1983, 24, 971–977. [Google Scholar]
- Saranga, Y.; Flash, I.; Paterson, A.H.; Yakir, D. Carbon isotope ratio in cotton varies with growth stage and plant organ. Plant Sci. 1999, 142, 47–56. [Google Scholar] [CrossRef]
- Chevillat, V.S.; Siegwolf, R.T.; Pepin, S.; Körner, C. Tissue-specific variation of δ13C in mature canopy trees in a temperate forest in central Europe. Basic Appl. Ecol. 2005, 6, 519–534. [Google Scholar] [CrossRef]
- Aranjuelo, I.; Irigoyen, J.J.; Sánchez-Díaz, M.; Nogués, S. Carbon partitioning in N2 fixing Medicago sativa plants exposed to different CO2 and temperature conditions. Funct. Plant Biol. 2008, 35, 306–317. [Google Scholar] [CrossRef]
- Prescott, C.E.; Grayston, S.J.; Helmisaari, H.-S.; Kaštovská, E.; Körner, C.; Lambers, H.; Meier, I.C.; Millard, P.; Ostonen, I. Surplus Carbon Drives Allocation and Plant-Soil Interactions. Trends Ecol. Evol. 2020, 35, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Lin, Y.-C.J.; Chen, Y.-L.; Zhou, C.; Li, S.; De Ridder, N.; Oliveira, D.M.; Zhang, L.; Zhang, B.; Wang, J.P.; et al. Woody plant cell walls: Fundamentals and utilization. Mol. Plant 2023, 17, 112–140. [Google Scholar] [CrossRef]
- Finn, J.A.; Kirwan, L.; Connolly, J.; Sebastià, M.T.; Helgadottir, A.; Baadshaug, O.H.; Bélanger, G.; Black, A.; Brophy, C.; Collins, R.P.; et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. J. Appl. Ecol. 2013, 50, 365–375. [Google Scholar] [CrossRef]
- Tilman, D.; Knops, J.; Wedin, D.; Reich, P.; Ritchie, M.; Siemann, E. The Influence of Functional Diversity and Composition on Ecosystem Processes. Science 1997, 277, 1300–1302. [Google Scholar] [CrossRef]
- Viancelli, A.; Michelon, W. Climate Change and Nitrogen Dynamics: Challenges and Strategies for a Sustainable Future. Nitrogen 2024, 5, 688–701. [Google Scholar] [CrossRef]
- Watzka, M.; Hatch, D.J.; Chadwick, D.R.; Jarvis, S.C.; Roker, J.A. (Eds.) Natural 15N abundance as an indicator of the effect of management intensity on nitrogen cycling in montane grasslands. In Controlling Nitrogen Flows and Losses; Brill: Leiden, The Netherlands, 2004; Available online: https://brill.com/edcollbook/title/68478 (accessed on 20 November 2024).
- Asadyar, L.; Xu, C.-Y.; Wallace, H.M.; Xu, Z.; Reverchon, F.; Bai, S.H. Soil-plant nitrogen isotope composition and nitrogen cycling after biochar applications. Environ. Sci. Pollut. Res. 2020, 28, 6684–6690. [Google Scholar] [CrossRef]
- Wanek, W.; Arndt, S.K. Difference in delta(15)N signatures between nodulated roots and shoots of soybean is indicative of the contribution of symbiotic N(2) fixation to plant N. J. Exp. Bot. 2002, 53, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Soldatova, E.; Krasilnikov, S.; Kuzyakov, Y. Soil organic matter turnover: Global implications from δ13C and δ15N signatures. Sci. Total Environ. 2023, 912, 169423. [Google Scholar] [CrossRef]
- Aranjuelo, I.; Cabrera-Bosquet, L.; Mottaleb, S.A.; Araus, J.L.; Nogués, S. 13C/12C isotope labeling to study carbon partitioning and dark respiration in cereals subjected to water stress. Rapid Commun. Mass Spectrom. 2009, 23, 2819–2828. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.; Mi, W.; Liu, W. Legume-grass mixtures improve biological nitrogen fixation and nitrogen transfer by promoting nodulation and altering root conformation in different ecological regions of the Qinghai-Tibet Plateau. Front. Plant Sci. 2024, 15, 1375166. Available online: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1375166/full (accessed on 22 November 2024). [CrossRef]
- Zanetti, S.; Hartwig, U.A.; Van Kessel, C.; Lüscher, A.; Hebeisen, T.; Frehner, M.; Fischer, B.U.; Hendrey, G.R.; Blum, H.; Nösberger, J. Does nitrogen nutrition restrict the CO2 response of fertile grassland lacking legumes? Oecologia 1997, 112, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Temperton, V.M.; Mwangi, P.N.; Scherer-Lorenzen, M.; Schmid, B.; Buchmann, N. Positive interactions between nitrogen-fixing legumes and four different neighbouring species in a biodiversity experiment. Oecologia 2006, 151, 190–205. [Google Scholar] [CrossRef] [PubMed]
- Fustec, J.; Lesuffleur, F.; Mahieu, S.; Cliquet, J.-B. Nitrogen rhizodeposition of legumes. A review. Agron. Sustain. Dev. 2010, 30, 57–66. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Steele, K.W. Biological nitrogen fixation in mixed legume/grass pastures. Plant Soil 1992, 141, 137–153. [Google Scholar] [CrossRef]
- Legesse, G.; Small, J.A.; Scott, S.L.; Kebreab, E.; Crow, G.H.; Block, H.C.; Robins, C.D.; Khakbazan, M.; Mccaughey, W.P. Bioperformance evaluation of various summer pasture and winter feeding strategies for cow-calf production. Can. J. Anim. Sci. 2012, 92, 89–102. [Google Scholar] [CrossRef]
- Bourke, P.M.; Evers, J.B.; Bijma, P.; van Apeldoorn, D.F.; Smulders, M.J.; Kuyper, T.W.; Mommer, L.; Bonnema, G. Breeding Beyond Monoculture: Putting the “Intercrop” Into Crops. Front. Plant Sci. 2021, 12, 734167. Available online: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2021.734167/full (accessed on 21 November 2024). [CrossRef] [PubMed]
- Lüscher, A.; Fuhrer, J.; Newton, P. Global Atmospheric Change and Its Effect on Managed Grassland Systems-Web of Science Core Collection. Available online: https://www.webofscience.com/wos/woscc/full-record/WOS:000233301400019 (accessed on 22 November 2024).
- Bakker, L.M.; Barry, K.E.; Mommer, L.; van Ruijven, J. Focusing on individual plants to understand community scale biodiversity effects: The case of root distribution in grasslands. Oikos 2021, 130, 1954–1966. [Google Scholar] [CrossRef]
- Zeng, W.; Xiang, W.; Zhou, B.; Ouyang, S.; Zeng, Y.; Chen, L.; Freschet, G.T.; Valverde-Barrantes, O.J.; Milcu, A. Positive tree diversity effect on fine root biomass: Via density dependence rather than spatial root partitioning. Oikos 2021, 130, 1–14. [Google Scholar] [CrossRef]
- Alonso-Crespo, I.M.; Weidlich, E.W.A.; Temperton, V.M.; Delory, B.M. Assembly history modulates vertical root distribution in a grassland experiment. Oikos 2023, 1, 08886. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Sabais, A.C.; Scheu, S. Collembola species composition and diversity effects on ecosystem functioning vary with plant functional group identity. Soil Biol. Biochem. 2011, 43, 1697–1704. [Google Scholar] [CrossRef]
- Read, Q.D.; Henning, J.A.; Classen, A.T.; Sanders, N.J. Aboveground resilience to species loss but belowground resistance to nitrogen addition in a montane plant community. J. Plant Ecol. 2018, 11, 351–363. [Google Scholar] [CrossRef]
- Evans, R.D. Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 2001, 6, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Craine, J.M.; Elmore, A.J.; Aidar, M.P.M.; Bustamante, M.; Dawson, T.E.; Hobbie, E.A.; Kahmen, A.; Mack, M.C.; McLauchlan, K.K.; Michelsen, A.; et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. N. Phytol. 2009, 183, 980–992. [Google Scholar] [CrossRef] [PubMed]
- Hobbie, E.A.; Tingey, D.T.; Rygiewicz, P.T.; Johnson, M.G.; Olszyk, D.M. Contributions of current year photosynthate to fine roots estimated using a 13C-depleted CO2 source. Plant Soil 2002, 247, 233–242. [Google Scholar] [CrossRef]
- McKee, K.L.; Feller, I.C.; Popp, M.; Wanek, W. Mangrove isotopic (δ15N and δ13C) fractionation across a nitrogen vs. phosphorus limitation gradient. Ecology 2002, 83, 1065–1075. [Google Scholar] [CrossRef]
- Del Papa, M.F.; Delgado, M.J.; Irisarri, P.; Lattanzi, F.A.; Monza, J. Editorial: Maximizing nitrogen fixation in legumes as a tool for sustainable agriculture intensification, volume II. Front. Agron. 2024, 6, 1387188. Available online: https://www.frontiersin.org/journals/agronomy/articles/10.3389/fagro.2024.1387188/full (accessed on 21 November 2024). [CrossRef]
- Reinprecht, Y.; Schram, L.; Marsolais, F.; Smith, T.H.; Hill, B.; Pauls, K.P. Effects of Nitrogen Application on Nitrogen Fixation in Common Bean Production. Front. Plant Sci. 2020, 11, 1172. [Google Scholar] [CrossRef]
- Nesheim, L.; Oyen, J. Nitrogen fixation by red clover (Trifolium pratense L.) grown in mixtures with timothy (Phleum pratense L.) at different levels of nitrogen fertilization. Acta Agric. Scand. B-Plant Soil Sci. 1994, 44, 28–34. [Google Scholar]
- Høgh-Jensen, H.; Schjoerring, J. Interactions between white clover and ryegrass under contrasting nitrogen availability: N2 fixation, N fertilizer recovery, N transfer and water use efficiency. Plant Soil 1997, 197, 187–199. [Google Scholar] [CrossRef]
- Høgh-Jensen, H.; Schjoerring, J.K. Measurement of biological dinitrogen fixation in grassland: Comparison of the enriched 15N dilution and the natural 15N abundance methods at different nitrogen application rates and defoliation frequencies. Plant Soil 1994, 166, 153–163. [Google Scholar] [CrossRef]
- Rahman, M.dM.; Alam, M.S.; Islam, M.dM.; Kamal, M.Z.U.; Rahman, G.K.M.M.; Haque, M.M. Potential of legume-based cropping systems for climate change adaptation and mitigation. In Advances in Legumes for Sustainable Intensification; Elsevier: Amsterdam, The Netherlands, 2022; pp. 381–402. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780323857970000306 (accessed on 26 December 2024).
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef]
- Smith, P.; Haberl, H.; Popp, A.; Erb, K.H.; Lauk, C.; Harper, R.; Tubiello, F.N.; de Siqueira Pinto, A.; Jafari, M.; Sohi, S.; et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Change Biol. 2013, 19, 2285–2302. [Google Scholar] [CrossRef] [PubMed]
- Isbell, F.; Adler, P.R.; Eisenhauer, N.; Fornara, D.; Kimmel, K.; Kremen, C.; Letourneau, D.K.; Liebman, M.; Polley, H.W.; Quijas, S.; et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 2017, 105, 871–879. [Google Scholar] [CrossRef]
- Dijkstra, P.; Menyailo, O.V.; Doucett, R.R.; Hart, S.C.; Schwartz, E.; Hungate, B.A. C and N availability affects the15N natural abundance of the soil microbial biomass across a cattle manure gradient. Eur. J. Soil Sci. 2006, 57, 468–475. [Google Scholar] [CrossRef]
- Dijkstra, P.; Williamson, C.; Menyailo, O.; Doucett, R.; Koch, G.; Hungate, B.A. Nitrogen stable isotope composition of leaves and roots of plants growing in a forest and a meadow. Isot. Environ. Health Stud. 2003, 39, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Amundson, R.; Austin, A.T.; Schuur, E.A.G.; Yoo, K.; Matzek, V.; Kendall, C.; Uebersax, A.; Brenner, D.; Baisden, W.T. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles 2003, 17, 2002GB001903. [Google Scholar] [CrossRef]
- Pardo, L.H.; Templer, P.H.; Goodale, C.L.; Duke, S.; Groffman, P.M.; Adams, M.B.; Boeckx, P.; Boggs, J.; Campbell, J.; Colman, B.; et al. Regional assessment of N saturation using foliar and root δ15N. Biogeochemistry 2006, 80, 143–171. [Google Scholar] [CrossRef]
- Tilsner, J.; Wrage, N.; Lauf, J.; Gebauer, G. Emission of gaseous nitrogen oxides from an extensively managed grassland in NE Bavaria, Germany. Biogeochemistry 2003, 63, 249–267. [Google Scholar] [CrossRef]
- Cummins, S.; Finn, J.A.; Richards, K.G.; Lanigan, G.J.; Grange, G.; Brophy, C.; Cardenas, L.M.; Misselbrook, T.H.; Reynolds, C.K.; Krol, D.J. Beneficial effects of multi-species mixtures on N2O emissions from intensively managed grassland swards. Sci. Total Environ. 2021, 792, 148163. [Google Scholar] [CrossRef]
- de Klein CA, M.; van der Weerden, T.J.; Luo, J.; Cameron, K.C.; Di, H.J. A review of plant options for mitigating nitrous oxide emissions from pasture-based systems. N. Z. J. Agri. Res. 2020, 63, 29–43. [Google Scholar] [CrossRef]
- Bhandral, R.; Bittman, S.; Kowalenko, G.; Buckley, K.; Chantigny, M.; Hunt, D.; Bounaix, F.; Friesen, A. Enhancing Soil Infiltration Reduces Gaseous Emissions and Improves N Uptake from Applied Dairy Slurry. J. Environ. Qual. 2009, 38, 1372–1382. [Google Scholar] [CrossRef]
- Blesh, J. Functional traits in cover crop mixtures: Biological nitrogen fixation and multifunctionality. J. Appl. Ecol. 2017, 55, 38–48. [Google Scholar] [CrossRef]
- Aranjuelo, I.; Cabrera-Bosquet, L.; Morcuende, R.; Avice, J.C.; Nogues, S.; Araus, J.L.; Martínez-Carrasco, R.; Perez, P. Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? J. Exp. Bot. 2011, 62, 3957–3969. [Google Scholar] [CrossRef]
- Rani, K.; Sharma, P.; Kumar, S.; Wati, L.; Kumar, R.; Gurjar, D.S.; Kumar, D.; Kumar, R. Legumes for Sustainable Soil and Crop Management. In Sustainable Management of Soil and Environment [Internet]; Meena, R.S., Kumar, S., Bohra, J.S., Jat, M.L., Eds.; Springer: Singapore, 2019; pp. 193–215. [Google Scholar] [CrossRef]
- Ansarbr, M.; Ahmed, Z.I.; Malik, M.A.; Nadeembr, M.; Rischkowsky, A.; Ansar, M.; Nadeem, M.; Majeed, A.; Rischkowsky, B.A. Forage yield and quality potential of winter cereal-vetch mixturesunder rainfed conditions. Emir. J. Food Agric. 2010, 22, 25–36. [Google Scholar] [CrossRef]
- Thami Alami, I.; Pecetti, L.; Souihka, A.; Annicchiarico, P. Optimizing Species and Variety Choice in Legume–Cereal Mixtures as Forage Crops in a Dry Mediterranean Region. Available online: http://ouci.dntb.gov.ua/en/works/4NzdA5x4/ (accessed on 21 November 2024).
- Carita, T. Forage yield and quality of simple and complex grass-legumes mixtures under Mediterranean conditions. Emir. J. Food Agric. 2016, 28, 501. Available online: https://www.academia.edu/81755252/Forage_yield_and_quality_of_simple_and_complex_grass_legumes_mixtures_under_Mediterranean_conditions (accessed on 21 November 2024). [CrossRef]
- Gomez de barreda, D.; Yu, J.; McCullough, P.E. Seedling Tolerance of Cool-season Turfgrasses to Metamifop. Hort Sci. 2013, 48, 1313–1316. [Google Scholar] [CrossRef]
- Similien, R.M.; Trooien, T.P.; Wu, J.; Boe, A. Impact of Harvest Management on Forage Production and Nutrient Removal by Smooth Bromegrass on a Vegetated Treatment Area. Am. J. Plant Sci. 2015, 06, 1550–1559. [Google Scholar] [CrossRef]
- Meyer, D.W. Forage Establishment. NDSU Circular R-563. 1999. Available online: https://library.ndsu.edu/ir/bitstream/handle/10365/9129/R563_1999.pdf?sequence=1 (accessed on 21 November 2024).
- Malézieux, E.; Crozat, Y.; Dupraz, C.; Laurans, M.; Makowski, D.; Ozier-Lafontaine, H.; Rapidel, B.; de Tourdonnet, S.; Val-antin-Morison, M. Mixing Plant Species in Cropping Systems: Concepts, Tools and Models: A Review. In Sustainable Agriculture; Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 329–353. [Google Scholar] [CrossRef]
Scenario 1 C/N | Monocultures | Mixture | ||||
Legume | Grass | Forb | Legume | Grass | Forb | |
Shoot | 3.2 ± 0.2 | 8.1 ± 1.0 | 4.1 ± 0.7 | 5.4 ± 0.04 | 5.6 ± 0.7 | 3.5 ± 0.02 |
Root | 4.5 ± 0.3 | 18.3 ± 0.7 | 19.5 ± 5.9 | 2.7 ± 0.4 | 12.7 ± 4.2 | 15.1 ± 0.9 |
Soil | 6.4 ± 0.6 | 6.8 ± 0.4 | 6.1 ± 0.4 | 6.3 ± 0.1 | ||
Scenario 2 C/N | Monocultures | Mixture | ||||
Legume | Grass | Forb | Legume | Grass | Forb | |
Shoot | 3.6 ± 0.5 | 5.6 ± 0.5 | 5.4 ± 0.8 | 4.5 ± 0.05 | 3.2 ± 0.02 | - |
Root | 4.9 ± 0.1 | 9.9 ± 2.0 | 12.6 ± 4.2 | 2.8 ± 0.04 | 7.3 ± 0.3 | - |
Soil | 5.8 ± 0.01 | 6.6 ± 0.01 | 6.1 ± 0.2 | 6.1 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljazairi, S.; Ribas, A.; Llurba, R.; Ferrio, J.P.; Voltas, J.; Nogués, S.; Sebastiá, M.T. Sown Diversity Effects on the C and N Cycle and Interactions with Fertilization. Agronomy 2025, 15, 287. https://doi.org/10.3390/agronomy15020287
Aljazairi S, Ribas A, Llurba R, Ferrio JP, Voltas J, Nogués S, Sebastiá MT. Sown Diversity Effects on the C and N Cycle and Interactions with Fertilization. Agronomy. 2025; 15(2):287. https://doi.org/10.3390/agronomy15020287
Chicago/Turabian StyleAljazairi, Salvador, Angela Ribas, Rosa Llurba, Juan Pedro Ferrio, Jordi Voltas, Salvador Nogués, and Maria Teresa Sebastiá. 2025. "Sown Diversity Effects on the C and N Cycle and Interactions with Fertilization" Agronomy 15, no. 2: 287. https://doi.org/10.3390/agronomy15020287
APA StyleAljazairi, S., Ribas, A., Llurba, R., Ferrio, J. P., Voltas, J., Nogués, S., & Sebastiá, M. T. (2025). Sown Diversity Effects on the C and N Cycle and Interactions with Fertilization. Agronomy, 15(2), 287. https://doi.org/10.3390/agronomy15020287