A Comprehensive Review of Big Data Intelligent Decision-Making Models for Smart Farms
Abstract
1. Introduction
2. The Concept and Development Status of Smart Farms
2.1. Concept and Characteristics of Smart Farms
2.2. Current Status of Smart Farm Development
3. Governance of Agricultural Big Data in Smart Farms
3.1. Acquisition & Processing of Agricultural Data
3.2. Storage & Management of Agricultural Data
3.3. Security & Sharing of Agricultural Data
4. Intelligent Decision-Making Models for Smart Farms
4.1. Pre-Season Cultivation Planning Decision Models
4.1.1. Suitability Assessment
4.1.2. Planting Plan
4.1.3. Sowing Plan
4.1.4. Variety Recommendation
4.2. Mid-Season Cultivation Management Decision Models
4.2.1. Seedling Monitoring & Variable Fertilization Decision
4.2.2. Moisture Sensing & Efficient Irrigation Strategy Decision
4.2.3. Pest and Disease Monitoring & Precision Application Decision
4.3. Post-Harvest Benefit Evaluation Models
4.3.1. Production Forecasts
4.3.2. Harvest Timing Forecasting & Agricultural Machinery Dispatch
4.3.3. Holistic Performance Assessment
4.4. Section Summary
5. Discussion, Conclusions and Outlook
5.1. Discussion
5.2. Conclusion
5.3. Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). The State of Food Security and Nutrition in the World 2020: Transforming Food Systems for Affordable Healthy Diets; Food & Agriculture Org.: Rome, Italy, 2020; Volume 2020. [Google Scholar]
- Food and Agriculture Organization. The Future of Food and Agriculture: Alternative Pathways to 2050; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; p. 60. [Google Scholar]
- Food and Agriculture Organization (FAO) of the United Nations. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- Çakmakçı, R.; Salık, M.A.; Çakmakçı, S. Assessment and principles of environmentally sustainable food and agriculture systems. Agriculture 2023, 13, 1073. [Google Scholar] [CrossRef]
- Moysiadis, V.; Sarigiannidis, P.; Vitsas, V.; Khelifi, A. Smart Farming in Europe. Comput. Sci. Rev. 2021, 39, 100345. [Google Scholar] [CrossRef]
- Li, Q.; Gao, M.-F.; Fang, Y. Research on the construction of the agricultural big data information platform. J. Agric. Big Data 2021, 3, 24–30. [Google Scholar]
- Huang, Y.; Chen, Z.-X.; Tao, Y.; Huang, X.-Z.; Gu, X.-F. Agricultural remote sensing big data: Management and applications. J. Integr. Agric. 2018, 17, 1915–1931. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big data in smart farming–a review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Ling, N.-J.; Rao, Y. Design and implementation of a big data platform for cloud server farm smart services. J. Agric. Big Data 2022, 3, 10–19. [Google Scholar]
- Zhao, C.-J. Current situations and prospects of smart agriculture. J. S. China Agric. Univ. 2021, 42, 1–7. [Google Scholar]
- Nahina, I.; Mamunur, R.M.; Faezeh, P.; Biplob, R.; Steven, M.; Rajan, K. A Review of Applications and Communication Technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) Based Sustainable Smart Farming. Sustainability 2021, 13, 1821. [Google Scholar] [CrossRef]
- Hong, Y.X.; Yang, Y.Z. A new journey of innovation in the development model of modern agriculture—Also on the innovative research of China’s development economics. J. Manag. World 2023, 39, 1–8+53+59. [Google Scholar] [CrossRef]
- Dutta, M.; Gupta, D.; Tharewal, S.; Goyal, D.; Sandhu, J.K.; Kaur, M.; AlZubi, A.A.; Alanazi, J.M. Internet of Things-Based Smart Precision Farming in Soilless Agriculture: Opportunities and Challenges for Global Food Security. IEEE Access 2025, 13, 34238–34268. [Google Scholar] [CrossRef]
- Khujamatov, K.E.; Toshtemirov, T.; Lazarev, A.; Raximjonov, Q. IoT and 5G technology in agriculture. In Proceedings of the 2021 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 3–5 November 2021; pp. 1–6. [Google Scholar]
- Cao, B.; Li, H.; Zhao, C.; Li, J. The Path of Smart Agricultural Technology Innovation Leading Development of Agricultural New Quality Productivity. Smart Agric. 2024, 6, 116. [Google Scholar]
- Perry, T.S. John Deere’s quest to solve agricultures deep-learning problems-[Spectral Lines]. IEEE Spectr. 2020, 57, 4. [Google Scholar] [CrossRef]
- Iida, S. Precision Agriculture in Rice Farming. In Precision Agriculture: Modelling; Springer: Berlin/Heidelberg, Germany, 2023; pp. 239–250. [Google Scholar]
- Xiong, F. Technical architecture and implementation of intelligent system for agriculture domain. Pattern Recognit. Artif. Intell. 2012, 25, 729–736. [Google Scholar] [CrossRef]
- Tripathi, A.; Tiwari, R.K.; Tiwari, S.P. A deep learning multi-layer perceptron and remote sensing approach for soil health based crop yield estimation. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102959. [Google Scholar] [CrossRef]
- Sun, C.; Bian, Y.; Zhou, T.; Pan, J. Using of multi-source and multi-temporal remote sensing data improves crop-type mapping in the subtropical agriculture region. Sensors 2019, 19, 2401. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, H.; Homayouni, S.; Safari, A.; Mirzaei, S.; Mahdianpari, M.; Reisi-Gahrouei, O. Deep learning-based estimation of crop biophysical parameters using multi-source and multi-temporal remote sensing observations. Agronomy 2021, 11, 1363. [Google Scholar] [CrossRef]
- dos Santos, J.A.; Gosselin, P.-H.; Philipp-Foliguet, S.; Torres, R.d.S.; Falcao, A.X. Interactive multiscale classification of high-resolution remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2020–2034. [Google Scholar] [CrossRef]
- Varela, S.; Dhodda, P.R.; Hsu, W.H.; Prasad, P.V.; Assefa, Y.; Peralta, N.R.; Griffin, T.; Sharda, A.; Ferguson, A.; Ciampitti, I.A. Early-season stand count determination in corn via integration of imagery from unmanned aerial systems (UAS) and supervised learning techniques. Remote Sens. 2018, 10, 343. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- Zhu, W.; Sun, Z.; Peng, J.; Huang, Y.; Li, J.; Zhang, J.; Yang, B.; Liao, X. Estimating maize above-ground biomass using 3D point clouds of multi-source unmanned aerial vehicle data at multi-spatial scales. Remote Sens. 2019, 11, 2678. [Google Scholar] [CrossRef]
- Hasan, M.M.; Chopin, J.P.; Laga, H.; Miklavcic, S.J. Detection and analysis of wheat spikes using convolutional neural networks. Plant Methods 2018, 14, 100. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, X.; Gao, J.; Wang, X.; Bai, F.; Sun, S.; Liu, Z.; Ming, B.; Xie, R.; Wang, K. Analysis of suitable sowing date for summer maize in North China Plain under climate change. Sci. Agric. Sin. 2018, 51, 3258–3274. [Google Scholar]
- Fu, J.; Wang, W.; Shao, Q.; Xing, W.; Cao, M.; Wei, J.; Chen, Z.; Nie, W. Improved global evapotranspiration estimates using proportionality hypothesis-based water balance constraints. Remote Sens. Environ. 2022, 279, 113140. [Google Scholar] [CrossRef]
- Niu, L.; Zhang, X. A study of estimation model for the chlorophyll content of wheat leaf based on hyperspectral imaging. Asian Agric. Res. 2016, 8, 86–90. [Google Scholar]
- Xue, D.; Yuan, G.; Bing, A. Research on data storage method of smart grid monitoring system based on TDengine. Electrotech. Appl. 2021, 40, 68–74. [Google Scholar]
- Lei, J. MinIO-Based Efficient Database Backup and Synchronization Strategy: Compressed and Encrypted Storage with Cross-Region Real-Time Synchronization. Appl. Sci. Innov. Res. 2025, 9, 136. [Google Scholar] [CrossRef]
- Salunke, S.V.; Ouda, A. A Performance Benchmark for the PostgreSQL and MySQL Databases. Future Internet 2024, 16, 382. [Google Scholar] [CrossRef]
- Ma, Y.; Song, J.; Zhang, Z. In-Memory Distributed Mosaicking for Large-Scale Remote Sensing Applications with Geo-Gridded Data Staging on Alluxio. Remote Sens. 2022, 14, 5987. [Google Scholar] [CrossRef]
- Liu, J.; Jin, S.; Wang, D.; Li, H. An archive-based method for efficiently handling small file problems in HDFS. Concurr. Comput. Pract. Exp. 2024, 36, e8260. [Google Scholar] [CrossRef]
- Mohammed, Z.K.; Mohammed, M.A.; Abdulkareem, K.H.; Zebari, D.A.; Lakhan, A.; Marhoon, H.A.; Nedoma, J.; Martinek, R. A metaverse framework for IoT-based remote patient monitoring and virtual consultations using AES-256 encryption. Appl. Soft Comput. 2024, 158, 111588. [Google Scholar] [CrossRef]
- Polato, I.; Ré, R.; Goldman, A.; Kon, F. A comprehensive view of Hadoop research—A systematic literature review. J. Netw. Comput. Appl. 2014, 46, 1–25. [Google Scholar] [CrossRef]
- Fotso, S.B.N.; Atchoffo, W.N.; Nzeukou, A.C.; Talla Mbé, J.H. Enhanced security in lossless audio encryption using zigzag scrambling, DNA coding, SHA-256, and Hopfield networks: A practical VLC system implementation. Multimed. Tools Appl. 2024, 84, 27091–27125. [Google Scholar] [CrossRef]
- Nair, A.M.; Santhosh, R. Privacy and Integrity Verification Model with Decentralized ABE and Double Encryption Storage Scheme. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2023, 14, 465–472. [Google Scholar] [CrossRef]
- Lin, W.; Shi, F.; Zeng, L.; Li, D.; Xu, Y.; Liu, B. Survey of Federated Learning Open-Source Frameworks. J. Comput. Res. Dev. 2023, 60, 1551–1580. [Google Scholar] [CrossRef]
- Jia, Y.; Yun, C.; Wu, J. Modeling and implementation of classification rule discovery by ant colony optimisation for spatial land-use suitability assessment. Comput. Environ. Urban Syst. 2010, 35, 308–319. [Google Scholar]
- Elaalem, M. A Comparison of Parametric and Fuzzy Multi-Criteria Methods for Evaluating Land Suitability for Olive in Jeffara Plain of Libya. APCBEE Procedia 2013, 5, 405–409. [Google Scholar] [CrossRef]
- Al-Hanbali, A.; Shibuta, K.; Alsaaideh, B.; Tawara, Y. Analysis of the land suitability for paddy fields in Tanzania using a GIS-based analytical hierarchy process. Geo-Spat. Inf. Sci. 2022, 25, 212–228. [Google Scholar]
- Montgomery, B.; Dragićević, S.; Dujmović, J.; Schmidt, M. A GIS-based Logic Scoring of Preference method for evaluation of land capability and suitability for agriculture. Comput. Electron. Agric. 2016, 124, 340–353. [Google Scholar] [CrossRef]
- Schmitter, P.; Zwart, S.J.; Danvi, A.; Gbaguidi, F. Contributions of lateral flow and groundwater to the spatio-temporal variation of irrigated rice yields and water productivity in a West-African inland valley. Agric. Water Manag. 2015, 152, 286–298. [Google Scholar] [CrossRef]
- Ahmadi, F.F.; Layegh, N.F. Integration of artificial neural network and geographical information system for intelligent assessment of land suitability for the cultivation of a selected crop. Neural Comput. Appl. 2015, 26, 1311–1320. [Google Scholar] [CrossRef]
- Bai, D.-F.; Chen, P.-J.; Atzeni, L.; Cering, L.; Li, Q.; Shi, K. Assessment of habitat suitability of the snow leopard (Panthera uncia) in Qomolangma National Nature Reserve based on MaxEnt modeling. Zool. Res. 2018, 39, 373. [Google Scholar] [PubMed]
- Dorijan, R.; Mladen, J.; Mateo, G.; Ivan, P.; Oleg, A. Cropland Suitability Assessment Using Satellite-Based Biophysical Vegetation Properties and Machine Learning. Agronomy 2021, 11, 1620. [Google Scholar] [CrossRef]
- Chen, F.; Jiang, B.; Guo, J. Research on processing tomato planting planning based on optimal control theory. Xinjiang Agric. Sci. 2012, 49, 1949–1954. [Google Scholar]
- Luo, D.; Jiang, B. A multi-objective particle swarm-biogeography optimization algorithm for tomato planting planning problem. Comput. Appl. Softw. 2023, 40, 294–299. [Google Scholar]
- Zhang, C.; Sun, T.; Wang, Y.; Gao, Z.; Li, T. Effects of sowing date and density on photosynthetic characteristics and yield of winter wheat under drip irrigation. Xinjiang Agric. Sci. 2021, 58, 1971–1980. [Google Scholar]
- Vitantonio-Mazzini, L.N.; Borrás, L.; Garibaldi, L.A.; Pérez, D.H.; Gallo, S.; Gambin, B.L. Management options for reducing maize yield gaps in contrasting sowing dates. Field Crops Res. 2020, 251, 107779. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Padovan, G.; Martre, P.; Semenov, M.A.; Masoni, A.; Bregaglio, S.; Ventrella, D.; Lorite, I.J.; Santos, C.; Bindi, M.; Ferrise, R.; et al. Understanding effects of genotype × environment × sowing window interactions for durum wheat in the Mediterranean basin. Field Crops Res. 2020, 259, 107969. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Xu, Y. Establishment and application of growing climatic suitability indicator of single cropping rice in Anhui Province. Meteorol. Mon. 2013, 39, 88–93. [Google Scholar]
- Zhang, Q.; Li, B.; Zhang, Y.; Wang, S. Suitability Evaluation of Crop Variety via Graph Neural Network. Comput. Intell. Neurosci. 2022, 2022, 5614974. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, K.; Han, Y.; Liu, Z.; Yang, F.; Wang, S.; Zhao, X.; Zhao, C. A crop variety yield prediction system based on variety yield data compensation. Comput. Electron. Agric. 2022, 203, 107460. [Google Scholar] [CrossRef]
- Li, C.; Li, H.; Li, J.; Lei, Y.; Li, C.; Manevski, K.; Shen, Y. Using NDVI percentiles to monitor real-time crop growth. Comput. Electron. Agric. 2019, 162, 357–363. [Google Scholar] [CrossRef]
- Lu, Z.; Luo, M.; Tan, C.; Xu, F.; Liang, S.; Yang, X. Monitoring and evaluation of winter wheat growth based on analysis of vegetation index changes on remote sensing images. J. Triticeae Crops 2020, 10, 1257–1264. [Google Scholar]
- Zhang, H.; Li, W.-G.; Zhang, X.-D.; Li, W.; Ma, T.-H.; Han, Z.-Q. Estimation of stem and tiller number of winter wheat in field based on optimization of multiple remote sensing spectral index. J. Triticeae Crops 2023, 43, 391–398. [Google Scholar]
- Zhao, Y.; Wang, X.; Guo, Y.; Hou, X.; Dong, L. Winter Wheat Phenology Variation and Its Response to Climate Change in Shandong Province, China. Remote Sens. 2022, 14, 4482. [Google Scholar] [CrossRef]
- Alvarez-Hess, P.S.; Thomson, A.L.; Karunaratne, S.B.; Douglas, M.L.; Wright, M.M.; Heard, J.W.; Jacobs, J.L.; Morse-McNabb, E.M.; Wales, W.J.; Auldist, M.J. Using multispectral data from an unmanned aerial system to estimate pasture depletion during grazing. Anim. Feed. Sci. Technol. 2021, 275, 114880. [Google Scholar] [CrossRef]
- Näsi, R.; Viljanen, N.; Kaivosoja, J.; Alhonoja, K.; Hakala, T.; Markelin, L.; Honkavaara, E. Estimating Biomass and Nitrogen Amount of Barley and Grass Using UAV and Aircraft Based Spectral and Photogrammetric 3D Features. Remote Sens. 2018, 10, 1082. [Google Scholar] [CrossRef]
- Zhao, J.; Ding, Y.; Du, M.; Liu, W.; Zhu, H.; Li, G.; Yang, J. Vegetation coverage inversion of alpine grassland in the source of the Yellow River based on unmanned aerial vehicle and machine learning. Sci. Technol. Eng. 2021, 21, 10209–10214. [Google Scholar]
- Jiang, H.; Chai, L.; Jia, K.; Liu, J.; Yang, S.; Zheng, J. Estimation of water content for short vegetation based on PROSAIL model and vegetation water indices. J. Remote Sens. 2021, 25, 1025–1036. [Google Scholar]
- Xing, H.; Li, Z.; Xu, X.; Feng, H.; Yang, G.; Chen, Z. Multi-assimilation methods based on AquaCrop model and remote sensing data. Trans. Chin. Soc. Agric. Eng. 2017, 33, 183–192. [Google Scholar]
- Xie, Y.; Wang, P.; Wang, L.; Zhang, S.; Li, L.; Liu, J. Estimation of wheat yield based on crop and remote sensing assimilation models. Trans. Chin. Soc. Agric. Eng. 2016, 32, 179–186. [Google Scholar]
- Yang, Q.; Shi, L.; Han, J.; Zha, Y.; Zhu, P. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images. Field Crops Res. 2019, 235, 142–153. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Ihuoma, S.O.; Madramootoo, C.A. Recent advances in crop water stress detection. Comput. Electron. Agric. 2017, 141, 267–275. [Google Scholar] [CrossRef]
- Ebrahim, B.; Sidike, P.; Nahian, S.; Devabhaktuni, V.K.; Markus, T. Estimation of root zone soil moisture from ground and remotely sensed soil information with multisensor data fusion and automated machine learning. Remote Sens. Environ. 2021, 260, 112434. [Google Scholar]
- Cheng, M.; Jiao, X.; Liu, Y.; Shao, M.; Yu, X.; Bai, Y.; Wang, Z.; Wang, S.; Nuremanguli, T.; Shuaibing, L.; et al. Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning. Agric. Water Manag. 2022, 264, 107530. [Google Scholar] [CrossRef]
- Chen, L.; Xing, M.; He, B.; Wang, J.; Shang, J.; Huang, X.; Xu, M. Estimating Soil Moisture Over Winter Wheat Fields During Growing Season Using Machine-Learning Methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3706–3718. [Google Scholar] [CrossRef]
- Kia, P.J.; Far, A.T.; Omid, M.; Alimardani, R.; Naderloo, L. Intelligent control based fuzzy logic for automation of greenhouse irrigation system and evaluation in relation to conventional systems. World Appl. Sci. J. 2009, 6, 16–23. [Google Scholar]
- Giusti, E.; Marsili-Libelli, S. A Fuzzy Decision Support System for irrigation and water conservation in agriculture. Environ. Model. Softw. 2015, 63, 73–86. [Google Scholar] [CrossRef]
- Delgoda, D.; Malano, H.; Saleem, S.K.; Halgamuge, M.N. Irrigation control based on model predictive control (MPC): Formulation of theory and validation using weather forecast data and AQUACROP model. Environ. Model. Softw. 2016, 78, 40–53. [Google Scholar] [CrossRef]
- Chao, S.; Han, C.W.; Duncan, S.A.; Fengqi, Y. Robust Model Predictive Control of Irrigation Systems With Active Uncertainty Learning and Data Analytics. IEEE Trans. Control. Syst. Technol. 2019, 28, 1493–1504. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, J.-C.; Zhao, J.-L.; Huang, W.-J.; Wang, J.-H. Differentiation of yellow rust and powdery mildew in winter wheat and retrieving of disease severity based on leaf level spectral analysis. Spectrosc. Spectr. Anal. 2013, 33, 1608–1614. [Google Scholar]
- Wang, J.; Jing, Y.; Huang, W.; Zhang, J.; Zhao, J.; Zhang, Q.; Wang, L. Comparative research on estimating the severity of yellow rust in winter wheat. GU Case GPU Snow Spectr. Anal. 2015, 35, 1649–1653. [Google Scholar]
- Yuan, L.; Zhang, J.; Shi, Y.; Nie, C.; Wei, L.; Wang, J. Damage Mapping of Powdery Mildew in Winter Wheat with High-Resolution Satellite Image. Remote Sens. 2014, 6, 3611–3623. [Google Scholar]
- Azadbakht, M.; Ashourloo, D.; Aghighi, H.; Radiom, S.; Alimohammadi, A. Wheat leaf rust detection at canopy scale under different LAI levels using machine learning techniques. Comput. Electron. Agric. 2019, 156, 119–128. [Google Scholar] [CrossRef]
- Qian, P.; Maofang, G.; Pingbo, W.; Jingwen, Y.; Shilei, L. A Deep-Learning-Based Approach for Wheat Yellow Rust Disease Recognition from Unmanned Aerial Vehicle Images. Sensors 2021, 21, 6540. [Google Scholar]
- Chao, Q.; Murilo, S.; Jesper, C.W.; Ea, H.R.S.; Merethe, B.; Erik, A.; Junfeng, G. In-field classification of the asymptomatic biotrophic phase of potato late blight based on deep learning and proximal hyperspectral imaging. Comput. Electron. Agric. 2023, 205, 107585. [Google Scholar]
- Mao, Y.; Gong, H. Research on corn disease identification based on fusion of multiple features based on SVM and DS evidence theory. J. Chin. Agric. Mech. 2020, 41, 152–157. [Google Scholar] [CrossRef]
- Zhang, X.; Qiao, Y.; Meng, F.; Fan, C.; Zhang, M. Identification of maize leaf diseases using improved deep convolutional neural networks. IEEE Access 2018, 6, 30370–30377. [Google Scholar] [CrossRef]
- Xu, j.; Shao, M.; Wang, Y.; Han, W. Maize disease image recognition using matrix neural network based on transfer learning. Trans. Chin. Soc. Agric. Mach. 2020, 51, 230–236+253. [Google Scholar]
- Zhang, Z.; Zhang, Z.; Jin, Y.; Chen, B.; Brown, P. California Almond Yield Prediction at the Orchard Level With a Machine Learning Approach. Front. Plant Sci. 2019, 10, 809. [Google Scholar] [CrossRef]
- Fu, Z.; Jiang, J.; Gao, Y.; Krienke, B.; Wang, M.; Zhong, K.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; et al. Wheat Growth Monitoring and Yield Estimation based on Multi-Rotor Unmanned Aerial Vehicle. Remote Sens. 2020, 12, 508. [Google Scholar] [CrossRef]
- Filippi, P.; Jones, E.J.; Wimalathunge, N.S.; Somarathna, P.D.; Pozza, L.E.; Ugbaje, S.U.; Jephcott, T.G.; Paterson, S.E.; Whelan, B.M.; Bishop, T.F.A. An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning. Precis. Agric. 2019, 20, 1015–1029. [Google Scholar] [CrossRef]
- Nevavuori, P.; Narra, N.; Lipping, T. Crop yield prediction with deep convolutional neural networks. Comput. Electron. Agric. 2019, 163, 104859. [Google Scholar] [CrossRef]
- Qiao, M.; He, X.; Cheng, X.; Li, P.; Luo, H.; Zhang, L.; Tian, Z. Crop yield prediction from multi-spectral, multi-temporal remotely sensed imagery using recurrent 3D convolutional neural networks. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102436. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, D.; Zhao, J.; Liu, J.; Zhang, H.; Ma, X.L.; Wang, P.; Wang, D. Influence of the operating parameters of an unmanned pine seeding system on the final seeding uniformity. Ind. Crops Prod. 2023, 205, 117439. [Google Scholar] [CrossRef]
- Bazrafkan, A.; Navasca, H.; Kim, J.H.; Morales, M.; Johnson, J.P.; Delavarpour, N.; Fareed, N.; Bandillo, N.; Flores, P. Predicting Dry Pea Maturity Using Machine Learning and Advanced Sensor Fusion with Unmanned Aerial Systems (UASs). Remote Sens. 2023, 15, 2758. [Google Scholar] [CrossRef]
- Han, S.; Liu, J.; Zhou, G.; Jin, Y.; Zhang, M.; Xu, S. InceptionV3-LSTM: A deep learning net for the intelligent prediction of rapeseed harvest time. Agronomy 2022, 12, 3046. [Google Scholar] [CrossRef]
- Singh, K.D.; Duddu, H.S.; Vail, S.; Parkin, I.; Shirtliffe, S.J. UAV-based hyperspectral imaging technique to estimate canola (Brassica napus L.) seedpods maturity. Can. J. Remote Sens. 2021, 47, 33–47. [Google Scholar] [CrossRef]
- Ding, C.; Wang, L.; Chen, X.; Yang, H.; Huang, L.; Song, X. A blockchain-based wide-area agricultural machinery resource scheduling system. Appl. Eng. Agric. 2023, 39, 1757. [Google Scholar] [CrossRef]
- Cao, R.; Li, S.; Ji, Y.; Zhang, Z.; Xu, H.; Zhang, M.; Li, M.; Li, H. Task assignment of multiple agricultural machinery cooperation based on improved ant colony algorithm. Comput. Electron. Agric. 2021, 182, 105993. [Google Scholar] [CrossRef]
- Liang, Z. Optimization of Agricultural Machinery Task Scheduling Algorithm Based on Multiobjective Optimization. J. Sens. 2022, 2022, 5800332. [Google Scholar]
- Li, S.; Zhang, M.; Wang, N.; Cao, R.; Zhang, Z.; Ji, Y.; Li, H.; Wang, H. Intelligent scheduling method for multi-machine cooperative operation based on NSGA-III and improved ant colony algorithm. Comput. Electron. Agric. 2023, 204, 107532. [Google Scholar] [CrossRef]
- Khan, S.; Abbas, A.; Gabriel, H.; Rana, T.; Robinson, D. Hydrologic and economic evaluation of water-saving options in irrigation systems. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2008, 57, 1–14. [Google Scholar] [CrossRef]
- Ping, L.; Lisha, F.; Kaiming, J. Evaluation of Economic Benefits of Xiangfeng Peony. Sci. Silvae Sin. 2019, 55, 167–174. [Google Scholar]
- Kamali, F.P.; Meuwissen, M.P.; de Boer, I.J.; van Middelaar, C.E.; Moreira, A.; Lansink, A.G.O. Evaluation of the environmental, economic, and social performance of soybean farming systems in southern Brazil. J. Clean. Prod. 2017, 142, 385–394. [Google Scholar] [CrossRef]
- Wang, G.; Bu, C.; Feng, W. Evaluating Ecological Benefits of “Danzhi” Project Based on TOPSIS Model with Grey Correlation. Bull. Soiland Water Conserv. 2019, 39, 189–193. [Google Scholar]
- Xu, Y.; Zhang, R. Comprehensive benefit evaluation of edible fungus cultivation in Hebei Province based on factor analysis combined with entropy method. North. Hortic. 2022, 3, 138–144. [Google Scholar]





| Years | Concept |
|---|---|
| 2021 | Zhao conceptualizes the smart farm as a specific practical form of smart agriculture, characterized primarily by unmanned or minimally manned operations [10]. By leveraging agricultural sensors, the Internet of Things (IoT), big data, artificial intelligence (AI), and other advanced technologies, smart farms can achieve fully automated operations throughout the entire agricultural process—from cultivation to harvest. |
| 2021 | According to Nahina, smart farms integrate advanced technologies with traditional farming practices to enhance both the quality and quantity of agricultural production while significantly reducing input usage [11]. |
| 2023 | Hong and Yang describe the smart farm as a highly efficient production system that leverages advanced and information technologies to intelligently control all aspects of agricultural production, enabling automation and refined management throughout the process [12]. |
| 2025 | According to Dutta, smart farms enhance resource efficiency and automate environmental controls by leveraging real-time monitoring, data-driven decision-making, and automation to ensure consistent, high-yield crop production [13]. |
| Storage Type | Technical Proposal | Core Advantages | Typical Application Scenarios |
|---|---|---|---|
| Time Series Database | TDengine | High-throughput writing, time series compression | Sensor data streams, weather monitoring |
| Object Storage | MINIO | High-concurrency access, unbounded scalability | Remote sensing imagery, drone orthomaps |
| Relational Database | MySQL/PostgreSQL | ACID transaction support, complex query optimization | Agricultural machinery scheduling records, production material ledgers |
| Memory Cache | Redis/Alluxio | Microsecond-level response, real-time data acceleration | Pest and disease warning, irrigation decision model parameters |
| Offline Storage | HDFS | Low-cost archiving, massive data fault tolerance | Historical survey data, reanalysis datasets |
| Decision Type | Model Category | Key Techniques | Strengths | Limitations |
|---|---|---|---|---|
| Suitability Assessment | Linear/Non-linear Evaluation | AHP; Delphi; Fuzzy Mathematics | Intuitive and easy to implement; integrates expert knowledge. | Prone to subjective bias; relies on manual weight allocation. |
| Machine Learning | ANN; MaxEnt; Random Forest (RF) | Handles complex non-linear relationships; robust for small samples. | Low interpretability (black-box nature); dependent on data quality. | |
| Planting Plan | Mathematical Modeling | Optimal Control Theory; Dynamic Models | Logically clear framework; provides quantitative basis. | Dependent on precise parameters; limited flexibility in uncertain environments. |
| Intelligent Optimization | MOPSO; Genetic Algorithms | Strong global search for multi-objective problems; adaptable to dynamic conditions. | High computational cost; requires complex parameter tuning. | |
| Sowing Plan | Field Trials (Empirical) | Field Experiments; Yield Comparison | Provides direct regional guidance; observes real-world interactions. | Time-consuming; high cost; limited generalizability across regions. |
| Mechanistic Simulation | Crop Growth Models (e.g., CERES-Wheat) | Reduces research cost; extends spatio-temporal analysis scope. | Complex structure requires detailed calibration; may miss extreme weather impacts. | |
| Variety Recommendation | Traditional Statistical | PCA; Fuzzy Mathematics | Logically sound framework using statistical principles. | Indicator selection and weighting are prone to subjective bias. |
| Machine Learning | GCN; Random Forest; Transfer Learning | Data-driven discovery of latent associations; high accuracy. | Low model transparency; needs large datasets or transfer learning support. |
| Decision Module | Model Category | Key Techniques | Strengths | Limitations |
|---|---|---|---|---|
| Seedling Monitoring & Variable Fertilization | Remote Sensing (Empirical) | UAV-based fusion; SVR; Random Forest | High spatial–temporal resolution; efficient computation for specific conditions. | Limited generalizability; heavy reliance on large training datasets. |
| Radiative Transfer Models | PROSAIL; Physical Optics Models | High generalization based on physical mechanisms; robust across environments. | High complexity in model inversion; requires multiple difficult-to-obtain parameters. | |
| Data Assimilation | Crop Growth Models + Particle Swarm Optimization (PSO) | Provides mechanistic support; enhances estimation accuracy of state variables. | Algorithmic complexity is high; lacks real-time performance for field deployment. | |
| Deep Learning/RL | CNN-LSTM; Deep Reinforcement Learning (DRL) | Autonomously extracts spatiotemporal features; optimizes strategies dynamically. | “Black box” nature (low interpretability); high computational burden. | |
| Moisture Sensing & Irrigation Strategy | Physical Models | Microwave/Thermal Infrared Remote Sensing | High precision; grounded in physical scattering/emission mechanisms. | Requires complex parameterization (roughness, texture); limited scalability. |
| Machine Learning | AutoML; ANN; SVM; PLSR | Efficiently handles non-linear spectral relationships; bypasses complex parameter inputs. | Dependent on labeled data; lacks physical interpretability. | |
| Fuzzy Logic Control | Rule-based Systems | Improves adaptability by integrating environmental factors; intuitive logic. | Relies on expert-defined rules; lacks global optimization capability. | |
| Model Predictive Control (MPC) | Robust MPC (RMPC); DDRMPC | Enables rolling-horizon optimization; handles uncertainty through feedback correction. | Often overestimates rainfall utilization (ignores infiltration limits); computationally demanding. | |
| Pest/Disease Monitoring & Precision Application | Statistical Models | Fisher’s LDA; PLSR | Robust against multicollinearity (PLSR); established theoretical basis. | Constrained by linear assumptions; low generalizability across regions. |
| Traditional Machine Learning | SVM; ANN; Random Forest | Higher accuracy than statistical methods; capable of non-linear classification. | Relies heavily on manual feature engineering; limited automation. | |
| Deep Learning (Vision) | CNN; ResNet; PSPNet; Transfer Learning | Automatic feature extraction; high precision in pattern recognition. | Requires massive labeled datasets; high hardware costs. | |
| Intelligent Diagnosis | Triplet-loss CNN; ResNeXt | End-to-end learning for disease type identification. | Limited ability to quantify disease severity levels for variable-rate control. |
| Decision Type | Model Category | Key Techniques | Strengths | Limitations |
|---|---|---|---|---|
| Production Forecasts | Physical Simulation | Crop Growth Models (Process-based) | Provides biologically interpretable insights into crop development. | Requires extensive field data for calibration; high computational complexity limits scalability. |
| Statistical/Machine Learning | Random Forest; Multiple Regression | Scalable for large areas; does not require detailed biophysical parameters. | Lacks mechanistic explanation; relies on historical data correlations. | |
| Deep Spatio-temporal Models | 3D CNN + LSTM; Spatial–Spectral–Temporal Nets | Automatically learns complex spatial and temporal patterns; high prediction accuracy. | “Black box” nature; requires massive datasets; potential overfitting without sufficient data. | |
| Harvest Timing & Machinery Dispatch | Harvest Timing: Physical Models | Physiological Mechanism Models | Simulates interactions between growth cycles and environment. | Struggles to adapt to complex terrains and diverse climatic conditions; requires calibration. |
| Harvest Timing: Data-driven | CNN-LSTM; Multi-source Remote Sensing Fusion | High prediction efficiency; improves cross-regional generalization and accuracy (>96%). | Dependent on high-quality multimodal data (spectral + meteorological). | |
| Machinery Dispatch: Intelligent Optimization | Improved Ant Colony (ACO); NSGA-III | Efficiently solves complex vehicle routing problems (VRP); minimizes waiting time and distance. | Often based on idealized assumptions; neglects real-world constraints (e.g., machine availability, varying field conditions). | |
| Holistic Performance Assessment | Single-criterion/Single-method | AHP; Entropy Weighting; LCA | Intuitive and simple to implement for specific metrics (e.g., economic or ecological). | Susceptible to subjective bias (AHP) or data uncertainty; limited generalizability. |
| Composite/Hybrid Evaluation | AHP + Entropy; TOPSIS + Grey Relational | Balances subjective expert judgment with objective data weighting; enhances robustness. | Methodological complexity is higher; relies on the availability of multi-dimensional indicator data. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, C.; Zhao, P.; Qian, Y.; Yang, G.; Hao, X.; Mei, X.; Yang, X.; He, J. A Comprehensive Review of Big Data Intelligent Decision-Making Models for Smart Farms. Agronomy 2025, 15, 2898. https://doi.org/10.3390/agronomy15122898
Qin C, Zhao P, Qian Y, Yang G, Hao X, Mei X, Yang X, He J. A Comprehensive Review of Big Data Intelligent Decision-Making Models for Smart Farms. Agronomy. 2025; 15(12):2898. https://doi.org/10.3390/agronomy15122898
Chicago/Turabian StyleQin, Chang, Peiqin Zhao, Ying Qian, Guijun Yang, Xingyao Hao, Xin Mei, Xiaodong Yang, and Jin He. 2025. "A Comprehensive Review of Big Data Intelligent Decision-Making Models for Smart Farms" Agronomy 15, no. 12: 2898. https://doi.org/10.3390/agronomy15122898
APA StyleQin, C., Zhao, P., Qian, Y., Yang, G., Hao, X., Mei, X., Yang, X., & He, J. (2025). A Comprehensive Review of Big Data Intelligent Decision-Making Models for Smart Farms. Agronomy, 15(12), 2898. https://doi.org/10.3390/agronomy15122898

