Reproductive and Vegetative Yield Component Trade-Offs in Selection of Thinopyrum Intermedium
Abstract
1. Introduction
2. Materials and Methods
2.1. Base Population
2.2. Half-Sib Families and Experimental Management
2.3. Phenotyping
2.4. Analysis of Variance, Variance Components, and Heritability
2.5. Genetic Gain and Relative Selection Efficiency
3. Results
3.1. Analysis of Variance and Variance Components
3.2. Genetic Correlations
3.3. Heritability, Response to Selection, and Relative Selection Efficiency
4. Discussion
4.1. Indirect Selection for Grain Yield
4.2. Vegetative and Reproductive Potential Trade-Offs
4.3. Selection Opportunities in the First Year
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeHaan, L.; Christians, M.; Crain, J.; Poland, J. Development and Evolution of an Intermediate Wheatgrass Domestication Program. Sustainability 2018, 10, 1499. [Google Scholar] [CrossRef]
- Locatelli, A.; Gutierrez, L.; Picasso Risso, V.D. Vernalization Requirements of Kernza Intermediate Wheatgrass. Crop Sci. 2022, 62, 524–535. [Google Scholar] [CrossRef]
- Adhikari, L.; Shrestha, S.; Wu, S.; Crain, J.; Gao, L.; Evers, B.; Wilson, D.; Ju, Y.; Koo, D.-H.; Hucl, P.; et al. A High-Throughput Skim-Sequencing Approach for Genotyping, Dosage Estimation and Identifying Translocations. Sci. Rep. 2022, 12, 17583. [Google Scholar] [CrossRef]
- Peixoto, L.; Olesen, J.E.; Elsgaard, L.; Enggrob, K.L.; Banfield, C.C.; Dippold, M.A.; Nicolaisen, M.H.; Bak, F.; Zang, H.; Dresbøll, D.B.; et al. Deep-Rooted Perennial Crops Differ in Capacity to Stabilize C Inputs in Deep Soil Layers. Sci. Rep. 2022, 12, 5952. [Google Scholar] [CrossRef]
- Jungers, J.M.; DeHaan, L.H.; Mulla, D.J.; Sheaffer, C.C.; Wyse, D.L. Reduced Nitrate Leaching in a Perennial Grain Crop Compared to Maize in the Upper Midwest, USA. Agric. Ecosyst. Environ. 2019, 272, 63–73. [Google Scholar] [CrossRef]
- Reilly, E.C.; Gutknecht, J.L.; Tautges, N.E.; Sheaffer, C.C.; Jungers, J.M. Nitrogen Transfer and Yield Effects of Legumes Intercropped with the Perennial Grain Crop Intermediate Wheatgrass. Field Crops Res. 2022, 286, 108627. [Google Scholar] [CrossRef]
- Favre, J.R.; Castiblanco, T.M.; Combs, D.K.; Wattiaux, M.A.; Picasso, V.D. Forage Nutritive Value and Predicted Fiber Digestibility of Kernza Intermediate Wheatgrass in Monoculture and in Mixture with Red Clover During the First Production Year. Anim. Feed Sci. Technol. 2019, 258, 114298. [Google Scholar] [CrossRef]
- Hunter, M.C.; Sheaffer, C.C.; Culman, S.W.; Jungers, J.M. Effects of Defoliation and Row Spacing on Intermediate Wheatgrass I: Grain Production. Agron. J. 2020, 112, 1748–1763. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics; Addison Wesley Longman: Harlow, UK, 1996. [Google Scholar]
- Comstock, R.E.; Moll, R.H. Genotype × Environment Interactions. In Statistical Genetics and Plant Breeding; Hanson, W.D., Robinson, H.F., Eds.; National Academy of Sciences-National Research Council: Washington, DC, USA, 1963; pp. 164–166. [Google Scholar]
- McNeal, F.H.; Qualset, C.O.; Baldridge, D.E.; Stewart, V.R. Selection for Yield and Yield Components in Wheat. Crop Sci. 1978, 18, 795–799. [Google Scholar] [CrossRef]
- Bajgain, P.; Crain, J.L.; Cattani, D.J.; Larson, S.R.; Altendorf, K.R.; Anderson, J.A.; Crews, T.E.; Hu, Y.; Poland, J.A.; Turner, M.K.; et al. Breeding Intermediate Wheatgrass for Grain Production. Plant Breed. Rev. 2022, 46, 119–127. [Google Scholar] [CrossRef]
- Armstead, I.P.; Turner, L.B.; Marshall, A.H.; Humphreys, M.O.; King, I.P.; Thorogood, D. Identifying Genetic Components Controlling Fertility in the Outcrossing Grass Species Perennial Ryegrass (Lolium perenne) by Quantitative Trait Loci Analysis and Comparative Genetics. New Phytol. 2008, 178, 559–571. [Google Scholar] [CrossRef]
- Bean, E.W. Clonal Evaluation for Increased Seed Production in Two Species of Forage Grasses, Festuca arundinacea Schreb. and Phleum pratense L. Euphytica 1972, 21, 377–383. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Sleper, D.A. Genetic Variability of Seed Yield and Reproductive Characters in Tall Fescue. Crop Sci. 1983, 23, 621–626. [Google Scholar] [CrossRef]
- González-Paleo, L.; Ravetta, D.A. Indirect Changes Associated with a Selection Program for Increased Seed Yield in Wild Species of Lesquerella (Brassicaceae): Are We Developing a Phenotype Opposite to the Expected Ideotype? Ind. Crops Prod. 2011, 34, 1372–1380. [Google Scholar] [CrossRef]
- Smaje, C. The Strong Perennial Vision: A Critical Review. Agroecol. Sustain. Food Syst. 2015, 39, 471–499. [Google Scholar] [CrossRef]
- DeHaan, L.R.; Van Tassel, D.L.; Cox, T.S. Perennial Grain Crops: A Synthesis of Ecology and Plant Breeding. Renew. Agric. Food Syst. 2005, 20, 5–14. [Google Scholar] [CrossRef]
- Law, E.P.; Wayman, S.; Pelzer, C.J.; Culman, S.W.; Gómez, M.I.; DiTommaso, A.; Ryan, M.R. Multi-Criteria Assessment of the Economic and Environmental Sustainability Characteristics of Intermediate Wheatgrass Grown as a Dual-Purpose Grain and Forage Crop. Sustainability 2022, 14, 3548. [Google Scholar] [CrossRef]
- Huff, D.R. Bluegrasses. In Fodder Crops and Amenity Grasses; Boiler, B., Veronesi, F., Posselt, U., Eds.; Springer: New York, NY, USA, 2010; pp. 345–379. [Google Scholar]
- Humphreys, M.; Feuerstein, U.; Vandewalle, M.; Baert, J. Ryegrasses. In Fodder Crops and Amenity Grasses; Boiler, B., Veronesi, F., Posselt, U., Eds.; Springer: New York, NY, USA, 2010; pp. 211–260. [Google Scholar]
- Cattani, D.J.; Asselin, S.R. Has Selection for Grain Yield Altered Intermediate Wheatgrass? Sustainability 2018, 10, 688. [Google Scholar] [CrossRef]
- Sampoux, J.P.; Baudouin, P.; Bayle, B.; Béguier, V.; Bourdon, P.; Chosson, J.-F.; Deneufbourg, F.; Galbrun, C.; Ghesquière, M.; Noël, D.; et al. Breeding Perennial Grasses for Forage Usage: An Experimental Assessment of Trait Changes in Diploid Perennial Ryegrass (Lolium perenne L.) Cultivars Released in the Last Four Decades. Field Crops Res. 2011, 123, 117–129. [Google Scholar] [CrossRef]
- Zhang, X.; Sallam, A.; Gao, L.; Kantarski, T.; Poland, J.; DeHaan, L.R.; Wyse, D.L.; Anderson, J.A. Establishment and Optimization of Genomic Selection to Accelerate the Domestication and Improvement of Intermediate Wheatgrass. Plant Genome 2016, 9, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.H. Physiology of Plants Recovering from Defoliation. In Proceedings of the XVII International Grassland Congress; Baker, M.J., Ed.; New Zealand Grassland Association: Palmerston North, New Zealand, 1993; pp. 85–94. [Google Scholar]
- Edwards, J.T.; Carver, B.F.; Horn, G.W.; Payton, M.E. Impact of Dual-Purpose Management on Wheat Grain Yield. Crop Sci. 2011, 51, 2181–2185. [Google Scholar] [CrossRef]
- Harrison, M.T.; Evans, J.R.; Dove, H.; Moore, A.D. Dual-Purpose Cereals: Can the Relative Influences of Management and Environment on Crop Recovery and Grain Yield Be Dissected? Crop Pasture Sci. 2011, 62, 930–946. [Google Scholar] [CrossRef]
- Hunter, M.C.; Sheaffer, C.C.; Culman, S.W.; Lazarus, W.F.; Jungers, J.M. Effects of Defoliation and Row Spacing on Intermediate Wheatgrass II: Forage Yield and Economics. Agron. J. 2020, 112, 1862–1880. [Google Scholar] [CrossRef]
- Kalton, R.R.; Barker, R.E.; Welty, R.E. Seed Production. In Cool-Season Forage Grasses; Agronomy Monograph 34; ASA, CSSA, and SSSA: Madison, WI, USA, 1996; pp. 383–411. [Google Scholar] [CrossRef]
- Vogel, K.P.; Gorz, H.J.; Askins, F.A. Breeding Grasses for the Future. In Contributions from Breeding Forage and Turf Grasses; Sleper, D.A., Asay, K.H., Pedersen, J.F., Eds.; Crop Science Society of America: Madison, WI, USA, 1989; pp. 105–122. [Google Scholar]
- Crain, J.; Haghighattalab, A.; DeHaan, L.; Poland, J. Development of Whole-Genome Prediction Models to Increase the Rate of Genetic Gain in Intermediate Wheatgrass (Thinopyrum intermedium) Breeding. Plant Genome 2021, 14, e20089. [Google Scholar] [CrossRef] [PubMed]
- Jungers, J.M.; Schiffner, S.; Sheaffer, C.; Ehlke, N.J.; DeHaan, L.; Torrion, J.; Noland, R.L.; Franco, J.G. Effects of Seeding Date on Grain and Biomass Yield of Intermediate Wheatgrass. Agron. J. 2022, 114, 2342–2351. [Google Scholar] [CrossRef]
- Olugbenle, O.; Pinto, P.; Picasso, V.D. Optimal Planting Date of Kernza Intermediate Wheatgrass Intercropped with Red Clover. Agronomy 2021, 11, 2227. [Google Scholar] [CrossRef]
- Majidi, M.M.; Hoseini, B.; Abtahi, M.; Mirlohi, A.; Araghi, B. Genetic Analysis of Seed Related Traits in Orchardgrass (Dactylis glomerata) Under Normal and Drought Stress Conditions. Euphytica 2015, 203, 409–420. [Google Scholar] [CrossRef]
- Lima, D.C.; Abreu, Â.D.F.B.; Ferreira, R.A.C.; Ramalho, M.A.P. Breeding Common Bean Populations for Traits Using Selection Index. Sci. Agric. 2015, 72, 132–137. [Google Scholar] [CrossRef]
- Jungers, J.M.; Frahm, C.; Tautges, N.; Ehlke, N.; Wells, M.; Wyse, D.; Sheaffer, C. Growth, Development, and Biomass Partitioning of the Perennial Grain Crop Thinopyrum intermedium. Ann. Appl. Biol. 2018, 172, 346–354. [Google Scholar] [CrossRef]
- Moore, K.J.; Moser, L.E.; Vogel, K.P.; Waller, S.S.; Johnson, B.E.; Pedersen, J.F. Describing and Quantifying Growth Stages of Perennial Forage Grasses. Agron. J. 1991, 83, 1073–1077. [Google Scholar] [CrossRef]
- Duchene, O.; Dumont, B.; Cattani, D.J.; Fagnant, L.; Schlautman, B.; DeHaan, L.R.; Barriball, S.; Jungers, J.M.; Picasso, V.D.; David, C.; et al. Process-Based Analysis of Thinopyrum intermedium Phenological Development Highlights the Importance of Dual Induction for Reproductive Growth and Agronomic Performance. Agric. For. Meteorol. 2021, 301, 108341. [Google Scholar] [CrossRef]
- Brisson, N.; Mary, B.; Ripoche, D.; Jeuffroy, M.H.; Ruget, F.; Nicoullaud, B.; Gate, P.; Devienne-Barret, F.; Antonioletti, R.; Durr, C.; et al. STICS: A Generic Model for the Simulation of Crops and Their Water and Nitrogen Balances. I. Theory and Parameterization Applied to Wheat and Corn. Agronomie 1998, 18, 311–346. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 21 August 2023).
- SAS Institute. Statistical Analysis System Online Documentation; SAS Institute Inc.: Cary, NC, USA, 2004. [Google Scholar]
- Holland, J.B.; Nyquist, W.E.; Cervantes-Martínez, C.T.; Janick, J. Estimating and Interpreting Heritability for Plant Breeding: An Update. Plant Breed. Rev. 2003, 22, 9–112. [Google Scholar] [CrossRef]
- Majidi, M.M.; Mirlohi, A.; Amini, F. Genetic Variation, Heritability and Correlations of Agro-Morphological Traits in Tall Fescue (Festuca arundinacea Schreb.). Euphytica 2009, 167, 323–331. [Google Scholar] [CrossRef]
- Araghi, B.; Barati, M.; Majidi, M.M.; Mirlohi, A. Application of Half-Sib Mating for Genetic Analysis of Forage Yield and Related Traits in Bromus inermis. Euphytica 2014, 196, 25–34. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Sleper, D.A. Theory and Application of Half-Sib Matings in Forage Grass Breeding. Theor. Appl. Genet. 1983, 64, 187–196. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J.; Freidank, M.; Cai, J.; Protivinsky, T. corrplot: Visualization of a Correlation Matrix. Statistician 2017, 56, e24. [Google Scholar] [CrossRef]
- Searle, S.R. The Value of Indirect Selection: I. Mass Selection. Biometrics 1965, 21, 682–707. [Google Scholar] [CrossRef]
- Altendorf, K.R.; DeHaan, L.R.; Heineck, G.C.; Zhang, X.; Anderson, J.A. Floret Site Utilization and Reproductive Tiller Number Are Primary Components of Grain Yield in Intermediate Wheatgrass Spaced Plants. Crop Sci. 2021, 61, 1073–1088. [Google Scholar] [CrossRef]
- Elgersma, A. Heritability Estimates of Spaced-Plant Traits in Three Perennial Ryegrass (Lolium perenne L.) Cultivars. Euphytica 1990, 51, 163–171. [Google Scholar] [CrossRef]
- Philipp, N.; Weichert, H.; Bohra, U.; Weschke, W.; Schulthess, A.W.; Weber, H. Grain Number and Grain Yield Distribution along the Spike Remain Stable Despite Breeding for High Yield in Winter Wheat. PLoS ONE 2018, 13, e0205452. [Google Scholar] [CrossRef]
- Slinkard, A.E. Fertility in Intermediate Wheatgrass Agropyron intermedium (Host) Beauv. Crop Sci. 1965, 5, 363–365. [Google Scholar] [CrossRef]
- Fernandes Filho, C.C.; Lima Barrios, S.C.; Santos, M.F.; Nunes, J.A.R.; do Valle, C.B.; Jank, L.; Rios, E.F. Assessing genotype adaptability and stability in perennial forage breeding trials using random regression models for longitudinal dry matter yield data. G3 Genes Genomes Genet. 2025, 15, jkae306. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, A.; Gutierrez, L.; Duchene, O.; Speranza, P.R.; Picasso, V.D. Agronomic Assessment of Two Populations of Intermediate Wheatgrass—Kernza® (Thinopyrum intermedium) in Temperate South America. Grassland Res. 2023, 1, 262–278. [Google Scholar] [CrossRef]
- Richards, R.A. Crop Improvement for Temperate Australia: Future Opportunities. Field Crops Res. 1991, 26, 141–169. [Google Scholar] [CrossRef]
- Slafer, G.A.; Rawson, H.M. Sensitivity of Wheat Phasic Development to Major Environmental Factors: A Re-Examination of Some Assumptions Made by Physiologists and Modellers. Funct. Plant Biol. 1994, 21, 393–426. [Google Scholar] [CrossRef]
- Midmore, D.J.; Cartwright, P.M.; Fischer, R.A. Wheat in Tropical Environments. I. Phasic Development and Spike Size. Field Crops Res. 1982, 5, 185–200. [Google Scholar] [CrossRef]
- Rawson, H.M.; Bagga, A.K. Influence of Temperature Between Floral Initiation and Flag Leaf Emergence on Grain Number in Wheat. Funct. Plant Biol. 1979, 6, 391–400. [Google Scholar] [CrossRef]
- Jafari, A.A.; Setavarz, H.; Alizadeh, M.A. Genetic Variation for and Correlations among Seed Yield and Seed Components in Tall Fescue. J. New Seeds 2006, 8, 47–65. [Google Scholar] [CrossRef]
- Hay, R.K.M. Harvest Index: A Review of Its Use in Plant Breeding and Crop Physiology. Ann. Appl. Biol. 1995, 126, 197–216. [Google Scholar] [CrossRef]
- Frahm, C.S.; Tautges, N.E.; Jungers, J.M.; Ehlke, N.J.; Wyse, D.L.; Sheaffer, C.C. Responses of Intermediate Wheatgrass to Plant Growth Regulators and Nitrogen Fertilizer. Agron. J. 2018, 110, 1028–1035. [Google Scholar] [CrossRef]
- Islam, M.A.; Obour, A.K.; Saha, M.C.; Nachtman, J.J.; Cecil, W.K.; Baumgartner, R.E. Grain yield, forage yield, and nutritive value of dual-purpose small grains in the Central High Plains of the USA. Crop Manag. 2013, 12, 1–8. [Google Scholar] [CrossRef]
- Lundgren, M.R.; Des Marais, D.L. Life history variation as a model for understanding trade-offs in plant–environment interactions. Curr. Biol. 2020, 30, R180–R189. [Google Scholar] [CrossRef] [PubMed]
- Bardehji, S.; Mahlooji, M.; Zare, S.; Zeki Kocak, M.; Yıldırım, B. Comparative analysis of two-rowed and six-rowed barley genotypes: Impacts of water stress and nitrogen fertilizer on yield and stress responses. Cereal Res. Commun. 2025, 53, 597–615. [Google Scholar] [CrossRef]
- Law, E.P.; Pelzer, C.J.; Wayman, S.; DiTommaso, A.; Ryan, M.R. Strip-tillage renovation of intermediate wheatgrass (Thinopyrum intermedium) for maintaining grain yield in mature stands. Renew. Agric. Food Syst. 2021, 36, 321–327. [Google Scholar] [CrossRef]
- Fagnant, L.; Duchene, O.; Celette, F.; Dumont, B. Maintaining grain yield of Thinopyrum intermedium across stand age through constant spike fertility and spike density: Understanding its response to various agronomic managements. Eur. J. Agron. 2024, 152, 127038. [Google Scholar] [CrossRef]
- Vico, G.; Manzoni, S.; Nkurunziza, L.; Murphy, K.; Weih, M. Trade-Offs Between Seed Output and Life Span—A Quantitative Comparison of Traits Between Annual and Perennial Congeneric Species. New Phytol. 2016, 209, 104–114. [Google Scholar] [CrossRef]
- Milla, R.; Morente-López, J.; Alonso-Rodrigo, J.M.; Martín-Robles, N.; Stuart Chapin, F., III. Shifts and Disruptions in Resource-Use Trait Syndromes During the Evolution of Herbaceous Crops. Proc. R. Soc. B 2014, 281, 20141429. [Google Scholar] [CrossRef]
- Pastor-Pastor, A.; Vilela, A.E.; González-Paleo, L. The Root of the Problem of Perennials Domestication: Is Selection for Yield Changing Key Root System Traits Required for Ecological Sustainability? Plant Soil 2019, 435, 161–174. [Google Scholar] [CrossRef]
- Mortenson, J.S.; Waldron, B.L.; Larson, S.R.; Jensen, K.B.; DeHaan, L.R.; Peel, M.D.; Johnson, P.G.; Creech, J.E. Quantitative Trait Loci (QTL) for Forage Traits in Intermediate Wheatgrass When Grown as Spaced-Plants Versus Monoculture and Polyculture Swards. Agronomy 2019, 9, 580. [Google Scholar] [CrossRef]
- Laitinen, R.A.; Nikoloski, Z. Strategies to Identify and Dissect Trade-Offs in Plants. Mol. Ecol. 2024, 33, e16780. [Google Scholar] [CrossRef] [PubMed]
- Saha, M.C. Tall Fescue. In Genetics, Genomics and Breeding of Forage Crops; Cai, H., Yamada, T., Kole, C., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 58–89. [Google Scholar]
- Ivancic, K.; Locatelli, A.; Tracy, W.F.; Picasso, V. Kernza Intermediate Wheatgrass (Thinopyrum intermedium) Response to a Range of Vernalization Conditions. Can. J. Plant Sci. 2021, 101, 770–773. [Google Scholar] [CrossRef]
- Evans, L.T. Reproduction. In Grasses and Grasslands; Barnard, C., Ed.; Macmillan: London, UK, 1964; pp. 126–153. [Google Scholar]
- Locatelli, A. Caracterización Genética y Fenotípica de Tinopiro (Thinopyrum intermedium) como Cultivo Perenne Doble Propósito en el Cono Sur. Ph.D. Thesis, Universidad de la Republica, Montevideo, Uruguay, 2023. [Google Scholar]


| Trait | Sum of Squares (%) | Variance (%) | |||||
|---|---|---|---|---|---|---|---|
| Exp 1 | Exp 2 | Exp 1 | Exp 2 | ||||
| F | SA | FxSA | F | F | FxSA | F | |
| Percentage of plants headed (%) | 54.7 ** | 31.9 | 13.4 | - | 21.0 | 2.7 | 8.8 |
| Number of spikes per plant (#) | 17.3 ** | 43.5 ** | 5.7 | 32.9 | 5.7 | 0.7 | 7.7 |
| Number of spikelets per spike (#) | 12.8 ** | 54.6 ** | 10.0 * | - | 0.6 | 7.5 | - |
| Number of spikelets per plant (#) | 19.4 ** | 26.9 ** | 7.7 | - | 7.2 | 2.2 | - |
| Grain yield per spike (mg) | 33.4 ** | 27.8 ** | 5.8 | 42.9 * | 18.9 | 1.1 | 15.5 |
| Grain yield per spikelet (mg) | 35.5 ** | 20.0 ** | 6.8 | - | 20.8 | 0.6 | - |
| Grain yield per plant (g plant−1) | 31.5 ** | 9.2 ** | 5.7 | 39.8 | 12.6 | 1.8 | 2.3 |
| Harvest index | 32.7 ** | 11.8 ** | 7.2 | - | 29.5 | 0.2 | - |
| Days to heading (GDD) | 2.4 ** | 94.1 ** | 0.6 | 53.3 ** | 0.9 | 0.1 | 32.7 |
| Days to grain filling (GDD) | 17.0 | 28.1 ** | 9.5 | 30.3 | 5.6 | 0.0 | 3.8 |
| Days to maturity (GDD) | 1.3 ** | 95.2 ** | 0.9 | 51.1 ** | 0.2 | 0.4 | 45.5 |
| Summer forage yield (g plant−1) | 33.6 ** | 1.2 | 5.3 | - | 10.6 | 2.2 | - |
| Trait | Mean (SE) | GCV (%) | WFCV (%) | h2 | |||||
|---|---|---|---|---|---|---|---|---|---|
| 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | All | |
| Percentage of plants headed (%) | 71.3 (8.1) | 85.0 (6.1) | 73.7 | 82.9 | 105.9 | 98.8 | 0.84 | 0.93 | 0.83 |
| Number of spikes per plant (#) | 13.0 (3.2) | 33.5 (8.8) | 21.0 | 14.6 | 88.2 | 91.5 | 0.45 | 0.27 | 0.41 |
| Number of spikelets per spike (#) | 21.3 (1.1) | 17.2 (0.8) | 4.2 | 6.1 | 18.6 | 19.6 | 0.46 | 0.65 | 0.05 |
| Number of spikelets per plant (#) | 359.1 (91.0) | 665.2 (194.3) | 13.0 | 8.7 | 79.1 | 95.6 | 0.27 | 0.10 | 0.20 |
| Grain yield per spike (mg) | 138.4 (27.9) | 80.4 (15.8) | 19.0 | 27.5 | 71.6 | 74.7 | 0.51 | 0.69 | 0.67 |
| Grain yield per spikelet (mg) | 6.9 (1.3) | 4.7 (0.8) | 18.0 | 20.9 | 62.3 | 66.0 | 0.61 | 0.61 | 0.71 |
| Grain yield per plant (g plant−1) | 2.2 (0.9) | 3.3 (1.2) | 23.1 | 23.0 | 123.6 | 120.4 | 0.31 | 0.35 | 0.41 |
| Harvest index | 2.1 (0.6) | 3.4 (1.2) | 32.5 | 21.6 | 104.5 | 140.4 | 0.62 | 0.30 | 0.61 |
| Days to heading (GDD) | 3865 (76) | 2608 (81) | 2.1 | 3.0 | 9.1 | 12.6 | 0.55 | 0.49 | 0.66 |
| Days to grain filling (GDD) | 1777 (55) | 1640 (63) | 2.8 | 3.7 | 13.2 | 12.8 | 0.47 | 0.01 | 0.45 |
| Days to maturity (GDD) | 5640 (82) | 4154 (90) | 0.9 | 2.3 | 5.1 | 10.0 | 0.32 | 0.55 | 0.39 |
| Summer forage yield (g plant−1) | 99.0 (16.9) | 91.6 (21.0) | 13.6 | 8.0 | 44.0 | 76.4 | 0.40 | 0.13 | 0.29 |
| Fall regrowth (g plant−1) | - | 30.1 (6.3) | - | 20.8 | - | 66.7 | - | 0.54 | - |
| Fall regrowth rate (g plant−1 day−1) | - | 0.30 (0.06) | - | 21.9 | - | 66.0 | - | 0.57 | - |
| Plant height (cm) | - | 89.0 (4.6) | - | 4.0 | - | 18.5 | - | 0.39 | - |
| Trait | Mean (SE) | GCV (%) | WFCV (%) | h2 |
|---|---|---|---|---|
| Percentage of plants headed (%) | 91.7 (5.2) | 41.1 | 94.4 | 0.49 |
| Number of spikes per plant (#) | 13.3 (2.1) | 13.5 | 77.1 | 0.41 |
| Grain yield per spike (mg) | 274.1 (30.6) | 13.0 | 54.8 | 0.44 |
| Grain yield per plant (g plant−1) | 4.2 (0.9) | 13.4 | 102.4 | 0.23 |
| Days to heading (GDD) | 2931 (64) | 3.3 | 11.2 | 0.64 |
| Days to grain filling (GDD) | 1849 (45) | 2.0 | 11.0 | 0.37 |
| Days to maturity (GDD) | 4701 (53) | 1.8 | 5.3 | 0.67 |
| Trait | ∆GTRAIT (% Mean) 1 | RSEEARLY | RSECOR-TRAIT | |||||
|---|---|---|---|---|---|---|---|---|
| Exp1 | Exp2 | Exp1 | Exp1 | Exp2 | ||||
| 2020 | 2021 | 2022 | 2020 | 2021 | Across Years | 2022 | ||
| Percent of plants headed (%) | 10.3 (14.6) | 4.3 (4.9) | 3.4 (3.8) | 0.47 | 0.75 | 0.64 | 0.60 | 0.50 |
| Number of spikes per plant (#) | 4.0 (29.6) | 3.2 (9.2) | 3.1 (23.1) | 0.88 | 1.00 | 0.70 | 0.82 | 1.11 |
| Number of spikelets per spike (#) | 1.3 (6.3) | 0.8 (4.8) | - | 0.10 | 0.64 | 1.0 | 0.22 | - |
| Number of spikelets per plant (#) | 59.8 (15.8) | 24.7 (3.6) | - | 0.87 | 0.68 | 0.44 | 0.54 | - |
| Grain yield per spike (mg) | 35.7 (25.1) | 16.2 (19.8) | 50.1 (18.1) | 0.62 | 0.99 | 1.06 | 0.98 | 1.02 |
| Grain yield per spikelet (mg) | 2.0 (28.2) | 0.7 (15.3) | - | 0.70 | 0.90 | 0.96 | 0.88 | - |
| Grain yield per plant (g) | 0.7 (28.9) | 0.5 (15.8) | 0.7 (17.4) | 0.69 | - | - | - | - |
| Harvest index | 1.1 (48.9) | 0.5 (15.3) | - | 1.04 | 1.14 | 0.62 | 0.90 | - |
| Heading time (GDD) | 138.9 (3.6) | 59 (2.3) | 156.0 (5.3) | 0.70 | −0.39 | −0.68 | −0.56 | −0.81 |
| Grain filling (GDD) | 80.4 (4.5) | 0.8 (0.1) | 56.3 (3.0) | 1.99 | 0.55 | 0.03 | 0.69 | −0.01 |
| Grain harvest time (GDD) | 67.5 (1.2) | 82 (2.0) | 123.6 (2.6) | 0.20 | 0.01 | −0.52 | −0.20 | −0.84 |
| Summer forage yield (g plant−1) | 14.7 (14.5) | 3.5 (3.7) | - | 1.30 | 0.57 | 0.39 | 0.48 | - |
| Fall regrowth (g plant−1) | - | - | - | - | - | 0.26 | - | - |
| Fall regrowth rate (g plant−1 day−1) | - | - | - | - | - | 0.26 | - | - |
| Plant height (cm) | - | - | - | - | - | 0.61 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Locatelli, A.; Picasso, V.D.; Speranza, P.R.; Gutiérrez, L. Reproductive and Vegetative Yield Component Trade-Offs in Selection of Thinopyrum Intermedium. Agronomy 2025, 15, 2895. https://doi.org/10.3390/agronomy15122895
Locatelli A, Picasso VD, Speranza PR, Gutiérrez L. Reproductive and Vegetative Yield Component Trade-Offs in Selection of Thinopyrum Intermedium. Agronomy. 2025; 15(12):2895. https://doi.org/10.3390/agronomy15122895
Chicago/Turabian StyleLocatelli, Andrés, Valentín D. Picasso, Pablo R. Speranza, and Lucía Gutiérrez. 2025. "Reproductive and Vegetative Yield Component Trade-Offs in Selection of Thinopyrum Intermedium" Agronomy 15, no. 12: 2895. https://doi.org/10.3390/agronomy15122895
APA StyleLocatelli, A., Picasso, V. D., Speranza, P. R., & Gutiérrez, L. (2025). Reproductive and Vegetative Yield Component Trade-Offs in Selection of Thinopyrum Intermedium. Agronomy, 15(12), 2895. https://doi.org/10.3390/agronomy15122895

