Modeling the Relationship Between Autonomous Mower Trampling Activity and Turfgrass Green Cover Percentage
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Field Trials
2.2. Assessment
2.3. Statistical Analysis
3. Results
3.1. Operative Parameters Analysis
3.2. Green Cover Percentage
3.3. Green Cover Percentage and Number of Passages
3.4. Green Coverage Level Estimation Scale
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kayode, A.O.; Ishola, B.D.; Olubunmi, I.E.; John, A.A. Fuzzy Logic Track Control of an Automated Lawnmower. IAES Int. J. Robot. Autom. 2022, 11, 122–131. [Google Scholar] [CrossRef]
- Braun, R.C.; Mandal, P.; Nwachukwu, E.; Stanton, A. The Role of Turfgrasses in Environmental Protection and Their Benefits to Humans: Thirty Years Later. Crop Sci. 2024, 64, 2909–2944. [Google Scholar] [CrossRef]
- Sharky, B. Nature-Based Design in Landscape Architecture, 1st ed.; Routledge: New York, NY, USA, 2024; ISBN 978-1-003-42887-9. [Google Scholar]
- Semeraro, T.; Scarano, A.; Buccolieri, R.; Santino, A.; Aarrevaara, E. Planning of Urban Green Spaces: An Ecological Perspective on Human Benefits. Land 2021, 10, 105. [Google Scholar] [CrossRef]
- Ignatieva, M.; Nielsen, S.; Martin, D.J. Recognising Lawns as a Part of “Designed Nature”. Pioneering Study of Lawn’s Plant Biodiversity in Australian Context. Urban Ecosyst. 2025, 28, 137. [Google Scholar] [CrossRef]
- Akther, S.M.; Hu, J.; Miller, G.; Shi, W. Foot Traffic on Turf Primarily Shaped the Endophytic Bacteriome of the Soil-Rhizosphere-Root Continuum. Front. Microbiol. 2025, 16, 1488371. [Google Scholar] [CrossRef]
- Lindsey, A.J.; Schiavon, M.; Unruh, J.B.; Kenworthy, K. Urban Landscapes: Turfgrass Benefits. Grasses 2025, 4, 3. [Google Scholar] [CrossRef]
- Bock, H.W.; Morse, O.B.; Rossi, F.S.; Groffman, P.M.; Sparks, J.P.; Wickings, K.G. Lawn Management Intensity Leads to Contrasting Effects on Belowground Ecology and Turfgrass Aesthetic. Urban For. Urban Green. 2025, 104, 128628. [Google Scholar] [CrossRef]
- Viola, P.; Olivadese, M.; Minelli, A. Turfgrass Through Time: Historical Uses, Cultural Values, and Sustainability Transitions. Agronomy 2025, 15, 1095. [Google Scholar] [CrossRef]
- Carrow, R.N.; Martin Petrovic, A. Effects of Traffic on Turfgrasses. In Agronomy Monographs; Waddington, D.V., Carrow, R.N., Shearman, R.C., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2015; pp. 285–330. ISBN 978-0-89118-224-5. [Google Scholar]
- Luglio, S.M.; Frasconi, C.; Gagliardi, L.; Raffaelli, M.; Peruzzi, A.; Volterrani, M.; Magni, S.; Fontanelli, M. Analysis of Football Pitch Performances Based on Different Cutting Systems: From Visual Evaluation to YOLOv8. Agronomy 2024, 14, 2645. [Google Scholar] [CrossRef]
- Sessoms, F. Light Reflection and Mowing Patterns 2023. Available online: https://turf.umn.edu/light-reflection-and-mowing-patterns (accessed on 11 December 2025).
- Owen, M.C.; Lanier, J.D. Best Management Practices for Lawn and Landscape Turf, Version 1.51; Umass Extension: BMPs for Lawn Landscape Turf. 2016. Available online: http://extension.umass.edu/turf (accessed on 11 December 2025).
- Luglio, S.M.; Frasconi, C.; Gagliardi, L.; Raffaelli, M.; Peruzzi, A.; Pieri, S.; Volterrani, M.; Magni, S.; Fontanelli, M. Tracking Long-Distance Systematic Trajectories of Different Robot Mower Patterns with Enhanced Custom-Built Software. AgriEngineering 2025, 7, 30. [Google Scholar] [CrossRef]
- Sportelli, M.; Fontanelli, M.; Pirchio, M.; Frasconi, C.; Raffaelli, M.; Caturegli, L.; Magni, S.; Volterrani, M.; Peruzzi, A. Robotic Mowing of Tall Fescue at 90 Mm Cutting Height: Random Trajectories vs. Systematic Trajectories. Agronomy 2021, 11, 2567. [Google Scholar] [CrossRef]
- Kazemi, F.; Golzarian, M.R.; Nematollahi, F. Quality Assessment of Turfgrasses Using NTEP Method Compared to an Image-Based Scoring System. J. Ornam. Plants 2020, 10, 167–178. [Google Scholar]
- Hernandez, A.; Bushman, S.; Johnson, P.; Robbins, M.D.; Patten, K. Prediction of Turfgrass Quality Using Multispectral UAV Imagery and Ordinal Forests: Validation Using a Fuzzy Approach. Agronomy 2024, 14, 2575. [Google Scholar] [CrossRef]
- Ababneh, A. Smart Urban Management of Green Space. J. Des. Resil. Archit. Plan. 2023, 4, 339–353. [Google Scholar] [CrossRef]
- Soldat, D.J.; Brosnan, J.T.; Chandra, A.; Gaussoin, R.E.; Kowalewski, A.; Leinauer, B.; Rossi, F.S.; Stier, J.C.; Unruh, J.B. Estimating Economic Minimums of Mowing, Fertilizing, and Irrigating Turfgrass. Agric. Environ. Lett. 2020, 5, e20032. [Google Scholar] [CrossRef]
- Saidani, M.; Kim, H. Quantification of the Environmental and Economic Benefits of the Electrification of Lawn Mowers on the US Residential Market. Int. J. Life Cycle Assess. 2021, 26, 1267–1284. [Google Scholar] [CrossRef]
- Palladini, A.; Guerrini, L.; Fontanelli, M.; Bortolini, L. Analysis of Technical Characteristics and Main Performances in Commercial Autonomous Lawn Mowers; Springer Nature: Cham, Switzerland, 2024; pp. 354–361. [Google Scholar]
- Ignatieva, M.; Haase, D.; Dushkova, D.; Haase, A. Lawns in Cities: From a Globalised Urban Green Space Phenomenon to Sustainable Nature-Based Solutions. Land 2020, 9, 73. [Google Scholar] [CrossRef]
- Gagliardi, L.; Fontanelli, M.; Luglio, S.M.; Frasconi, C.; Raffaelli, M.; Peruzzi, A.; Caturegli, L.; Sciusco, G.; Federighi, T.; Magni, S.; et al. Assessment of the Effects of Autonomous Mowers on Plant Biodiversity in Urban Lawns. Horticulturae 2024, 10, 355. [Google Scholar] [CrossRef]
- Winkler, J.; Pasternak, G.; Sas, W.; Hurajová, E.; Koda, E.; Vaverková, M.D. Nature-Based Management of Lawns—Enhancing Biodiversity in Urban Green Infrastructure. Appl. Sci. 2024, 14, 1705. [Google Scholar] [CrossRef]
- Carlson, M.G.; Gaussoin, R.E.; Puntel, L.A. A Review of Precision Management for Golf Course Turfgrass. Crop Forage Turfgrass Manag. 2022, 8, e20183. [Google Scholar] [CrossRef]
- Santhoshini, P.; Helen Prabha, K.; Jaibalaji, S.T.; Krishna Vishwa, C.B.; Kumar, H.R.; Mano Sundar, S. Implementation of Automatic Lawn Mower System for Smart Lawn Maintenance. In Proceedings of the 2024 4th International Conference on Artificial Intelligence and Signal Processing (AISP), Vijayawada, India, 26–28 October 2024; IEEE: Vijayawada, India, 2024; pp. 01–07. [Google Scholar]
- Padhiary, M.; Saha, D.; Kumar, R.; Sethi, L.N.; Kumar, A. Enhancing Precision Agriculture: A Comprehensive Review of Machine Learning and AI Vision Applications in All-Terrain Vehicle for Farm Automation. Smart Agric. Technol. 2024, 8, 100483. [Google Scholar] [CrossRef]
- Karcher, D.E.; Richardson, M.D. Quantifying Turfgrass Color Using Digital Image Analysis. Crop Sci. 2003, 43, 943–951. [Google Scholar] [CrossRef]
- What Is Meant by Systematic Cutting? Available online: https://www.husqvarna.com/it/supporto/husqvarna-self-service/cosa-si-intende-per-taglio-sistematico-ka-70248/ (accessed on 11 December 2025).
- Husqvarna. Husqvarna Automower® and CEORA®—Frequently Asked Questions. Available online: https://www.husqvarna.com/ch-it/apprendimento-e-scoperta/domande%20frequenti%20sui%20robot%20tagliaerba/ (accessed on 11 December 2025).
- Husqvarna. Husqvarna Automower 520/550 Operator’s Manual; Husqvarna AB: Stockholm, Sweden, 2018. [Google Scholar]
- Patrignani, A.; Ochsner, T.E. Canopeo: A Powerful New Tool for Measuring Fractional Green Canopy Cover. Agron. J. 2015, 107, 2312–2320. [Google Scholar] [CrossRef]
- Govindasamy, P.; Mahawer, S.K.; Sarangi, D.; Halli, H.M.; Das, T.K.; Raj, R.; Pooniya, V.; Muralikrishnan, L.; Kumar, S.; Chandra, A. The Comparison of Canopeo and Samplepoint for Measurement of Green Canopy Cover for Forage Crops in India. MethodsX 2022, 9, 101916. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Lauenroth, W.K.; Roset, P.A. Technical Note: Estimating Aboveground Plant Biomass Using a Photo-Graphic Technique. J. Range Manag. 2000, 53, 190–193. [Google Scholar] [CrossRef]
- Richardson, A.D.; Jenkins, J.P.; Braswell, B.H.; Hollinger, D.Y.; Ollinger, S.V.; Smith, M.-L. Use of Digital Webcam Images to Track Spring Green-up in a Deciduous Broadleaf Forest. Oecologia 2007, 152, 323–334. [Google Scholar] [CrossRef]
- Wilson, E.; Underwood, M.; Puckrin, O.; Letto, K.; Doyle, R.; Caravan, H.; Camus, S.; Bassett, K. The Arcsine Transformation: Has the Time Come for Retirement? Memorial University of Newfoundland: St. John’s, NL, Canada, 2013. [Google Scholar]
- Warton, D.I.; Hui, F.K.C. The Arcsine Is Asinine: The Analysis of Proportions in Ecology. Ecology 2011, 92, 3–10. [Google Scholar] [CrossRef]
- Singh, A. Generalized Linear Model Approach to Analyzing Proportional Data. Acta Hortic. 2013, 1012, 1167–1172. [Google Scholar] [CrossRef]
- Ritz, C.; Strebig, J.C. Drc: Analysis of Dose-Response Curves 2005, version 3.0-1; R Core Team: Vienna, Austria, 2016. [Google Scholar]
- Some Useful Equations for Nonlinear Regression in R. 2019. Available online: https://www.statforbiology.com/nonlinearregression/usefulequations (accessed on 11 December 2025).
- Bremer, D.J.; Lee, H.; Su, K.; Keeley, S.J. Relationships between Normalized Difference Vegetation Index and Visual Quality in Cool-Season Turfgrass: II. Factors Affecting NDVI and Its Component Reflectances. Crop Sci. 2011, 51, 2219–2227. [Google Scholar] [CrossRef]
- Luglio, S.M.; Sportelli, M.; Frasconi, C.; Raffaelli, M.; Gagliardi, L.; Peruzzi, A.; Fortini, V.; Volterrani, M.; Magni, S.; Caturegli, L.; et al. Monitoring Autonomous Mowers Operative Parameters on Low-Maintenance Warm-Season Turfgrass. Appl. Sci. 2023, 13, 7852. [Google Scholar] [CrossRef]
- Harivandi, M.A. Turfgrass Traffic and Compaction: Problems and Solutions; UCANR Publications: Oakland, CA, USA, 2002. [Google Scholar]
- Han, L.-B.; Song, G.-L.; Zhang, X. Preliminary Observations on Physiological Responses of Three Turfgrass Species to Traffic Stress. HortTechnology 2008, 18, 139–143. [Google Scholar] [CrossRef]
- Sever Mutlu, S.; Irkörücü, D.; Sancar, B.; Bahar, T. Evaluation of Vegetative Bermudagrasses for Traffic Tolerance. In XXX International Horticultural Congress IHC2018: VII Conference on Landscape and Urban Horticulture, IV Conference on 1279; ISHS: Istanbul, Turkey, 2020; pp. 153–158. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, W.; Amombo, E.; Hu, L.; Kjorven, J.O.; Chen, L. Mechanisms of Environmental Stress Tolerance in Turfgrass. Agronomy 2020, 10, 522. [Google Scholar] [CrossRef]
- Wei, H.; Wang, Y.; Zhang, J.; Ge, L.; Liu, T. Changes in Soil Bacterial Community Structure in Bermudagrass Turf under Short-Term Traffic Stress. Agriculture 2022, 12, 668. [Google Scholar] [CrossRef]
- Lindblom, J.; Lundström, C.; Ljung, M.; Jonsson, A. Promoting Sustainable Intensification in Precision Agriculture: Review of Decision Support Systems Development and Strategies. Precis. Agric. 2017, 18, 309–331. [Google Scholar] [CrossRef]
- Carrow, R.N.; Krum, J.M.; Flitcroft, I.; Cline, V. Precision Turfgrass Management: Challenges and Field Applications for Mapping Turfgrass Soil and Stress. Precis. Agric. 2010, 11, 115–134. [Google Scholar] [CrossRef]










| Source | Number of Passages | Distance Traveled | Number of Intersections | Percentage of Area Mowed |
|---|---|---|---|---|
| Pattern | 4.38 × 10−5 *** | 7.98 × 10−5 *** | 2.127 × 10−4 *** | 0.0191 * |
| Navigation Pattern | b | d | e | EP60 |
|---|---|---|---|---|
| Vertical | 1.72 (0.46) | 91.56 (3.14) | 126.90 (19.64) | 87.30 (10.06) |
| Chessboard | 1.46 (0.43) | 91.89 (3.28) | 239.09 (39.71) | 155.32 (19.75) |
| Random | 0.72 (0.21) | 90.55 (4.57) | 143.91 (34.73) | 56.26 (25.18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luglio, S.M.; Frasconi, C.; Gagliardi, L.; Fontani, M.; Raffaelli, M.; Peruzzi, A.; Volterrani, M.; Magni, S.; Fontanelli, M. Modeling the Relationship Between Autonomous Mower Trampling Activity and Turfgrass Green Cover Percentage. Agronomy 2025, 15, 2890. https://doi.org/10.3390/agronomy15122890
Luglio SM, Frasconi C, Gagliardi L, Fontani M, Raffaelli M, Peruzzi A, Volterrani M, Magni S, Fontanelli M. Modeling the Relationship Between Autonomous Mower Trampling Activity and Turfgrass Green Cover Percentage. Agronomy. 2025; 15(12):2890. https://doi.org/10.3390/agronomy15122890
Chicago/Turabian StyleLuglio, Sofia Matilde, Christian Frasconi, Lorenzo Gagliardi, Mattia Fontani, Michele Raffaelli, Andrea Peruzzi, Marco Volterrani, Simone Magni, and Marco Fontanelli. 2025. "Modeling the Relationship Between Autonomous Mower Trampling Activity and Turfgrass Green Cover Percentage" Agronomy 15, no. 12: 2890. https://doi.org/10.3390/agronomy15122890
APA StyleLuglio, S. M., Frasconi, C., Gagliardi, L., Fontani, M., Raffaelli, M., Peruzzi, A., Volterrani, M., Magni, S., & Fontanelli, M. (2025). Modeling the Relationship Between Autonomous Mower Trampling Activity and Turfgrass Green Cover Percentage. Agronomy, 15(12), 2890. https://doi.org/10.3390/agronomy15122890

