The Influence of Freeze–Thaw Processes and the Organic Supplementation on the Structural Parameters of Luvisol
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Analytical Methods
2.2.1. Freeze–Thaw Cycles
2.2.2. Structural Properties
- -
- Analysis of the aggregate resistance to dynamic water action (RDWA): This consists of breaking down the aggregate with drops of 0.05 g mass falling from a height of 1 m, i.e., with kinetic energy = 4.905 10−4 (J). The results presented in the tables are the average of 15 repetitions (Figure 1).
- -
- Analysis of aggregates’ resistance to soaking (static water action; RSWA): This is measured by the disintegration time of the aggregate immersed in water in a plexiglass container on nylon threads spaced 6 mm apart. The results presented in the tables are the average of 15 repetitions (Figure 2).
- -
- Secondary aggregation state: The analysis involves separation on a set of sieves with a 7, 5, 3, 1, 0.5, and 0.25 mm mesh diameter of the primary aggregate fraction that has been disintegrated as a result of the dynamic and static action of water. According to the methodology, the optimal number of aggregates used to analyse this property is five. The analysis of the secondary aggregation state was therefore carried out in three repetitions—each consisting of five aggregates from the analyses of the aggregates’ resistance to static and dynamic water action.
2.2.3. Properties of Soil Material and Organic Supplements
- -
- Texture (as a general characteristic of the soil material used) by the sieve method (sand) and areometric method (silt and clay) after dispersion with sodium hexametaphosphate, in accordance with the Ryżak et al. [21];
- -
- TC (total carbon) and TN (total nitrogen) content using a Vario Max CNS (Elementar) analyser;
- -
- CaCO3 content using a Scheibler apparatus;
- -
- particle density (PD) by the pycnometric method [22]. The soil material used for analysis of PD was not derived from excised aggregate models. This trait would be impossible to analyse in single-aggregate models because the mass of one sample (modelled aggregate) does not exceed 1.8 g. Therefore, it was decided to determine this trait in five samples of approximately 10 g each taken from each container (with each combination being represented by a single container); these five were then combined to create a single, mixed sample. The variability of PD within a single combination was assumed to be small. Accordingly, it is acceptable in this case to use one average value of PD and to use five different bulk densities to calculate the total porosity of the five aggregate models.
- -
- Bulk density—calculated from the mass and volume of soil aggregate models. This analysis was performed in five replicates (five aggregate models)
- -
- Total porosity—calculated from the determined PD and bulk density of the soil [23].
2.2.4. Verification of Research Hypotheses
2.3. Statistical Analysis
3. Results and Discussion
3.1. Chemical Properties of Soil Aggregate Models
3.2. Bulk Density and Total Porosity of Aggregates
3.3. Resistance to Dynamic and Static Water Action
3.4. Secondary Aggregation State
3.5. Climate Change and Soil Freezing Dynamics
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
| Organic Supplement A | NF/F B | Days of Incubation C | Mean for AxB | Mean For A | |||||
|---|---|---|---|---|---|---|---|---|---|
| Dynamic Water Action (%) | |||||||||
| 30 | 60 | 90 | 270 | 365 | |||||
| Control | NF | 0 a | 0 a | 0 a | 0 a | 0 a | 0 a | 0 a | |
| F | 0.2 ab | 0 a | 0.4 b | 0 a | 0 a | 0.12 a | |||
| Mean for AxC | 0.1 a | 0 a | 0.2 a | 0 a | 0 a | 0 a | |||
| Manure | NF | 0 a | 0 a | 0 a | 0 a | 0 a | 0 a | 0.3 b | |
| F | 0.7 c | 0 a | 0.6 c | 0 a | 1.2 d | 0.5 b | |||
| Mean for AxC | 0.4 ab | 0 a | 0.3 ab | 0 a | 0 a | - | |||
| Mean for BxC | NF | 0 a | 0 a | 0 a | 0 a | 0 a | Mean for B | NF | 0 a |
| F | 0.5 b | 0 a | 0.5 b | 0 a | 0.6 b | F | 0.3 b | ||
| Mean for C | 0.2 a | 0 a | 0.3 a | 0 a | 0.3 a | - | |||
| Static water action (%) | |||||||||
| Control | NF | 0 a | 0 a | 0 a | 0 a | 0 a | 0 a | 0.2 a | |
| F | 1.9 d | 0 a | 0 a | 0 a | 0 a | 0.38 ab | |||
| Mean for AxC | 1 b | 0 a | 0 a | 0 a | 0 a | 0 a | |||
| Manure | NF | 0 a | 0 a | 0 a | 0 a | 0 a | 0 a | 0.4 a | |
| F | 0 a | 1.3 bc | 0 a | 0.9 b | 1.4 c | 0.72 b | |||
| Mean for AxC | 0 a | 0.7 b | 0 a | 0 a | 0.7 b | - | |||
| Mean for BxC | NF | 0 a | 0 a | 0 a | 0 a | 0 a | Mean for B | NF | 0 a |
| F | 1.0 b | 0 a | 0 a | 0.5 ab | 0.7 b | F | 0.6 b | ||
| Mean for C | 0.5 a | 0.4 a | 0 a | 0.3 a | 0.4 a | - | |||
| Organic Supplement A | NF/F B | Days of Incubation C | Mean for AxB | Mean for A | |||||
|---|---|---|---|---|---|---|---|---|---|
| Dynamic Water Action (%) | |||||||||
| 30 | 60 | 90 | 270 | 365 | |||||
| Control | NF | 0.3 a | 0 a | 0.2 a | 0 a | 0 a | 0.1 a | 0.2 a | |
| F | 0.5 a | 0.6 a | 0.5 a | 0 a | 0 a | 0.3 a | |||
| Mean for AxC | 0.4 a | 0.3 a | 0.4 a | 0 a | 0 a | - | |||
| Manure | NF | 1.5 b | 1.8 bc | 2 b–d | 2.1 b–d | 1.8 bc | 1.9 b | 2 b | |
| F | 1.8 bc | 2.1 b–d | 2.7 d | 2.4 cd | 2.1 bd | 2.2 b | |||
| Mean for AxC | 1.7 b | 2 b | 2.4 c | 2.3 bc | 2 b | - | |||
| Mean for BxC | NF | 0.9 a | 0.9 a | 1.1 a | 1.1 a | 0.9 a | Mean for B | NF | 1 a |
| F | 1.1 a | 1.3 ab | 1.6 b | 1.2 ab | 1 a | F | 1.9 b | ||
| Mean for C | 1 a | 1.1 a | 1.4 b | 1.1 a | 1 a | - | |||
| Static water action (%) | |||||||||
| Control | NF | 0.8 ab | 0.7 a | 0.8 ab | 1 a–c | 0.9 ab | 0.8 a | 1.0 a | |
| F | 1.3 a–d | 1.2 a–d | 1.3 a–d | 1.5 a–e | 1.1 a–d | 1.3 b | |||
| Mean for AxC | 1.1 a | 1.0 a | 1.1 a | 1.3 ab | 1.0 a | - | |||
| Manure | NF | 0.9 ab | 0.8 ab | 0.9 ab | 1.2 a–d | 1.7 b–e | 1.1 b | 1.6 b | |
| F | 1.6 a–e | 2.1 d–f | 2.7 f | 1.9 c–f | 2.4 ef | 2.1 c | |||
| Mean for AxC | 1.3 ab | 1.5 ab | 1.8 bc | 1.6 b | 2.1 c | - | |||
| Mean for BxC | NF | 0.9 a | 0.8 a | 0.9 a | 1.1 a | 1.3 ab | Mean for B | NF | 1 a |
| F | 1.5 b | 1.7 bc | 2.0 c | 1.7 bc | 1.8 bc | F | 1.7 b | ||
| Mean for C | 1.8 a | 1.8 a | 2.0 a | 2.1 a | 2.1 a | - | |||
| Organic Supplement A | NF/F B | Days of Incubation C | Mean for AxB | Mean for A | |||||
|---|---|---|---|---|---|---|---|---|---|
| After Dynamic Water Action (%) | |||||||||
| 30 | 60 | 90 | 270 | 365 | |||||
| Control | NF | 0.7 a | 0.8 ab | 1.2 a–d | 1.1 a–d | 1 a–c | 1.0 a | 1.1 a | |
| F | 0.9 a–c | 1.2 a–d | 1.8 d–f | 1.3 a–d | 0.8 ab | 1.2 a | |||
| Mean for AxC | 0.8 a | 1.0 a | 1.5 b | 1.2 ab | 0.9 a | - | |||
| Manure | NF | 1.4 a–e | 1.3 a–d | 1.5 b–f | 2.2 fg | 1.2 a–d | 1.5 b | 1.7 b | |
| F | 2.1 e–g | 1.6 c–f | 2 e–g | 2.6 g | 1.3 a–d | 1.9 c | |||
| Mean for AxC | 1.8 bc | 1.5 b | 1.8 bc | 2.4 c | 1.3 ab | - | |||
| Mean for BxC | NF | 1.1 a | 1.1 a | 1.4 ab | 1.7 b | 1.1 a | Mean for B | NF | 1.3 a |
| F | 1.5 b | 1.4 ab | 1.9 bc | 2.0 c | 1.1 a | F | 1.6 b | ||
| Mean for C | 1.3 a | 1.3 a | 1.7 ab | 1.9 ab | 1.1 a | - | |||
| After static water action (%) | |||||||||
| Control | NF | 1.1 a | 1.5 a–c | 1.2 ab | 1.2 ab | 1.2 ab | 1.2 a | 1.3 a | |
| F | 1.3 ab | 1.5 a–c | 1.3 ab | 1.5 a–c | 1.6 a–d | 1.4 a | |||
| Mean for AxC | 1.2 a | 1.5 a | 1.3 a | 1.4 a | 1.4 a | - | |||
| Manure | NF | 2.2 a–e | 2.4 b–e | 2.2 a–e | 2.3 a–e | 2 a–e | 2.2 b | 2.5 b | |
| F | 2.8 de | 2.9 e | 2.8 de | 2.7 c–e | 2.6 c–e | 2.8 c | |||
| Mean for AxC | 2.5 b | 2.7 b | 2.5 b | 2.5 b | 2.3 b | - | |||
| Mean for BxC | NF | 1.7 a | 2 ab | 1.7 a | 1.8 ab | 1.6 a | Mean for B | NF | 1.7 a |
| F | 2.1 ab | 2 b | 2.1 ab | 2.1 ab | 2.1 ab | F | 2.1 b | ||
| Mean for C | 1.9 a | 2.1 a | 1.9 a | 1.9 a | 1.9 a | - | |||
| Organic Supplement A | NF/F B | Days of Incubation C | Mean for AxB | Mean for A | |||||
|---|---|---|---|---|---|---|---|---|---|
| Dynamic Water Action (%) | |||||||||
| 30 | 60 | 90 | 270 | 365 | |||||
| Control | NF | 0.7 a | 1.4 a | 1.3 a | 1.5 a | 1.5 a | 1.28 a | 1.4 a | |
| F | 1.1 a | 1.8 a | 1.4 a | 1.9 a | 1.6 a | 1.56 a | |||
| Mean for AxC | 0.9 a | 1.6 b | 1.4 b | 1.7 b | 1.6 b | - | |||
| Manure | NF | 3.5 b | 3.6 b | 3.2 b | 3.5 b | 3.8 b | 3.52 b | 3.8 b | |
| F | 4.1 b | 3.9 b | 3.3 b | 4.3 b | 4.3 b | 3.98 b | |||
| Mean for AxC | 3.8 cd | 3.8 cd | 3.3 c | 3.9 cd | 4.1 d | - | |||
| Mean for BxC | NF | 2.1 a | 2.5 a | 2.3 a | 2.5 a | 2.7 ab | Mean for B | NF | 2.4 a |
| F | 2.6 a | 2.9 b | 2.4 a | 3.1 b | 3 b | F | 2.8 b | ||
| Mean for C | 2.4 a | 2.7 a | 2.3 a | 2.8 a | 2.8 a | - | |||
| Static water action (%) | |||||||||
| Control | NF | 3.3 ab | 3.2 ab | 3.1 a | 3.1 a | 3.2 ab | 3.2 a | 3.6 a | |
| F | 4.2 a–d | 4.1 a–c | 3.6 a–c | 3.8 a–c | 3.9 a–c | 3.9 b | |||
| Mean for AxC | 3.8 ab | 3.7 ab | 3.4 a | 3.5 a | 3.6 a | - | |||
| Manure | NF | 4.1 a–c | 4.5 a–d | 4.8 b–d | 4.5 a–d | 3.8 a–c | 4.3 bc | 4.6 b | |
| F | 4.6 a–d | 5.7 d | 5.1 cd | 4.7 a–d | 4.1 a–c | 4.8 d | |||
| Mean for AxC | 4.4 b | 5.1 c | 5.0 c | 4.6 bc | 4.0 ab | - | |||
| Mean for BxC | NF | 3.7 a | 3.9 ab | 4 ab | 3.8 ab | 3.5 a | Mean for B | NF | 3.8 a |
| F | 4.4 bc | 4.9 c | 4.4 bc | 4.3 b | 4.0 ab | F | 4.4 b | ||
| Mean for C | 4.1 ab | 4.4 b | 4.2 ab | 4.0 a | 3.8 a | - | |||
References
- Amezketa, E. Soil aggregate stability: A review. J. Sustain. Agric. 1999, 14, 83–151. [Google Scholar] [CrossRef]
- Lipiec, J.; Walczak, R.; Witkowska–Walczak, B.; Nosalewicz, A.; Słowińska-Jurkiewicz, A.; Sławiński, C. The effect of aggregate size on water retention and pore structure of two silt loam soils of different genesis. Soil Tillage Res. 2007, 97, 239–246. [Google Scholar] [CrossRef]
- Algayer, B.; Le Bissonnais, Y.; Darboux, F. Short-term dynamics of soil aggregate stability in the field. Soil Sci. Soc. Am. J. 2014, 78, 1168–1176. [Google Scholar] [CrossRef]
- Leuther, F.; Schlüter, S. Impact of freeze-thaw cycles on soil structure and soil hydraulic properties. Soil 2021, 7, 179–191. [Google Scholar]
- Wang, L.; Wang, H.; Tian, Z.; Lu, Y.; Gao, W.; Ren, T. Structural changes of compacted soil layers in Northeast China due to freezing-thawing processes. Sustainability 2020, 12, 1587. [Google Scholar] [CrossRef]
- Peng, X.; Frauenfeld, O.W.; Cao, B.; Wang, K.; Wang, H.; Su, H.; Huang, Z.; Yue, D.; Zhang, T. Response of changes in seasonal soil freeze/thaw state to climate change from 1950 to 2010 across China. J. Geophys. Res. Earth Surf. 2016, 121, 1984–2000. [Google Scholar] [CrossRef]
- Gajewski, P. Możliwości Kształtowania Parametrów Struktury Gleb Mineralnych Przez Zastosowanie Dodatków Nawozów Organicznych, Naturalnych Oraz Preparatu Mikrobiologicznego; Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2018; Volume 498, p. 134. [Google Scholar]
- Rząsa, S.; Owczarzak, W. Modeling of Soil Structure and Examination Methods of Water Resistance, Capillary Rise and Mechanical Strength of Soil Aggregates; Publishers of Poznań Agricultural University: Poznań, Poland, 1983; Volume 135, p. 35. [Google Scholar]
- Soil Survey Division Staff. Soil Survey Manual. Soil Conservation Service; U.S. Department of Agriculture Handbook: Washington, DC, USA, 1993; Volume 18, p. 315. [Google Scholar]
- Havryshko, O.; Olifi, Y.; Hnativ, P.; Habryiel, A.; Partyka, T.; Iva, V. Influence of prolonged agrogenic transformation on soil structure and physicochemical properties of Ukrainian Albic Stagnic Luvisols: A case study from western Ukraine. Soil Sci. Ann. 2023, 74, 183659. [Google Scholar] [CrossRef]
- Kabała, C. Luvisols and related clay-illuvial soils (gleby płowe)–soils of the year 2023. Current view of their origin, classification and services in Poland. Soil Sci. Ann. 2023, 74, 4. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; p. 234. [Google Scholar]
- Soil Science Society of Poland, Commission for Soil Genesis, Classification and Cartography, Warszawa. Polish Soil Classification; Publishing Department of the Wrocław University of Environmental and Life Sciences: Wrocław, Poland, 2019; p. 236. (In Polish) [Google Scholar]
- Henry, H.A.L. Soil freeze-thaw cycle experiments: Trends, methodological weaknesses and suggested improvements. Soil Biol. Biochem. 2007, 39, 977–986. [Google Scholar] [CrossRef]
- Dubicki, A.; Dubicka, M.; Szymanowski, M. Klimat Wrocławia. In Środowisko Wrocławia-Informator 2002; Dubicki, A., Ed.; Dolnośląska Fundacja Ekorozwoju: Wrocław, Poland, 2002; pp. 9–25. [Google Scholar]
- Mapy Klimatu Polski. Available online: https://klimat.imgw.pl/pl/climate-maps/#Extreme_Temperature/Seasonal/1991-2020/1/Winter (accessed on 5 July 2025).
- Bryk, M.; Kołodziej, B.; Serzysko, T. Wpływ procesów mrozowych na właściwości powietrzne ugniatanej rędziny. Acta Agrophys. 2007, 9, 571–582. [Google Scholar]
- Ding, B.; Rezanezhad, F.; Gharedaghloo, B.; Van Cappellen, P.; Passeport, E. Bioretention cells under cold climate conditions: Effects of freezing and thawing on water infiltration, soil structure, and nutrient removal. Sci. Total Environ. 2019, 649, 749–759. [Google Scholar] [CrossRef]
- Lehrsch, G.A.; Sojka, R.E.; Carter, D.L.; Jolley, P.M. Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter. J. Soil Sci. Soc. Am. 1991, 55, 1401–1406. [Google Scholar] [CrossRef]
- Rieke, E.L.; Bagnall, D.K.; Morgan, C.L.; Flynn, K.D.; Howe, J.A.; Greub, K.L.; Bean, G.M.; Cappellazzi, S.B.; Cope, M.; Liptzin, D.; et al. Evaluation of aggregate stability methods for soil health. Geoderma 2022, 428, 116156. [Google Scholar] [CrossRef]
- Ryżak, M.; Bartmiński, P.; Bieganowski, A. Metody wyznaczania rozkładu granulometrycznego gleb mineralnych. Acta Agrophys. 2009, 4, 175. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density, clod method. In Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American Society of Agronomy and the Soil Science Society of America: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Mocek, A.; Drzymała, S.; Owczarzak, W. Podstawy Analizy i Klasyfikacji Gleb; Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2022; p. 484. (In Polish) [Google Scholar]
- Yang, M.; Yao, T.; Gou, X.; Koike, T.; He, Y. The soil moisture distribution, thawing–freezing processes and their effects on the seasonal transition on the Qinghai–Xizang (Tibetan) plateau. J. Asian Earth Sci. 2003, 21, 457–465. [Google Scholar] [CrossRef]
- Xie, S.B.; Qu, J.; Lai, Y.M.; Zhou, Z.W.; Xu, X.T. Effects of freeze-thaw cycles on soil mechanical and physical properties in the Qinghai-Tibet Plateau. J. Mt. Sci. 2015, 12, 999–1009. [Google Scholar] [CrossRef]
- Konrad, J.M. Physical processes during freeze-thaw cycles in clayey silts. Cold Reg. Sci. Technol. 1989, 16, 291–303. [Google Scholar] [CrossRef]
- Yang, S.; Chou, Y.; Wang, L.; Zhang, P. Experimental study on mechanical behavior deterioration of undisturbed loess considering freeze-thaw action. Soils Rocks 2024, 47, e2024005822. [Google Scholar] [CrossRef]
- Fouli, Y.; Cade-Menun, B.J.; Cutforth, H.W. Freeze-thaw cycles and soil water content effects on infiltration rate of three Saskatchewan soils. Can. J. Soil Sci. 2013, 93, 485–496. [Google Scholar] [CrossRef]
- Sahin, U.; Angin, I.; Kiziloglu, F.M. Effect of freezing and thawing processes on some physical properties of saline–sodic soils mixed with sewage sludge or fly ash. Soil Tillage Res. 2008, 99, 254–260. [Google Scholar] [CrossRef]
- Xiao, D.H.; Feng, W.J.; Zhang, Z. The changing rule of loess porosity under freezing-thawing cycles. J. Glaciol. Geocryol. 2014, 36, 907–912. [Google Scholar] [CrossRef]
- Lv, Q.; Zhang, Z.; Zhang, T.; Hao, R.; Guo, Z.; Huang, X.; Zhu, J.; Liu, T. The Trend of Permeability of Loess in Yili, China, under Freeze–Thaw Cycles and Its Microscopic Mechanism. Water 2021, 13, 3257. [Google Scholar] [CrossRef]
- Viklander, P. Compaction and Thaw Deformation of Frozen Soil, Permeability and Structural Effects Due to Freezing and Thawing. Ph.D. Thesis, Luea University of Technology, Luea, Sweden, 1997. [Google Scholar]
- Legout, C.; Leguedois, S.; Le Bissonnais, Y. Aggregate breakdown dynamics under rainfall compared with aggregate stability measurement. Eur. J. Soil Sci. 2005, 56, 225–237. [Google Scholar] [CrossRef]
- Edwards, L.M. The effects of soil freeze-thaw on soil aggregate breakdown and concomitant sediment flow in Prince Edward Island: A review. Can. J. Soil Sci. 2013, 93, 459–472. [Google Scholar] [CrossRef]
- Owczarzak, W.; Mocek, A.; Czekała, J. Wpływ osadu garbarskiego na niektóre właściwości fizyczne gleb. Zesz. Probl. Postępów Nauk. Rol. 1993, 409, 119–128. (In Polish) [Google Scholar]
- Rząsa, S.; Owczarzak, W. Struktura Gleb Mineralnych; Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego: Poznań, Poland, 2004; p. 394. (In Polish) [Google Scholar]
- Chang, D.; Liu, J. Review of the influence of freeze-thaw cycles on the physical and mechanical properties of soil. Sci. Cold Arid Reg. 2013, 5, 457–460. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, K.; Jabro, J.D.; Ren, L.; Liu, H. Freeze–thaw cycles effects on soil physical properties under different degraded conditions in Northeast China. Environ. Earth Sci. 2019, 78, 321. [Google Scholar] [CrossRef]
- Gharemahmudli, S.; Sadeghi, S.H.R.; Najafinejad, A.; Zarei Darki, B.; Kheirfam, H.; Mohammadian Behbahani, A. Changes in overall and intervariability of runoff and soil loss for a loess soil resulted from a freezing–thawing cycle. Environ. Monit. Assess. 2023, 195, 860. [Google Scholar] [CrossRef]
- Rząsa, S.; Owczarzak, W. Resistance of soil aggregates to dynamic and static water action in Polish soils. Zesz. Probl. Postępów Nauk Rol. 1992, 398, 131–138. [Google Scholar]
- Ferrick, M.G.; Gatto, L.W. Quantifying the effect of freeze-thaw cycle on soil erosion: Laboratory experiments. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2005, 30, 1305–1326. [Google Scholar] [CrossRef]
- Owczarzak, W. Trwałość Struktury Agregatowej Różnych Gatunków Gleb w Modelowanych Warunkach Wilgotności, Zagęszczenia i Temperatury. Ph.D. Thesis, Katedra Gleboznawstwa, AR w Poznaniu, Poznań, Poland, 1985. (In Polish). [Google Scholar]
- Al Faraj, K. Wilgotność i Temperatura Jako Podstawowe Czynniki Kształtujące Strukturę Gleb Aluwialnych Polski. Ph.D. Thesis, Katedra Gleboznawstwa, AR w Poznaniu, Poznań, Poland, 1992. (In Polish). [Google Scholar]
- Habel, Y.A. Struktura Warstwy Ornej Czarnych Ziem Gniewskich, Inowrocławskich i Wrocławskich. Ph.D. Thesis, Katedra Gleboznawstwa, AR w Poznaniu, Poznań, Poland, 1992. (In Polish). [Google Scholar]
- Lv, L.; Li, Y.; Zhou, C. Mechanistic analysis of splash erosion on loess by single raindrop impact: Interaction of soil compaction, water content, and raindrop energy. Biosyst. Eng. 2023, 236, 238–247. [Google Scholar] [CrossRef]
- Poeplau, C.; Riefling, T.; Schiedung, M.; Anlauf, R. Land use and soil property effects on aggregate stability assessed by three different slaking methods. Eur. J. Soil Sci. 2024, 75, e13549. [Google Scholar] [CrossRef]
- Owczarzak, W. Struktura Gleb Mineralnych Polski–Badania Modelowe; Roczniki Akademii Rolniczej w Poznaniu. Rozprawy Naukowe: Poznań, Poland, 2002; Volume 328, p. 183. [Google Scholar]
- Li, G.Y.; Fan, H.M. Effect of freeze-thaw on water stability of aggregates in a black soil of Northeast China. Pedosphere 2014, 24, 285–290. [Google Scholar] [CrossRef]
- Edwards, L.M. The effect of alternate freezing and thawing on aggregate stability and aggregate size distribution of some Prince Edward Island soils. Eur. J. Soil Sci. 2010, 42, 193–204. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Y.; Xu, J.; Li, Y.; Zhao, Y.; Wei, S.; Liu, B.; Zhang, X.; Lei, H.; Shao, S. Impact of freeze–thaw cycling on the stability and turnover of black soil aggregates. Geoderma 2024, 449, 117004. [Google Scholar] [CrossRef]
- Lehrsch, G.A. Freeze-thaw cycles increase near surface aggregate stability. Soil Sci. 1998, 163, 63–70. [Google Scholar] [CrossRef]
- Øygarden, L. Monitoring of Soil Erosion in Small Agricultural Catchments, South–Eastern Norway. Ph.D. Thesis, Norwegian University of Agricultural Sciences, Ås, Norway, 2000. [Google Scholar]
- Park, S.E.; Bartsch, A.; Sabel, D.; Wagner, W.; Naeimi, V.; Yamaguchi, Y. Monitoring freeze/thaw cycles using ENVISAT ASAR Global Mode. Remote Sens. Environ. 2011, 115, 3457–3467. [Google Scholar] [CrossRef]
- Žabenska, A.; Dumbrovský, M. Changes of soil aggregate stability as a result of the effect of freeze-thaw cycles. Acta Univ. Agric. Silvic. Mendel. Brun. 2015, 63, 1211–1218. [Google Scholar] [CrossRef]
- Wang, D.Y.; Ma, W.; Niu, Y.H.; Chang, X.X.; Wen, Z. Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay. Cold Reg. Sci. Technol. 2007, 48, 34–43. [Google Scholar] [CrossRef]
- Kværnø, S.H.; Øygarden, L. The influence of freeze–thaw cycles and soil moisture on aggregate stability of three soils in Norway. Catena 2006, 67, 175–182. [Google Scholar] [CrossRef]
- Bajracharya, R.M.; Lal, R.; Hall, G.F. Temporal variation inproperties of an uncropped, ploughed Miamian soil in relation to seasonal erodibility. Hydrol. Process. 1998, 12, 1021–1030. [Google Scholar] [CrossRef]
- Staricka, J.A.; Benoit, G.R. Freeze-drying effects on wet and dry soil aggregate stability. Soil Sci. Soc. Am. J. 1995, 59, 218–223. [Google Scholar] [CrossRef]
- Oztas, T.; Fayetorbay, F. Effect of freezing and thawing processes on soil aggregate stability. Catena 2003, 52, 1–8. [Google Scholar] [CrossRef]
- Sun, D.; You, G.; Annan, Z.; Daichao, S. Soil–water retention curves and microstructures of undisturbed and compacted Guilinlateritic clay. Bull. Eng. Geol. Environ. 2016, 75, 781–791. [Google Scholar] [CrossRef]
- Henry, H.A.L. Climate change and soil freezing dynamics: Historical trends and projected changes. Clim. Change 2008, 87, 421–434. [Google Scholar] [CrossRef]
- Quante, L.; Willner, S.N.; Middelanis, R.; Levermann, A. Regions of intensification of extreme snowfall under future warming. Sci. Rep. 2021, 11, 16621. [Google Scholar] [CrossRef]
- Somorowska, U. Assessing the impact of climate change on snowfall conditions in Poland based on the snow fraction sensitivity index. Resources 2024, 13, 60. [Google Scholar] [CrossRef]
- Donnelly, C.; Greuell, W.; Andersson, J.; Gerten, D.; Pisacane, G.; Roudier, P.; Ludwig, F. Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim. Change 2017, 143, 13–26. [Google Scholar] [CrossRef]
- Ghazi, B.; Przybylak, R.; Pospieszyńska, A. Projection of Climate Change Impacts on Extreme Temperature and Precipitation in Central Poland. Sci. Rep. 2023, 13, 18772. [Google Scholar] [CrossRef]


| Content (%) of Fraction of Diamater in (mm) | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2–1 | 1–0.5 | 0.5–0.25 | 0.25–0.1 | 0.1–0.05 | 0.05–0.02 | 0.02–0.005 | 0.005–0.002 | <0.002 | TC (g kg−1) | TN (g kg−1) | C:N | pH in 1MKCl | CaCO3 (%) |
| 0.50 | 1.50 | 2.5 | 10.5 | 3.0 | 51.0 | 24.0 | 3.0 | 4.0 | 14.1 | 1.43 | 9.9 | 7.40 | 1.26 |
| Term 1 (30 Days) | Term 2 (90 Days) | Term 3 (180 Days) | Term 4 (270 Days) | Term 5 (365 Days) |
|---|---|---|---|---|
| NFC | NFC | NFC | NFC | NFC |
| FC | FC | FC | FC | FC |
| NFM | NFM | NFM | NFM | NFM |
| FM | FM | FM | FM | FM |
| Organic Supplement A | Days of Incubation B | Mean for A | ||||
|---|---|---|---|---|---|---|
| Content of Total Carbon (g kg −1) | ||||||
| 30 | 60 | 90 | 270 | 365 | ||
| NFC | 14.2 abc | 14.2 abc | 14.2 abc | 13.8 a | 13.8 a | 14.0 a |
| NFM | 15.0 b–f | 14.6 a–e | 14.8 a–f | 14.4 a–d | 14.2 a–c | 14.6 b |
| Mean for B | 14.6 c | 14.4 bc | 14.5 ab | 14.1 a | 14 a | - |
| Total nitrogen (g kg −1) | ||||||
| NFC | 1.42 b–g | 1.39 a–d | 1.39 a–d | 1.43 c–h | 1.34 a | 1.39 a |
| NFM | 1.51 i–l | 1.42 b–g | 1.52 j–m | 1.44 d–h | 1.43 c–h | 1.46 b |
| Mean for B | 1.46 bc | 1.49 c | 1.46 bc | 1.44 b | 1.39 a | - |
| Organic Supplement A | NF/F B | Days of Incubation C | Mean for AxB | Mean for A | |||||
|---|---|---|---|---|---|---|---|---|---|
| Bulk Density (Mg m−3) | |||||||||
| 30 | 60 | 90 | 270 | 365 | |||||
| Control | NF | 1.40 d–f | 1.40 d–f | 1.46 g | 1.42 e–g | 1.44 fg | 1.42 b | 1.38 b | |
| F | 1.36 b–d | 1.34 a–c | 1.32 ab | 1.32 ab | 1.38 c–e | 1.34 a | |||
| Mean for AxC | 1.38 bc | 1.37 bc | 1.39 c | 1.37 bc | 1.41 c | - | |||
| Manure | NF | 1.38 c–e | 1.30 a | 1.34 a–c | 1.32 ab | 1.40 d–f | 1.35 a | 1.34 a | |
| F | 1.36 b–d | 1.32 ab | 1.34 a–c | 1.30 a | 1.38 c–e | 1.34 a | |||
| Mean for AxC | 1.37 bc | 1.31 a | 1.34 ab | 1.31 a | 1.39 c | - | |||
| BxC | NF | 1.39 c–e | 1.35 a–c | 1.40 de | 1.37 b–d | 1.42 e | Mean for B | NF | 1.39 b |
| F | 1.36 b–e | 1.33 ab | 1.33 ab | 1.31 a | 1.38 c–e | F | 1.34 a | ||
| Mean for C | 1.38 bc | 1.34 a | 1.37 ab | 1.34 a | 1.40 c | - | |||
| Total porosity (%) | |||||||||
| Control | NF | 46.8 a–e | 46.6 a–e | 44.5 a | 45.8 a–c | 45.2 ab | 45.8 a | 47.3 a | |
| F | 48.3 d–h | 48.9 e–h | 49.8 gh | 49.6 gh | 47.5 b–g | 48.8 b | |||
| Mean for AxC | 47.6 ab | 47.8 ab | 47.2 a | 47.7 ab | 46.4 a | - | |||
| Manure | NF | 47.1 b–f | 50.2 h | 48.9 e–h | 49.4 f–h | 46.4 a–d | 48.4 b | 48.6 a | |
| F | 47.9 c–h | 49.4 f–h | 48.9 e–h | 50.3 h | 47.1 b–f | 48.7 b | |||
| Mean for dla C | 47.5 ab | 49.8 c | 48.9 bc | 49.8 c | 46.8 a | - | |||
| BxC | NF | 47.0 a–c | 48.4 c–f | 46.7 ab | 47.6 b–d | 45.8 a | Mean for B | NF | 47.1 a |
| F | 48.1 b–e | 49.2 d–f | 49.4 ef | 49.9 f | 47.3 a–c | F | 48.8 b | ||
| Mean for dla C | 47.5 ab | 48.8 c | 48.0 bc | 48.8 c | 46.6 a | - | |||
| Organic Supplement A | NF/F B | Days of Incubation C | Mean for AxB | Mean for A | |||||
|---|---|---|---|---|---|---|---|---|---|
| Soil Aggregates Resistance to the Dynamic Water Action [J] | |||||||||
| 30 | 60 | 90 | 270 | 365 | |||||
| Control | NF | 0.024 de | 0.025 e | 0.024 de | 0.023 cd | 0.024 de | 0.024 b | 0.023 a | |
| F | 0.022 ab | 0.023 cd | 0.022 ab | 0.021 ab | 0.021 ab | 0.022 a | |||
| Mean for AxC | 0.023 bc | 0.024 d | 0.023 bc | 0.022 ab | 0.022 ab | - | |||
| Manure | NF | 0.034 gh | 0.037 jk | 0.036 ij | 0.037 jk | 0.038 k | 0.037 d | 0.035 b | |
| F | 0.029 f | 0.035 hi | 0.033 g | 0.034 gh | 0.036 ij | 0.034 c | |||
| Mean for AxC | 0.032 e | 0.036 g | 0.035 f | 0.036 g | 0.037 h | - | |||
| Mean for BxC | NF | 0.029 cd | 0.031 e | 0.03 de | 0.03 de | 0.031 e | Mean for B | NF | 0.030 b |
| F | 0.026 a | 0.029 cd | 0.027 b | 0.027 b | 0.028 c | F | 0.028 a | ||
| Mean for C | 0.028 a | 0.03 c | 0.029 b | 0.029 b | 0.03 c | - | |||
| Soil aggregates resistance to the static water action (s) | |||||||||
| Control | NF | 34.0 d–g | 39.0 jk | 37.0 g–j | 35.0 e–h | 34.0 d–g | 36.0 c | 34.0 a | |
| F | 30.0 a–c | 35.0 e–h | 33.0 c–f | 31.0 a–d | 30.0 a–c | 31.0 a | |||
| Mean for AxC | 32.0 a | 37.0 cd | 35.0 bc | 33.0 ab | 32.0 a | - | |||
| Manure | NF | 34.0 d–g | 41.0 k | 39.0 jk | 36.0 f–j | 34.0 d–g | 37.0 d | 35.0 b | |
| F | 29.0 ab | 35.0 e–h | 37.0 g–j | 33.0 c–f | 28.0 ab | 33.0 b | |||
| Mean for AxC | 31.0 a | 38.0 d | 38.0 d | 35.0 bc | 31.0 a | - | |||
| Mean for BxC | NF | 34.0 cd | 40.0 f | 38.0 ef | 36.0 de | 34.0 cd | Mean for B | NF | 36.3 b |
| F | 29.0 a | 35.0 d | 35.0 d | 32.0 bc | 30.0 ab | F | 32.0 a | ||
| Mean for C | 31.0 a | 37.0 c | 37.0 c | 34.0 b | 32.0 bc | - | |||
| Organic Supplement A | NF/F B | Days of Incubation C | Mean for AxB | Mean for A | |||||
|---|---|---|---|---|---|---|---|---|---|
| After Dynamic Water Action (%) | |||||||||
| 30 | 60 | 90 | 270 | 365 | |||||
| Control | NF | 1.7 a | 2.2 a | 2.7 a | 2.6 a | 2.5 a | 2.3 a | 2.8 a | |
| F | 2.7 a | 3.6 a | 4.1 a | 3.2 a | 2.4 a | 3.2 a | |||
| Mean for AxC | 2.2 a | 2.9 a | 3.4 a | 2.9 a | 2.5 a | ||||
| Manure | NF | 6.4 b | 6.7 b | 6.8 b | 7.8 bc | 6.8 b | 6.9 b | 7.8 b | |
| F | 8.7 bc | 7.6 bc | 8.7 bc | 9.4 c | 8.8 bc | 8.6 c | |||
| Mean for AxC | 7.6 b | 7.2 b | 7.7 b | 8.6 b | 7.8 b | ||||
| Mean for BxC | NF | 4.1 a | 4.5 ab | 4.7 a–c | 5.2 a–c | 4.6 a–c | Mean for B | NF | 4.6 a |
| F | 5.7 a–c | 5.6 a–c | 6.4 c | 6.3 bc | 5.7 a–c | F | 5.9 b | ||
| Mean for C | 4.9 a | 5.0 a | 5.6 a | 5.7 a | 5.1 a | - | |||
| After static water action (%) | |||||||||
| Control | NF | 5.2 a | 5.1 a | 5.5 a | 5.3 a | 5.2 a | 5.2 a | 6.1 a | |
| F | 8.7 a–d | 6.7 a | 6.9 a–c | 6.4 a | 6.5 a | 7.0 b | |||
| Mean for AxC | 6.9 ab | 5.9 a | 6.2 a | 5.9 a | 5.8 a | ||||
| Manure | NF | 6.79 ab | 7.1 a–c | 7.8 a–d | 8.2 a–d | 8.5 a–d | 7.7 b | 9.0 b | |
| F | 8.3 a–d | 10.8 cd | 11.3 d | 10.7 b–d | 11.1 d | 10.4 c | |||
| Mean for AxC | 7.5 a–c | 8.9 bc | 9.5 bc | 9.5 bc | 9.8 c | ||||
| Mean for BxC | NF | 6.0 a | 6.1 ab | 6.6 a–c | 6.8 a–c | 6.8 a–c | Mean for B | NF | 6.5 a |
| F | 8.5 a–c | 8.8 bc | 9.1 c | 8.6 a–c | 8.8 bc | F | 8.7 b | ||
| Mean for C | 7.2 a | 7.4 a | 7.9 a | 7.7 a | 7.8 a | - | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajewski, P. The Influence of Freeze–Thaw Processes and the Organic Supplementation on the Structural Parameters of Luvisol. Agronomy 2025, 15, 2646. https://doi.org/10.3390/agronomy15112646
Gajewski P. The Influence of Freeze–Thaw Processes and the Organic Supplementation on the Structural Parameters of Luvisol. Agronomy. 2025; 15(11):2646. https://doi.org/10.3390/agronomy15112646
Chicago/Turabian StyleGajewski, Piotr. 2025. "The Influence of Freeze–Thaw Processes and the Organic Supplementation on the Structural Parameters of Luvisol" Agronomy 15, no. 11: 2646. https://doi.org/10.3390/agronomy15112646
APA StyleGajewski, P. (2025). The Influence of Freeze–Thaw Processes and the Organic Supplementation on the Structural Parameters of Luvisol. Agronomy, 15(11), 2646. https://doi.org/10.3390/agronomy15112646

