Variability of Root and Shoot Traits Under PEG-Induced Drought Stress at an Early Vegetative Growth Stage of Maize
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Trait Measurements
2.3. Statistical Analysis
3. Results
3.1. Analysis of Variance
3.2. Effect of Drought on Trait Means
3.3. Correlation Between Traits
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deribe, H. Review on Effects of Drought Stress on Maize Growth, Yield and Its Management Strategies. Commun. Soil Sci. Plant Anal. 2025, 56, 123–143. [Google Scholar] [CrossRef]
- Yin, X.; Olesen, J.E.; Wang, M.; Kersebaum, K.-C.; Chen, H.; Baby, S.; Öztürk, I.; Chen, F. Adapting maize production to drought in the northeast farming region of China. Eur. J. Agron. 2016, 77, 47–58. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database. Available online: https://www.fao.org/faostat/en/#data (accessed on 15 September 2025).
- Maazou, A.R.S.; Tu, J.L.; Qiu, J.; Liu, Z.Z. Breeding for Drought Tolerance in Maize (Zea mays L.). Am. J. Plant Sci. 2016, 7, 1858–1870. [Google Scholar] [CrossRef]
- Rasheed, A.; Jie, H.; Ali, B.; He, P.; Zhao, L.; Ma, Y.; Xing, H.; Qari, S.H.; Hassan, M.U.; Hamid, M.R.; et al. Breeding Drought-Tolerant Maize (Zea mays) Using Molecular Breeding Tools: Recent Advancements and Future Prospective. Agronomy 2023, 13, 1459. [Google Scholar] [CrossRef]
- Critchley, W.; Siegert, K. Water Harvesting: A Manual for the Design and Construction of Water Harvesting Schemes for Plant Production; FAO: Rome, Italy, 1991. [Google Scholar]
- Sah, R.P.; Chakraborty, M.; Prasad, K.; Pandit, M.; Tudu, V.K.; Chakravarty, M.K.; Narayan, S.C.; Rana, M.; Moharana, D. Impact of water deficit stress in maize: Phenology and yield components. Sci. Rep. 2022, 10, 2944. [Google Scholar] [CrossRef]
- Akinwale, R.O.; Awosanmi, F.E.; Ogunniyi, O.; Fadoju, A.O. Determinants of drought tolerance at seedling stage in early and extra-early maize hybrids. Maydica 2017, 62, M4. [Google Scholar]
- Bruce, W.B.; Edmeades, G.O.; Barker, T.C. Molecular and physiological approaches to maize improvement for drought resistance. J. Exp. Bot. 2002, 53, 13–25. [Google Scholar] [CrossRef]
- Zyomo, C.; Bernardo, R. Drought Tolerance in Maize: Indirect Selection through Secondary Traits versus Genomewide Selection. Crop Sci. 2012, 52, 1269–1275. [Google Scholar] [CrossRef]
- Álvarez-Iglesias, L.; de la Roza-Delgado, B.; Reigosa, M.J.; Revilla, P.; Pedrol, N. A simple, fast and accurate screening method to estimate maize (Zea mays L.) tolerance to drought at early stages. Maydica 2017, 62, M34. [Google Scholar]
- Ribaut, J.M.; Betran, J.; Monneveux, P.; Setter, T. Drought Tolerance in Maize. In Handbook of Maize: Its Biology; Bennetzen, J., Hake, S., Eds.; Springer: New York, NY, USA, 2009; pp. 311–344. [Google Scholar] [CrossRef]
- Bolaños, J.; Edmeades, G.O. Eight cycles of selection for drought tolerance in lowland tropical maize. I. responses in grain yield, biomass and radiation utilization. Field Crops Res. 1993, 31, 233–252. [Google Scholar] [CrossRef]
- Edmeades, G.O.; Bolaños, J.; Chapman, S.C.; Lafitte, H.R.; Bänziger, M. Selection improves drought tolerance in tropical maize populations. I. Gains in biomass, grain yield and harvest index. Crop Sci. 1999, 39, 1306–1315. [Google Scholar] [CrossRef]
- Khan, N.H.; Ahsan, M.; Naveed, M.; Sadaqat, H.A.; Javed, I. Genetics of drought tolerance at seedling and maturity stages in Zea mays L. Span. J. Agric. Res. 2016, 14, e0705. [Google Scholar] [CrossRef]
- Aslam, M.; Maqbool, M.A.; Cengiz, R. Drought Stress in Maize (Zea mays L.). Effects, Resistance Mechanisms, Global Achievements and Biological Strategies for Improvement; Springer Briefs in Agriculture; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Denmead, O.T.; Shaw, R.H. The effects of soil moisture stress at different stages of growth on the development and yield of corn. Agron. J. 1960, 52, 272–274. [Google Scholar] [CrossRef]
- Edmeades, G.O.; Lafitte, H.R.; Bolaños, J.; Chapman, S.C.; Bänziger, M.; Deutsch, J.A. Developing maize that tolerates drought or low nitrogen conditions. In Stress Tolerance Breeding: Maize that Resists Insects, Drought, Low Nitrogen, and Acid Soils; Edmeades, G.O., Deutsch, J.A., Eds.; CIMMYT: El Batán, Mexico, 1994; pp. 21–84. [Google Scholar]
- Duvick, D.N. What is yield. In Developing Drought and Low-N Tolerant Maize; Edmeades, G.O., Bänziger, M., Mickelson, H.R., Peña-Valdivia, C.B., Eds.; CIMMYT: El Batan, Mexico, 1997; pp. 332–335. [Google Scholar]
- Duvick, D.N.; Cassman, K.G. Post-green revolution trends in yield potential of temperate maize in the North-Central United States. Crop Sci. 1999, 39, 1622–1630. [Google Scholar] [CrossRef]
- Adewale, S.A.; Akinwale, R.O.; Fakorede, M.A.B.; Badu-Apraku, B. Genetic analysis of drought-adaptive traits at seedling stage in early-maturing maize inbred lines and field performance under stress conditions. Euphytica 2018, 214, 145. [Google Scholar] [CrossRef]
- Meeks, M.; Murray, S.C.; Hague, S.; Hays, D. Measuring Maize Seedling Drought Response in Search of Tolerant Germplasm. Agronomy 2013, 3, 135–147. [Google Scholar] [CrossRef]
- Djemel, A.; Álvarez-Iglesias, L.; Pedrol, N.; López-Malvar, A.; Ordás, A.; Revila, P. Identification of drought tolerant populations at multi-stage growth phases in temperate maize germplasm. Euphytica 2018, 214, 138. [Google Scholar] [CrossRef]
- Mustamu, N.E.; Tampubolon, K.; Alridiwirsah, A.; Basyuni, M. Preliminary Identification of Local Maize Under Drought Stress By PEG-6000. BIO Web Conf. 2023, 69, 01018. [Google Scholar] [CrossRef]
- Mustamu, N.E.; Tampubolon, K.; Alridiwirsah, A.; Basyuni, M.; AL-Taey, D.K.A.; Janabi, H.J.K.; Mehdizadeh, M. Drought stress induced by polyethylene glycol (PEG) in local maize at the early seedling stage. Heliyon 2023, 9, e20209. [Google Scholar] [CrossRef]
- Badr, A.; El-Shazly, H.H.; Tarawneh, R.A.; Börner, A. Screening for Drought Tolerance in Maize (Zea mays L.) Germplasm Using Germination and Seedling Traits under Simulated Drought Conditions. Plants 2020, 9, 565. [Google Scholar] [CrossRef]
- Magar, M.M.; Atit Parajuli, A.; Sah, B.P.; Shrestha, J.; Sakha, B.M.; Koirala, K.B.; Dhital, S.P. Effect of PEG Induced Drought Stress on Germination and Seedling Traits of Maize (Zea mays L.) Lines. Turk. J. Agric. Nat. Sci. 2019, 6, 196–205. [Google Scholar] [CrossRef]
- Ul Islam, N.; Ali, G.; Dar, Z.A.; Maqbool, S.; Khulbe, R.K.; Bhat, A. Effect of PEG Induced Drought Stress on Maize (Zea mays L.) Inbreds. Plant Arch. 2019, 19, 1677–1681. [Google Scholar]
- Queiroz, M.; da Silva Oliveira, C.E.; Steiner, F.; Zuffo, A.M.; Zoz, T.; Vendruscolo, E.P.; Silva Mennes, V.; Mello, B.F.F.R.; Cabral, R.C.; Menis, F.T. Drought Stresses on Seed Germination and Early Growth of Maize and Sorghum. J. Agric. Sci. 2019, 11, 310. [Google Scholar] [CrossRef]
- Partheeban, C.; Chandrasekhar, C.N.; Jeyakumar, P.; Ravikesavan, R.; Gnanam, R. Effect of PEG Induced Drought Stress on Seed Germination and Seedling Characters of Maize (Zea mays L.) Genotypes. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 1095–1104. [Google Scholar] [CrossRef]
- Khodarahmpour, Z. Effect of drought stress induced by polyethylene glycol (PEG) on germination indices in corn (Zea mays L.) hybrids. Afr. J. Biotechnol. 2011, 10, 18222–18227. [Google Scholar] [CrossRef]
- Khayatnezhad, M.; Gholamin, R.; Jamaati-e-Somarin, S.; Zabihi-e-Mahmoodabad, R. Effects of PEG Stress on Corn Cultivars (Zea mays L.) at Germination Stage. World Appl. Sci. J. 2010, 11, 504–506. [Google Scholar]
- Zhang, L.J.; Fan, J.J.; Ruan, Y.Y. Application of polyethylene glycol in the study of plant osmotic stress physiology. Plant Physiol. Commun. 2004, 40, 361–368. [Google Scholar]
- Guan, Z.; Wang, L.; Duan, L.; Zhou, Z.; Zhang, F.; Wang, Y. Effects of PEG simulated drought stress on seed germination of Abutilon theophrasti medicus. Seed 2022, 41, 66–70. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Zhao, W.; Hou, X.; Dong, S. Current views of drought research: Experimental methods, adaptation mechanisms and regulatory strategies. Front. Plant Sci. 2024, 15, 1371895. [Google Scholar] [CrossRef] [PubMed]
- Avramova, V.; Nagel, K.A.; AbdElgawad, H.; Bustos, D.; DuPlessis, M.; Fiorani, F.; Beemster, G.T.S. Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. J. Exp. Bot. 2016, 67, 2453–2466. [Google Scholar] [CrossRef] [PubMed]
- Michel, B.E. Evaluation of the water potentials of solutions of polyethylene glycol 8000. Plant Physiol. 1983, 72, 66–70. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute. Statistical Analysis Software (SAS) User’s Guide, Version 9.4; SAS Institute Inc.: Cary, NC, USA, 2016. [Google Scholar]
- Hallauer, A.R.; Carena, M.J.; Filho, J.B.M. Quantitative Genetics in Maize Breeding; Springer: New York, NY, USA, 2010. [Google Scholar]
- Alvarado, G.; López, M.; Vargas, M.; Pacheco, Á.; Rodríguez, F.; Burgueño, J.; Crossa, J. META-R (Multi Environment Trail Analysis with R for Windows), Version 6.00; CIMMYT Research Data & Software Repository Network: Texcoco, Mexico, 2016. [Google Scholar]
- Wei, T.; Simko, V. R Package ‘Corrplot’: Visualization of a Correlation Matrix (Version 0.95). 2024. Available online: https://github.com/taiyun/corrplot (accessed on 5 September 2025).
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.4.2; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 5 September 2025).
- Soetewey, A. Correlation Coefficient and Correlation Test in R, Stats and R. Available online: https://statsandr.com/blog/correlation-coefficient-and-correlation-test-in-r/ (accessed on 16 September 2025).
- Verslues, P.E.; Ober, E.S.; Sharp, R.E. Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions. Plant Physiol. 1998, 116, 1403–1412. [Google Scholar] [CrossRef] [PubMed]
- Findenegg, G.R. Effect of varied shoot/root ratio on growth of maize (Zea mays) under nitrogen-limited conditions: Growth experiment and model calculations. Plant Nutr. Physiol. Appl. 1990, 41, 21–27. [Google Scholar]
- Sharp, R.E.; Davies, W.J. Regulation of growth and development of plants growing with a restricted supply of water. In Plants under Stress. Biochemistry, Physiology and Ecology and Their Application to Plant Improvement; Jones, H.G., Flowers, T.J., Jones, M.B., Eds.; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- McCubbin, T.J.; Greeley, L.A.; Mertz, R.A.; Sidharth, S.; Griffith, A.E.; King-Miller, S.K.; Riggs, K.; Niehues, N.D.; Pareek, A.; Bryan, V.J.; et al. Maize nodal root growth maintenance during water deficit: Metabolic acclimation and the role of increased solute deposition in osmotic adjustment. Front. Plant Sci. 2025, 16, 1566453. [Google Scholar] [CrossRef]
- Velázquez-Márquez, S.; Conde-Martínez, V.; Trejo, C.; Delgado-Alvarado, A.; Carballo, A.; Suárez, R.; Mascorro, J.O.; Trujillo, A.R. Effects of water deficit on radicle apex elongation and solute accumulation in Zea mays L. Plant Physiol. Biochem. 2015, 96, 29–37. [Google Scholar] [CrossRef]
- Studer, C.; Hu, Y.; Schmidhalter, U. Evaluation of the differential osmotic adjustments between roots and leaves of maize seedlings with single or combined NPK-nutrient supply. Funct. Plant Biol. 2007, 34, 228–236. [Google Scholar] [CrossRef]
- Michelena, V.A.; Boyer, J.S. Complete turgor maintenance at low water potentials in the elongating region of maize leaves. Plant Physiol. 1982, 69, 1145–1149. [Google Scholar] [CrossRef]
- Sharp, R.E.; Davies, W.J. Solute regulation and growth by roots and shoots of water-stressed maize plants. Planta 1979, 147, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.; Sa, K.J.; Lee, J.K. Drought tolerance screening of maize inbred lines at an early growth stage. Plant Breed. Biotechnol. 2019, 7, 326–339. [Google Scholar] [CrossRef]




| Trait | Source | DF | MS | F Value | Pr > F |
|---|---|---|---|---|---|
| RL | Genotype (G) | 31 | 10,046 | 1.6 | 0.0968 |
| Treatment (T) | 1 | 1,024,093 | 164.2 | <0.0001 | |
| G × T | 31 | 6261 | 4.04 | <0.0001 | |
| SL | Genotype (G) | 31 | 12,716 | 4.64 | <0.0001 |
| Treatment (T) | 1 | 1,122,209 | 410.7 | <0.0001 | |
| G × T | 31 | 2742 | 2.77 | <0.0001 | |
| RFW | Genotype (G) | 31 | 21.676 | 4.28 | <0.0001 |
| Treatment (T) | 1 | 2846.835 | 573.7 | <0.0001 | |
| G × T | 31 | 5.068 | 2.21 | 0.0014 | |
| SFW * | Genotype (G) | 31 | 0.671 | 4.06 | <0.0001 |
| Treatment (T) | 1 | 118.649 | 736.5 | <0.0001 | |
| G × T | 31 | 0.165 | 2.77 | <0.0001 | |
| RDM * | Genotype (G) | 31 | 0.00025 | 3.09 | 0.0012 |
| Treatment (T) | 1 | 0.15872 | 2003.7 | <0.0001 | |
| G × T | 31 | 0.00008 | 1.08 | 0.3745 | |
| SDM | Genotype (G) | 31 | 5.8182 | 2.21 | 0.0153 |
| Treatment (T) | 1 | 1238.29 | 489.8 | <0.0001 | |
| G × T | 31 | 2.6316 | 2.34 | 0.0007 | |
| RL/SL | Genotype (G) | 31 | 0.1100 | 1.90 | 0.039 |
| Treatment (T) | 1 | 0.00019 | 0.00 | 0.9547 | |
| G × T | 31 | 0.0578 | 3.42 | <0.0001 | |
| RFW/SFW | Genotype (G) | 31 | 0.090 | 2.55 | 0.0056 |
| Treatment (T) | 1 | 8.003 | 233.0 | <0.0001 | |
| G × T | 31 | 0.035 | 2.42 | 0.0004 |
| Trait | Treatment | Source | DF | MS | F | Pr > F | h2 |
|---|---|---|---|---|---|---|---|
| RL | Control | Genotype | 31 | 1561.44 | 2.59 | 0.0008 | 0.62 |
| Error | 61 | 602.77 | |||||
| Drought | Genotype | 31 | 14,745.00 | 5.9 | <0.0001 | 0.83 | |
| Error | 61 | 2497.74 | |||||
| SL | Control | Genotype | 31 | 11,110.00 | 9.16 | <0.0001 | 0.89 |
| Error | 61 | 1213.12 | |||||
| Drought | Genotype | 31 | 4347.73 | 5.67 | <0.0001 | 0.83 | |
| Error | 61 | 767.13 | |||||
| RFW | Control | Genotype | 31 | 20.72585 | 6.85 | <0.0001 | 0.86 |
| Error | 56 | 3.02572 | |||||
| Drought | Genotype | 31 | 5.90935 | 3.71 | <0.0001 | 0.74 | |
| Error | 58 | 1.59308 | |||||
| SFW * | Control | Genotype | 31 | 0.66918 | 9.53 | <0.0001 | 0.90 |
| Error | 56 | 0.07026 | |||||
| Drought | Genotype | 31 | 0.17908 | 3.63 | <0.0001 | 0.74 | |
| Error | 57 | 0.04931 | |||||
| RDM * | Control | Genotype | 31 | 0.00022 | 2.44 | 0.0021 | 0.61 |
| Error | 53 | 0.000092 | |||||
| Drought | Genotype | 31 | 0.000095 | 1.67 | 0.0473 | 0.41 | |
| Error | 57 | 0.000057 | |||||
| SDM | Control | Genotype | 31 | 0.78173 | 3.5 | <0.0001 | 0.74 |
| Error | 51 | 0.223465 | |||||
| Drought | Genotype | 31 | 8.077067 | 4.19 | <0.0001 | 0.77 | |
| Error | 57 | 1.926421 | |||||
| RL/SL | Control | Genotype | 31 | 0.041685 | 4.16 | <0.0001 | 0.76 |
| Error | 60 | 0.010014 | |||||
| Drought | Genotype | 31 | 0.126501 | 5.34 | <0.0001 | 0.81 | |
| Error | 61 | 0.023691 | |||||
| RFW/SFW | Control | Genotype | 31 | 0.031424 | 2.37 | 0.0025 | 0.59 |
| Error | 56 | 0.013287 | |||||
| Drought | Genotype | 31 | 0.101127 | 6.43 | <0.0001 | 0.85 | |
| Error | 57 | 0.015726 |
| Trait | Treatment | Absolute Units | Change (% of Control) | |||||
|---|---|---|---|---|---|---|---|---|
| Mean | Min | Max | CV (%) | Mean | Min | Max | ||
| RL (mm) | Control | 443 | 411 | 472 | 3.2 | −33 | −12 | −56 |
| Drought | 296 | 187 | 388 | 19.7 | ||||
| SL (mm) | Control | 446 | 347 | 545 | 12.4 | −34 | −23 | −45 |
| Drought | 292 | 229 | 380 | 10.8 | ||||
| RFW (g) | Control | 15.7 | 9.7 | 20.3 | 15.6 | −51 | −34 | −61 |
| Drought | 7.6 | 5.8 | 9.9 | 13.9 | ||||
| SFW (g) | Control | 15.8 | 8.6 | 23.7 | 23.3 | −66 | −49 | −74 |
| Drought | 5.3 | 3.8 | 7.0 | 16 | ||||
| RDM (%) | Control | 8.7 | 8.1 | 9.8 | 4.8 | 117 | 97 | 136 |
| Drought | 18.9 | 17.1 | 20.3 | 4.3 | ||||
| SDM (%) | Control | 8.8 | 8 | 9.5 | 4.4 | 63 | 48 | 89 |
| Drought | 14.3 | 10.3 | 19.4 | 8.9 | ||||
| RL/SL | Control | 1.01 | 0.85 | 1.15 | 8.6 | 0 | −28 | 34 |
| Drought | 1.01 | 0.68 | 1.29 | 16.7 | ||||
| RFW/SFW | Control | 1.01 | 0.87 | 1.15 | 6.0 | 43 | 16 | 83 |
| Drought | 1.45 | 1.12 | 1.80 | 10.7 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukan, M.; Kereša, S.; Pejić, I.; Lovrić, A.; Šarčević, H. Variability of Root and Shoot Traits Under PEG-Induced Drought Stress at an Early Vegetative Growth Stage of Maize. Agronomy 2025, 15, 2624. https://doi.org/10.3390/agronomy15112624
Bukan M, Kereša S, Pejić I, Lovrić A, Šarčević H. Variability of Root and Shoot Traits Under PEG-Induced Drought Stress at an Early Vegetative Growth Stage of Maize. Agronomy. 2025; 15(11):2624. https://doi.org/10.3390/agronomy15112624
Chicago/Turabian StyleBukan, Miroslav, Snježana Kereša, Ivan Pejić, Ana Lovrić, and Hrvoje Šarčević. 2025. "Variability of Root and Shoot Traits Under PEG-Induced Drought Stress at an Early Vegetative Growth Stage of Maize" Agronomy 15, no. 11: 2624. https://doi.org/10.3390/agronomy15112624
APA StyleBukan, M., Kereša, S., Pejić, I., Lovrić, A., & Šarčević, H. (2025). Variability of Root and Shoot Traits Under PEG-Induced Drought Stress at an Early Vegetative Growth Stage of Maize. Agronomy, 15(11), 2624. https://doi.org/10.3390/agronomy15112624

