Effect of Reduced Iron Chelate Fertilization on Photosynthesis, Stress Parameters, and Yield of Mandarin Trees
Abstract
1. Introduction
2. Materials and Methods
2.1. Mineral Nutrient Content
2.2. Optical Determination of Chlorophylls, Flavonols and Anthocyanins
2.3. Chlorophyll Fluorescence Determination
2.4. Lipid Peroxidation and Peroxidase Activity Determinations
2.5. Fruit Yield and Quality
2.6. Statistical Analysis
3. Results
3.1. Effect of Agronomic Management on Nutrient Contents
3.2. Effect of Agronomic Management on Pigment Contents and Chlorophyll Fluorescence
3.3. Lipid Peroxidation and Peroxidase Activity Determinations
3.4. Fruit Production and Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zahra, N.; Bilal Hafeez, M.; Wahid, A.; Kanval, S.; Hasanuzzaman, M. Fe toxicity in plants: Impacts and remediation. Physiol. Plant. 2021, 173, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, L.; Simontacchi, M.; Murgia, I.; Zabaleta, E.; Lamattina, L. Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: A well-equipped team to preserve plant iron homeostasis. Plant Sci. 2011, 181, 582–592. [Google Scholar] [CrossRef]
- Murgia, I.; Marzorati, F.; Vigani, G.; Morandini, F. Plant iron nutrition: The long road from soil to seeds. J. Exp. Bot. 2022, 73, 1809–1824. [Google Scholar] [CrossRef] [PubMed]
- Rout, G.R.; Sahoo, S. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 2015, 3, 1–24. [Google Scholar] [CrossRef]
- Rai, S.; Singh, P.K.; Mankotia, S.; Swain, J.; Satghai, S.B. Iron homeostasis in plants and its crosstalk with copper, zinc and manganese. Plant Stress 2021, 1, 100008. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 3rd ed.; Oxford University Press Inc.: New York, NY, USA, 2003; ISBN 0-19-850044-0. [Google Scholar]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of nutrients: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Elsevier: London, UK, 2012; pp. 191–248. ISBN 978-0-12-384905-2. [Google Scholar]
- Dasgan, H.Y.; Ozturk, L.; Abak, K.; Cakmak, I. Activities of iron-containing enzymes in leaves of two tomato genotypes differing in their resistance to Fe chlorosis. J. Plant Nutr. 2003, 26, 1997–2007. [Google Scholar] [CrossRef]
- Ranieri, A.; Castagna, A.; Baldan, B.; Soldatini, G.F. Iron deficiency differently affects peroxidase isoforms in sunflower. J. Exp. Bot. 2001, 52, 25–35. [Google Scholar] [CrossRef]
- Iturbe-Omemaetxe, I.; Moran, J.F.; Arrese-Igor, C.; Gogorcena, Y.; Klucas, R.V.; Becana, M. Activated oxygen and antioxidant defences in iron-deficient pea plants. Plant Cell Environ. 1995, 18, 421–429. [Google Scholar] [CrossRef]
- Hanikenne, M.; Esteves, S.M.; Fanara, S.; Rouached, H. Coordinated homeostasis of essential mineral nutrients: A focus on iron. J. Exp. Bot. 2021, 72, 2136–2153. [Google Scholar] [CrossRef]
- Zekri, M.; Obreza, T.A. Micronutrient Deficiencies in Citrus: Iron, Zinc, and Manganese. IFAS Ext. 2022, SL204, 1–3. [Google Scholar] [CrossRef]
- Kirk, G.J.D.; Manwaring, H.R.; Ueda, Y.; Semwal, V.K.; Wissuwa, M. Below-ground plant–soil interactions affecting adaptations of rice to iron toxicity. Plant Cell Environ. 2022, 45, 705–718. [Google Scholar] [CrossRef]
- Delias, D.S.; Da-Silva, C.J.; Martins, A.C.; de Oliveira, D.S.C.; do Amarante, L. Iron toxicity increases oxidative stress and impairs mineral accumulation and leaf gas exchange in soybean plants during hypoxia. Environ. Sci. Pollut. Res. 2021, 29, 22427–22438. [Google Scholar] [CrossRef]
- Badía-Villas, D.; del Moral, F. Soils of the Arid Areas. In The Soils of Spain; Gallardo, J.F., Ed.; World Soils Book Series; Springer International Publishing: Cham, Switzerland, 2016; pp. 145–161. [Google Scholar]
- Pestana, M.; García-Caparrós, P.; Saavedra, T.; Gama, F.; Abadía, J.; Varennes, A.D.; Correia, P.J. Nutritional Performance of Five Citrus Rootstocks under Different Fe Levels. Plants 2023, 12, 3252. [Google Scholar] [CrossRef]
- Cerdán, M.; Sánchez-Sánchez, A.; Juárez, M.; Sánchez-Andreu, J.J.; Jordá, J.D.; Bermúdez, D. Partial replacement of Fe(o,o-EDDHA) by humic substances for Fe nutrition and fruit quality of citrus. J. Plant Nutr. Soil Sci. 2007, 170, 474–478. [Google Scholar] [CrossRef]
- Jurado, C.; Díaz-Vivancos, P.; Barba-Espín, G.; Acosta-Motos, J.R.; Hernández, J.A. Effect of halophyte-based management in physiological and biochemical responses of tomato plants under saline greenhouse conditions. Plant Physiol. Biochem. 2024, 206, 108228. [Google Scholar] [CrossRef] [PubMed]
- Cantabella, D.; Piqueras, A.; Acosta-Motos, J.R.; Bernal-Vicente, A.; Hernandez, J.A.; Diaz-Vivancos, P. Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiol. Biochem. 2017, 115, 484–496. [Google Scholar] [CrossRef]
- Ros-Barceló, A.; Gómez-Ros, L.V.; Ferrer, M.A.; Hernández, J.A. The apoplastic antioxidant enzymatic system in the wood-forming tissues of trees. Trees 2006, 20, 145–156. [Google Scholar] [CrossRef]
- Hellin, E.; Hernandez, J.A.; Piqueras, A.; Olmos, E.; Sevilla, F. Influence of the iron content on superoxide dismutase activity and chloroplasts ultrastructure of Citrus limon L. In Iron in Soil and Plants; Series Developments in Plants and Soil Sciences; Abadia, J., Ed.; Kluwer Publisher: Alphen aan den Rijn, The Netherland, 1995; Volume 59, pp. 247–254. [Google Scholar]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence: A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Ros Barceló, A.; Pomar, F.; López-Serrano, M.; Pedreño, M.A. Peroxidase: A multifunctional enzyme in grapevines. Funct. Plant Biol. 2003, 30, 577–591. [Google Scholar] [CrossRef]
- Li, G.J.; Kronzucker, H.J.; Shi, W.M. Root developmental adaptation to Fe toxicity: Mechanisms and management. Plant Signal. Behav. 2016, 11, e1117722. [Google Scholar] [CrossRef]
- Zhang, L.; Guangjie, L.; Meng, W.; Dongwei, D.; Li, S.; Herbert, J.K.; Weiming, S. Excess iron stress reduces root tip zone growth through nitric oxide-mediated repression of potassium homeostasis in Arabidopsis. New Phytol. 2018, 219, 259–274. [Google Scholar] [CrossRef]
- Reyt, G.; Boudouf, S.; Boucherez, J.; Gaymard, F.; Briat, J.F. Iron and ferritin dependent ROS distribution impact Arabidopsis root system architecture. Mol. Plant 2015, 8, 439–453. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A. Elements of Group 8. In Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 215–225. [Google Scholar]
- Wetzel, R.G. Limnology: Lake and River Ecosystems, 3rd ed.; Academic Press: San Diego, CA, USA, 2011. [Google Scholar]
- Morrissey, J.; Guerinot, M.L. Iron uptake and transport in plants: The good, the bad, and the ionome. Chem. Rev. 2009, 109, 4553–4567. [Google Scholar] [CrossRef]
- Fageria, N.K.; Santos, A.B.; Filho, M.P.; Guimaries, C.M. Iron toxicity in lowland rice. J. Plant Nutr. 2008, 31, 1676–1697. [Google Scholar] [CrossRef]
- Kaur, G.; Shukla, V.; Kumar, A.; Gazaldeep, K.; Vishnu, S.; Anil, K.; Kaur, M.; Goel, P.; Singh, P.; Shukla, A.; et al. Integrative analysis of hexaploidy wheat roots identifies signature components during iron starvation. J. Exp. Bot. 2019, 70, 6141–6161. [Google Scholar] [CrossRef]
- Larbi, A.; Abadía, A.; Morales, F.; Abadía, J. Fe resupply to Fe-deficient sugar beet plants leads to rapid changes in the violaxanthin cycle and other photosynthetic characteristics without significant de novo chlorophyll synthesis. Photosynth. Res. 2004, 79, 59–69. [Google Scholar] [CrossRef]
- Larbi, A.; Abadía, A.; Abadía, J.; Morales, F. Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. Photosynth. Res. 2006, 89, 113–126. [Google Scholar] [CrossRef]
- Lima Neto, A.J.d.; Krug, A.V.; Moura-Bueno, J.M.; Rozane, D.E.; Natale, W.; Hindersmann, J.; Marques, A.L.L.; Stefanello, L.O.; Papalia, D.G.; Brunetto, G. Proposal of Critical Nutrient Levels in Soil and Citrus Leaves Using the Boundary Line Method. Plants 2025, 14, 1764. [Google Scholar] [CrossRef] [PubMed]
- Achat, D.L.; Pousse, N.; Nicolas, M.; Augusto, L. Nutrient remobilization in tree foliage as affected by soil nutrients and leaf life span. Ecol. Monogr. 2018, 88, 408–428. [Google Scholar] [CrossRef]
- Sági-Kazár, M.; Solymosi, K.; Solti, A. Iron in leaves: Chemical forms, signalling, and in-cell distribution. J. Exp. Bot. 2022, 73, 1717–1734. [Google Scholar] [CrossRef]
- Wallihan, E.F.; Garber, M.J.; Sharpless, R.G. Soil Temperature and Iron Uptake in Young Citrus Plants. HortScience 1974, 9, 200–201. [Google Scholar] [CrossRef]
- Sheng, O.; Yan, X.; Peng, S.A.; Deng, X.X.; Fang, Y.W. Seasonal Changes in Nutrient Concentrations of‘Newhall’ and ‘Skagg’s Bonanza’ Navel Oranges. Commun. Soil. Sci. Plant Anal. 2009, 40, 3061–3076. [Google Scholar] [CrossRef]
- Caro, A.; Puntarulo, S. Effect of in vivo iron supplementationon oxygen radical production by soybean roots. Biochem. Biophys. Acta 1996, 1291, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Guo, H.; Li, J.; Wang, Y.; Xiao, L.; Xing, B. Interaction of γ-Fe2O3 nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application. J. Nanobiotechnol. 2017, 15, 51. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.C.; Kao, C.H. Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc. Plant Sci. 2000, 158, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Price, A.H.; Hendry, G.A.F. Iron-catalysed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plant Cell Environ. 1991, 14, 477–484. [Google Scholar] [CrossRef]






| Ca | Cu | Mn | Mg | Na | S | P | Zn | Cd | Cr | Ni | Pb | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TF | 17,425 ± 352 | 7.14 ± 0.87 b | 36.11 ± 3.55 ab | 1600 ± 147 b | 823 ± 57 b | 2950 ± 206 ab | 775 ± 47 | 49.73 ± 3.09 b | 0.08 ± 0.02 b | 8.16 ± 0.48 | 5.81 ± 0.51 | 1.70 ± 0.35 |
| 75% Fe | 15,775 ± 1533 | 11.93 ± 1.52 ab | 31.93 ± 3.12 b | 1625 ± 85 b | 762 ± 187 b | 2600 ± 227 b | 875 ± 48 | 58.01 ± 1.01 b | 0.46 ± 0.14 a | 8.91 ± 1.20 | 5.39 ± 0.70 | 1.39 ± 0.28 |
| 50% Fe | 18,150 ± 298 | 20.93 ± 0.84 a | 50.99 ± 6.87 a | 2375 ± 265 a | 1615 ± 333 a | 4100 ± 407 a | 875 ± 25 | 83.40 ± 5.17 a | 0.46 ± 0.05 a | 10.40 ± 0.78 | 6.32 ± 0.53 | 2.18 ± 0.20 |
| aF | 0.231 | 38.82 *** | 4.34 * | 5.84 * | 4.54 * | 5.73 | 1.92 | 24.69 *** | 6.63 * | 1.7 | 0.62 | 1.94 |
| Ca | Cu | Mn | Mg | Na | S | P | Zn | Cd | Cr | Ni | Pb | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TF | 12,552± 436 b | 5.14 ± 0.56 b | 21.42 ± 1.90 ab | 1220 ± 77 b | 553 ± 116 | 2515 ± 178 ab | 812 ± 35 | 35.54 ± 7.02 b | 0.05 ± 0.01 b | 3.82 ± 0.61 b | 2.66 ± 0.26 b | 1.01 ± 0.14 b |
| 75% Fe | 14,130 ± 1460 ab | 6.22 ± 0.91 ab | 18.46 ± 2.50 ab | 1027 ± 88 b | 798 ± 303 | 2102 ± 88 b | 805 ± 27 | 43.84 ± 6.61 ab | 0.056 ± 0.01 b | 4.83 ± 0.97 ab | 3.03 ± 0.37 b | 1.45 ± 0.68 ab |
| 50% Fe | 17,520 ± 2745 ab | 11.10 ± 1.73 a | 31.23 ± 7.00 a | 1770 ± 158 a | 523 ± 149 | 2860 ± 166 a | 892 ± 54 | 61.64 ± 4.71 a | 0.19 ± 0.01 a | 11.25 ± 4.48 a | 5.37 ± 0.179 ab | 1.56 ± 0.56 ab |
| aF | 1.96 | 7.3 * | 2.28 | 11.52 ** | 0.53 | 6.44 * | 1.44 | 4.63 * | 88.92 *** | 2.28 | 1.91 | 0.32 |
| Ca | Cu | Mn | Mg | Na | S | P | Zn | Cd | Cr | Ni | Pb | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TF | 16,800 ± 2631 | 18.62 ± 14.20 b | 134.67 ± 31.50 a | 3893 ± 1071 | 2759 ± 779 | 5246 ± 308 ab | 906 ± 158 | 79.38 ± 24.44 b | 0.87 ± 0.53 | 12.98 ± 0.38 bc | 11.40 ± 4.19 | 5.80 ± 1.89 |
| 75% Fe | 14,725 ± 1547 | 23.98 ± 9.30 ab | 56.08 ± 2.96 b | 3448 ± 278 | 2587 ± 226 | 5228 ± 194 b | 890 ± 52 | 154.79 ± 12.82 ab | 0.90 ± 0.08 | 10.11 ± 1.27 c | 6.58 ± 0.86 | 2.76 ± 0.23 |
| 50% Fe | 20,325 ± 2551 | 43.01 ± 11.52 a | 120.30 ± 5.43 ab | 5067 ± 517 | 3793 ± 351 | 6547 ± 569 a | 982 ± 70 | 248.21 ± 54.21 a | 1.41 ± 0.15 | 18.97 ± 2.43 ab | 11.44 ± 1.57 | 5.23 ± 1.06 |
| aF | 1.52 | 3.58 | 4.66 * | 2.29 | 2.08 | 3.53 | 0.30 | 5.14 * | 0.81 | 7.08 * | 1.95 | 2.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Cánovas, A.; Jurado-Mañogil, C.; Diaz-Vivancos, P.; Hernández, J.A. Effect of Reduced Iron Chelate Fertilization on Photosynthesis, Stress Parameters, and Yield of Mandarin Trees. Agronomy 2025, 15, 2622. https://doi.org/10.3390/agronomy15112622
Hernández-Cánovas A, Jurado-Mañogil C, Diaz-Vivancos P, Hernández JA. Effect of Reduced Iron Chelate Fertilization on Photosynthesis, Stress Parameters, and Yield of Mandarin Trees. Agronomy. 2025; 15(11):2622. https://doi.org/10.3390/agronomy15112622
Chicago/Turabian StyleHernández-Cánovas, Ana, Carmen Jurado-Mañogil, Pedro Diaz-Vivancos, and José A. Hernández. 2025. "Effect of Reduced Iron Chelate Fertilization on Photosynthesis, Stress Parameters, and Yield of Mandarin Trees" Agronomy 15, no. 11: 2622. https://doi.org/10.3390/agronomy15112622
APA StyleHernández-Cánovas, A., Jurado-Mañogil, C., Diaz-Vivancos, P., & Hernández, J. A. (2025). Effect of Reduced Iron Chelate Fertilization on Photosynthesis, Stress Parameters, and Yield of Mandarin Trees. Agronomy, 15(11), 2622. https://doi.org/10.3390/agronomy15112622

