The Effects of Different Tillage and Straw Return Practices on Soil Organic Carbon Dynamics from 1980 to 2022 in the Mollisol Region of Northeast China
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Review and Data Collection
2.2. Data Preparation
2.3. Data Analysis
2.4. Machine Learning
3. Results
3.1. SOC Changes and Accumulation Rate During 1980–2022
3.2. Responses of SOC to Management Practices
3.2.1. Tillage Management
3.2.2. Straw Return
3.3. SOC Prediction Using RF Model
3.4. Relative Importance of Explanatory Factors
4. Discussion
4.1. Changes in SOC Under Different Practices
4.2. Effect of Climatic Factors on SOC
4.3. Effect of Soil Properties on SOC
4.4. Effect of Duration on SOC
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Lal, R.; Smith, P.; Jungkunst, H.F.; Mitsch, W.J.; Skorupa, A. The carbon sequestration potential of terrestrial ecosystems. J. Soil Water Conserv. 2018, 73, 145A–152A. [Google Scholar] [CrossRef]
- Purakayastha, T.J.; Bera, T.; Bhaduri, D.; Sarkar, B.; Mandal, S.; Wade, P.; Kumari, S.; Biswas, S.; Menon, M.; Pathak, H.; et al. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere 2019, 227, 345–365. [Google Scholar] [CrossRef] [PubMed]
- Amelung, W.; Bossio, D.; de Vries, W.; Kögel-Knabner, I.; Lehmann, J.; Amundson, R.; Bol, R.; Collins, C.; Lal, R.; Leifeld, J.; et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 2020, 11, 5427. [Google Scholar] [CrossRef]
- Pradhan, P.; Fischer, G.; van Velthuizen, H.; Reusser, D.E.; Kropp, J.P. Closing yield gaps: How sustainable can we be? PLoS ONE 2015, 10, e0129487. [Google Scholar] [CrossRef]
- Mauser, W.; Klepper, G.; Zabel, F.; Delzeit, R.; Hank, T.; Putzenlechner, B.; Calzadilla, A. Global biomass production potentials exceed expected future demand without the need for cropland expansion. Nat. Commun. 2015, 6, 8946. [Google Scholar] [CrossRef]
- Wang, X.; Xu, X.; Qiu, S.; Zhao, S.; He, P. Deep tillage enhanced soil organic carbon sequestration in China: A meta-analysis. J. Clean. Prod. 2023, 399, 136686. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, N.; Han, X.; Lal, R.; Huang, T.; Dang, P.; Xue, J.; Qin, X.; Siddique, K.H.M. Effects of straw returning depth on soil organic carbon sequestration and crop yield in China: A meta-analysis. Agric. Ecosyst. Environ. 2025, 393, 109799. [Google Scholar] [CrossRef]
- Ugarte, C.M.; Kwon, H.; Andrews, S.S.; Wander, M.M. A meta-analysis of soil organic matter response to soil management practices: An approach to evaluate conservation indicators. J. Soil Water Conserv. 2014, 69, 422–430. [Google Scholar] [CrossRef]
- Filimonenko, E.; Liu, Z.; Wang, Z.; Shen, Y.; Sushko, S.; Belyanovskaya, A.; Gorbov, S.; Liu, S.; Alotaibi, K.D.; Yang, Q.; et al. Long-term conservation tillage and straw return affect thermal stability of soil organic matter. Sci. Total Environ. 2025, 991, 179934. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Leite, F.F.G.D.; France, C.L.; Adekoya, A.O.; Ros, G.H.; de Vries, W.; Melchor-Martínez, E.M.; Iqbal, H.M.; Parra-Saldívar, R. Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. Sci. Total Environ. 2022, 826, 154161. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.; Ebel, R.; Ueda, K. “No-Till” Farming Is a Growing Practice; United States Department of Agriculture: Washington, DC, USA, 2010. [CrossRef]
- Tian, S.; Ning, T.; Wang, Y.; Liu, Z.; Li, G.; Li, Z.; Lal, R. Crop yield and soil carbon responses to tillage method changes in North China. Soil Tillage Res. 2016, 163, 207–213. [Google Scholar] [CrossRef]
- Scanlan, C.A.; Davies, S.L. Soil mixing and redistribution by strategic deep tillage in a sandy soil. Soil Tillage Res. 2019, 185, 139–145. [Google Scholar] [CrossRef]
- Tang, K.; Wu, C.; Wang, S.; Liao, W.; Yin, L.; Zhou, W.; Cui, H.J. Distribution characteristics of soil organic carbon fractions in paddy profiles with 40 years of fertilization under two groundwater levels. J. Soils Sediments 2024, 24, 681–691. [Google Scholar] [CrossRef]
- Meng, X.; Meng, F.; Chen, P.; Hou, D.; Zheng, E.; Xu, T. A meta-analysis of conservation tillage management effects on soil organic carbon sequestration and soil greenhouse gas flux. Sci. Total Environ. 2024, 954, 176315. [Google Scholar] [CrossRef]
- Xin, J.; Yan, L.; Cai, H. Response of soil organic carbon to straw return in farmland soil in China: A meta-analysis. J. Environ. Manag. 2024, 359, 121051. [Google Scholar] [CrossRef]
- Das, S.; Chatterjee, S.; Rajbanshi, J. Responses of soil organic carbon to conservation practices including climate-smart agriculture in tropical and subtropical regions: A meta-analysis. Sci. Total Environ. 2022, 805, 150428. [Google Scholar] [CrossRef]
- Liu, S.; Wu, B.; Niu, B.; Xu, F.; Yin, L.; Wang, S. Regional suitability assessment for different tillage practices in Northeast China: A machine learning aided meta-analysis. Soil Tillage Res. 2024, 240, 106094. [Google Scholar] [CrossRef]
- Pu, Y.; Yang, L.; Zhang, L.; Huang, H.; Zhang, G.; Zhou, C. Major contributions of agricultural management practices to topsoil organic carbon distribution and accumulation in croplands of East China over three decades. Agric. Ecosyst. Environ. 2024, 359, 108749. [Google Scholar] [CrossRef]
- Mehra, P.; Baker, J.; Sojka, R.E.; Bolan, N.; Desbiolles, J.; Kirkham, M.B.; Ross, C.; Gupta, R. A review of tillage practices and their potential to impact the soil carbon dynamics. Adv. Agron. 2018, 150, 185–230. [Google Scholar] [CrossRef]
- Sauvadet, M.; Lashermes, G.; Alavoine, G.; Recous, S.; Chauvat, M.; Maron, P.A.; Bertrand, I. High carbon use efficiency and low priming effect promote soil C stabilization under reduced tillage. Soil Biol. Biochem. 2018, 123, 64–73. [Google Scholar] [CrossRef]
- Feng, Q.; An, C.J.; Chen, Z.; Wang, Z. Can deep tillage enhance carbon sequestration in soils? A meta-analysis towards GHG mitigation and sustainable agricultural management. Renew. Sustain. Energy Rev. 2020, 133, 110293. [Google Scholar] [CrossRef]
- Dang, C.; Kong, F.; Li, Y.; Jiang, Z.; Xi, M. Soil inorganic carbon dynamic change mediated by anthropogenic activities: An integrated study using meta-analysis and random forest model. Sci. Total Environ. 2022, 835, 155463. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, D.; Ballabio, C.; Lugato, E.; Fasiolo, M.; Jones, A.; Panagos, P. Soil organic carbon stocks in European croplands and grasslands: How much have we lost in the past decade? Glob. Change Biol. 2024, 30, e16992. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, Y. Estimating Field-Scale Soil Organic Matter in Agricultural Soils Using UAV Hyperspectral Imagery. Agriengineering 2025, 7, 339. [Google Scholar] [CrossRef]
- Beisekenov, N.; Banakinaou, W.; David Ajayi, A.; Hasegawa, H.; Tadao, A. Remote sensing-based soil organic carbon monitoring using advanced machine learning techniques under conservation agriculture systems. Smart Agric. Technol. 2025, 11, 101036. [Google Scholar] [CrossRef]
- Song, B.; Wang, M.; Zhang, S.; Zhang, L.; Lu, Y.; Guo, H.; Guo, X.; Zhang, Y.; Zhou, X. Spatial distribution, drivers, and future variation of soil organic carbon in China’s ecosystems: A meta-analysis and machine-learning assessment. Ecol. Indic. 2025, 179, 114255. [Google Scholar] [CrossRef]
- Yan, Y.; Li, H.; Zhang, M.; Liu, X.; Zhang, L.; Wang, Y.; Yang, M.; Cai, R. Straw Return or No Tillage? Comprehensive Meta-Analysis Based on Soil Organic Carbon Contents, Carbon Emissions, and Crop Yields in China. Agronomy 2024, 14, 2263. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, A.; Wang, P.; Shang, Y.; Wang, F.; Lyu, H.; Pang, X.; Li, X.; Liu, Y.; Yin, B.; et al. No-tillage with total green manure mulching can improve soil moisture and temperature environment, promote maize root structure and photosynthetic capacity to increase maize yield. J. Integr. Agric. 2025, 24, 4211–4224. [Google Scholar] [CrossRef]
- Wang, S.; Huang, X.; Zhang, Y.; Yin, C.; Richel, A. The effect of corn straw return on corn production in Northeast China: An integrated regional evaluation with meta-analysis and system dynamics. Resour. Conserv. Recycl. 2021, 167, 105402. [Google Scholar] [CrossRef]
- Xu, X.Z.; Xu, Y.; Chen, S.C.; Xu, S.G.; Zhang, H.W. Soil loss and conservation in the black soil region of Northeast China: A retrospective study. Environ. Sci. Policy 2010, 13, 793–800. [Google Scholar] [CrossRef]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Mader, P.; Stolze, M.; Smith, P.; Scialabba, N.E.H.; et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef] [PubMed]
- Funes, I.; Savè, R.; Rovira, P.; Molowny-Horas, R.; Alcaniz, J.M.; Ascaso, E.; Herms, I.; Herrero, C.; Boixadera, J.; Vayreda, J. Agricultural soil organic carbon stocks in the north-eastern Iberian Peninsula: Drivers and spatial variability. Sci. Total Environ. 2019, 668, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Song, G.H.; Li, L.Q.; Pan, G.X.; Zhang, Q. Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry 2005, 74, 47–62. [Google Scholar] [CrossRef]
- Song, Y.; Li, Z.; Chen, H.; Sun, J.; He, X.; Fu, J.; Zheng, F.; Li, Z. Responses of crop yield and soil quality to organic material application in the black soil region of Northeast China. Soil Tillage Res. 2025, 253, 106690. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Lei, C.; Deng, J.; Cao, K.; Xiao, Y.; Ma, L.; Wang, W.; Ma, T.; Shu, C. A comparison of random forest and support vector machine approaches to predict coal spontaneous combustion in gob. Fuel 2019, 239, 297–311. [Google Scholar] [CrossRef]
- Friedman, J.H.; Meulman, J.J. Multiple additive regression trees with application in epidemiology. Stat. Med. 2003, 22, 1365–1381. [Google Scholar] [CrossRef]
- Bai, X.; Huang, Y.; Ren, W.; Coyne, M.; Jacinthe, P.A.; Tao, B.; Hui, D.; Yang, J.; Matocha, C. Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis. Glob. Change Biol. 2019, 25, 2591–2606. [Google Scholar] [CrossRef]
- Lin, B.; Li, R.; Yang, M.; Kan, Z.; Virk, A.L.; Bohoussou, Y.; Zhao, X.; Dang, Y.P.; Zhang, H. Changes in cropland soil carbon through improved management practices in China: A meta-analysis. J. Environ. Manag. 2023, 329, 117065. [Google Scholar] [CrossRef]
- Huang, T.; Yang, N.; Lu, C.; Qin, X.; Siddique, K.H.M. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil Tillage Res. 2021, 214, 105171. [Google Scholar] [CrossRef]
- Beehler, J.; Fry, J.; Negassa, W.; Kravchenko, A. Impact of cover crop on soil carbon accrual in topographically diverse terrain. J. Soil Water Conserv. 2017, 72, 272–279. [Google Scholar] [CrossRef]
- Chen, H.; Dai, Z.; Veach, A.M.; Zheng, J.; Xu, J.; Schadt, C.W. Global meta-analyses show that conservation tillage practices promote soil fungal and bacterial biomass. Agric. Ecosyst. Environ. 2020, 293, 106841. [Google Scholar] [CrossRef]
- Zheng, F.; Wu, X.; Zhang, M.; Liu, X.; Song, X.; Lu, J.; Wang, B.; van Groenigen, K.J.; Li, S. Linking soil microbial community traits and organic carbon accumulation rate under long-term conservation tillage practices. Soil Tillage Res. 2022, 220, 105360. [Google Scholar] [CrossRef]
- Mu, X.Y.; Zhao, Y.L.; Liu, K.; Ji, B.Y.; Guo, H.B.; Xue, Z.W.; Li, C.H. Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat–maize cropping system on the North China Plain. Europ. J. Agron. 2016, 78, 32–43. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, R.; Cao, H.; Tan, W. Factor contribution to soil organic and inorganic carbon accumulation in the loess plateau: Structural equation modeling. Geoderma 2019, 352, 116–125. [Google Scholar] [CrossRef]
- Liu, W.; Liu, W.; Kan, Z.; Chen, J.; Zhao, X.; Zhang, H. Effects of tillage and straw management on grain yield and SOC storage in a wheat-maize cropping system. Eur. J. Agron. 2022, 137, 126530. [Google Scholar] [CrossRef]
- Qin, W.; Niu, L.; You, Y.; Cui, S.; Chen, C.; Li, Z. Effects of conservation tillage and straw mulching on crop yield, water use efficiency, carbon sequestration and economic benefits in the Loess Plateau region of China: A meta-analysis. Soil Tillage Res. 2024, 238, 106025. [Google Scholar] [CrossRef]
- Georgiou, K.; Jackson, R.B.; Vindušková, O.; Abramoff, R.Z.; Ahlström, A.; Feng, W.; Harden, J.W.; Pellegrini, A.F.A.; Polley, H.W.; Soong, J.L.; et al. Global stocks and capacity of mineral-associated soil organic carbon. Nat. Commun. 2022, 13, 3797. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Khan, A.; Ren, G.; Zaheer, S.; Sial, T.A.; Feng, Y.; Yang, G. Straw mulching with fertilizer nitrogen: An approach for improving crop yield, soil nutrients and enzyme activities. Soil Use Manag. 2019, 35, 526–535. [Google Scholar] [CrossRef]
- Denoncourt, C.; Chantigny, M.H.; Angers, D.A.; Maillard, É.; Halde, C. Animal manure application promotes nitrogen and organic carbon accumulation in soil organic matter fractions: A global meta-analysis. Sci. Total Environ. 2025, 996, 180097. [Google Scholar] [CrossRef]
- Malik, A.A.; Puissant, J.; Buckeridge, K.M.; Goodall, T.; Jehmlich, N.; Chowdhury, S.; Gweon, H.S.; Peyton, J.M.; Mason, K.E.; van Agtmaal, M.; et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 2018, 9, 3591. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, J.; Dǎmǎtîrcǎ, C.; Bölscher, T.; Chenu, C.; Elsgaard, L.; Tebbe, C.C.; Skadell, L.; Poeplau, C. Liming effects on microbial carbon use efficiency and its potential consequences for soil organic carbon stocks. Soil Biol. Biochem. 2024, 191, 109342. [Google Scholar] [CrossRef]
- Liu, L.; Luo, J.; Yu, R.; Tang, H.; Ma, R.; Zhang, X.; Straffelini, E.; Tarolli, P. Soil Conservation Measures Enhanced Soil Organic Carbon Storage Across China. Land Degrad. Dev. 2025, 36, 5382–5392. [Google Scholar] [CrossRef]
- Yost, J.L.; Hartemink, A.E. Soil organic carbon in sandy soils: A review. Adv. Agron. 2019, 158, 217–310. [Google Scholar] [CrossRef]
- Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil. 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Visible and Near Infrared Spectroscopy in Soil Science. Adv. Agron. 2010, 107, 163–215. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, P.; Mei, F.; Ling, Y.; Qiao, Y.; Liu, C.; Leghari, S.J.; Guan, X.; Wang, T. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis. J. Environ. Manag. 2021, 288, 112391. [Google Scholar] [CrossRef]
- Kuhn, N.J.; Hu, Y.; Bloemertz, L.; He, J.; Li, H.; Greenwood, P. Conservation tillage and sustainable intensification of agriculture: Regional vs. global benefit analysis. Agric. Ecosyst. Environ. 2016, 216, 155–165. [Google Scholar] [CrossRef]
- Mondal, S.; Chakraborty, D.; Bandyopadhyay, K.; Aggarwal, P.; Rana, D.S. A global analysis of the impact of zero-tillage on soil physical condition, organic carbon content, and plant root response. Land Degrad. Dev. 2020, 31, 557–567. [Google Scholar] [CrossRef]
- Sheehy, J.; Regina, K.; Alakukku, L.; Six, J. Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in northern european agroecosystems. Soil Tillage Res. 2015, 150, 107–113. [Google Scholar] [CrossRef]
- Fujisaki, K.; Perrin, A.S.; Garric, B.; Balesdent, J.; Brossard, M. Soil organic carbon changes after deforestation and agrosystem establishment in Amazonia: An assessment by diachronic approach. Agric. Ecosyst. Environ. 2017, 245, 63–73. [Google Scholar] [CrossRef]
- Brahma, B.; Pathak, K.; Lal, R.; Kurmi, B.; Das, M.; Nath, P.C.; Nath, A.J.; Das, A.K. Ecosystem carbon sequestration through restoration of degraded lands in Northeast India. Land Degrad. Dev. 2018, 29, 15–25. [Google Scholar] [CrossRef]
- Sommer, R.; Bossio, D. Dynamics and climate change mitigation potential of soil organic carbon sequestration. J. Environ. Manag. 2014, 144, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Schreiner-McGraw, A.P.; Ransom, C.J.; Veum, K.S.; Wood, J.D.; Sudduth, K.A.; Abendroth, L.J. Quantifying the impact of climate smart agricultural practices on soil carbon storage relative to conventional management. Agric. For. Meteorol. 2024, 344, 109812. [Google Scholar] [CrossRef]
- Su, Y.; Yu, M.; Xi, H.; Lv, J.; Ma, Z.; Kou, C.; Shen, A. Soil microbial community shifts with long-term of different straw return in wheat-corn rotation system. Sci. Rep. 2020, 10, 6360. [Google Scholar] [CrossRef]
- Wang, N.; Qiao, Y.; Zhang, Q.; Leng, P.; Li, Z.; Chen, G.; Li, F. Interactive effects of tillage and straw return on crop productivity and soil carbon sequestration in a wheat–maize rotation. Eur. J. Agron. 2026, 172, 127879. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Yao, X.; Yun, W.; Ma, J.; Gao, L.; Li, P. Scenario simulation of the tradeoff between ecological land and farmland in black soil region of Northeast China. Land Use Policy 2022, 114, 105991. [Google Scholar] [CrossRef]
- Xing, S.; Zhang, G.; Chen, S.; Zhang, N.; Wang, C. Response of soil erosion resistance to straw incorporation amount in the black soil region of Northeast China. J. Environ. Manag. 2024, 357, 120801. [Google Scholar] [CrossRef]
- Xing, S.; Zhang, G.; Zhang, N.; Zhang, Y.; Zhang, Y. Effects of straw returning methods on seasonal variation in soil moisture and water storage in Mollisols with different degradation degrees. Agric. Water Manag. 2025, 319, 109796. [Google Scholar] [CrossRef]
- Xing, S.; Zhang, G.; Zhang, N.; Zhang, Y.; Zhang, Y. How straw return approaches affect runoff and sediment in croplands of different degradation degrees in the black soil region of China. J. Hydrol. 2025, 653, 132786. [Google Scholar] [CrossRef]







| Management Practices | Treatment | Tillage Depth and Straw Return | Abbreviation |
|---|---|---|---|
| Tillage | Control treatment | Conventional tillage (with 15–20 cm tillage depth) | CT |
| Experimental treatment | No tillage (with 0 cm tillage depth) | NT | |
| Reduced tillage (with 5–10 cm tillage depth) | RT | ||
| Deep tillage (with 25–40 cm tillage depth) | DT | ||
| Straw return | Control treatment | Without straw return | SR0 |
| Experimental treatment | With straw return | SR |
| Explanatory Factors | Groups |
|---|---|
| MAT (°C) | <3; 3–6; >6 |
| MAP (mm) | <500; 500–600; >600 |
| Soil pH | <6.5; 6.5–7.5; >7.5 |
| BD (g cm−3) | <1.3; 1.3–1.5; >1.5 |
| Soil depth (cm) | <20; 20–40 |
| Initial SOC (g kg−1) | <10; 10–20; 20–30; >30 |
| Soil texture | Sandy; loam; clay |
| Duration (y) | <3; 3–10; >10 |
| Conservation Practices | Soil Depth (cm) | SOC Change (Mg ha−1) | SOC Accumulation Rate (Mg ha−1 yr−1) | ||||
|---|---|---|---|---|---|---|---|
| n | Mean (%) | SE | n | Mean | SE | ||
| CT to NT | 0–20 | 154 | 8.27 | 1.13 | 154 | 0.77 | 0.07 |
| 20–40 | 35 | 0.19 | 2.31 | 35 | 0.03 | 0.04 | |
| CT to RT | 0–20 | 50 | 7.89 | 1.85 | 50 | 1.13 | 0.13 |
| 20–40 | 20 | 9.13 | 4.25 | 20 | 2.19 | 0.32 | |
| CT to DT | 0–20 | 61 | 4.07 | 1.57 | 61 | 0.85 | 0.15 |
| 20–40 | 24 | 7.56 | 2.21 | 24 | 1.87 | 0.28 | |
| SR0 to SR | 0–20 | 380 | 14.92 | 1.42 | 380 | 1.95 | 0.09 |
| 20–40 | 117 | 11.25 | 1.25 | 117 | 1.07 | 0.06 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Long, Y.; Li, C. The Effects of Different Tillage and Straw Return Practices on Soil Organic Carbon Dynamics from 1980 to 2022 in the Mollisol Region of Northeast China. Agronomy 2025, 15, 2594. https://doi.org/10.3390/agronomy15112594
Zhang Y, Long Y, Li C. The Effects of Different Tillage and Straw Return Practices on Soil Organic Carbon Dynamics from 1980 to 2022 in the Mollisol Region of Northeast China. Agronomy. 2025; 15(11):2594. https://doi.org/10.3390/agronomy15112594
Chicago/Turabian StyleZhang, Yue, Yumei Long, and Chengzheng Li. 2025. "The Effects of Different Tillage and Straw Return Practices on Soil Organic Carbon Dynamics from 1980 to 2022 in the Mollisol Region of Northeast China" Agronomy 15, no. 11: 2594. https://doi.org/10.3390/agronomy15112594
APA StyleZhang, Y., Long, Y., & Li, C. (2025). The Effects of Different Tillage and Straw Return Practices on Soil Organic Carbon Dynamics from 1980 to 2022 in the Mollisol Region of Northeast China. Agronomy, 15(11), 2594. https://doi.org/10.3390/agronomy15112594

