Effects of Substituting Organic Fertilizers for Chemical Nitrogen Fertilizers on Physical and Chemical Properties and Maize Yield of Anthropogenic-Alluvial Soil
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Test Materials
2.3. Experimental Details
2.4. Determined Indicators and Methods
2.4.1. Determination of Soil’s Physical and Chemical Properties
2.4.2. Determination of Maize Yield
2.4.3. Calculation of Related Indicators
2.5. Statistical Analysis
3. Results
3.1. Effects of Substituting Organic Fertilizers for Chemical Nitrogen Fertilizers on Soil’s Physical and Chemical Properties
3.2. Effects of Substituting Organic Fertilizers for Chemical Nitrogen Fertilizers on SQI
3.3. Effects of Substituting Organic Fertilizers for Chemical Nitrogen Fertilizers on Yield
3.4. Analysis of the Effects of Soil’s Physical and Chemical Properties on Yield
3.5. Recommended Optimal Proportion for Substituting Organic Fertilizer Nitrogen
4. Discussion
4.1. Effects of Substituting Organic Fertilizers for Chemical Nitrogen Fertilizers on Soil’s Physical Properties
4.2. Effects of Substituting Organic Fertilizers for Chemical Nitrogen Fertilizers on Soil Chemical Properties
4.3. Effects of Substituting Organic Fertilizers for Chemical Nitrogen Fertilizers on SQI and Yield
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, L.L.; Yang, H.; Yu, D.S.; Zhang, H.D.; Shi, X.Z. Effect of irrigation with water diverted from the Yellow River on carbon sequestration in soils of different Types in Ningxia irrigation zone. Acta Pedol. Sin. 2011, 48, 922–930. [Google Scholar]
- Zhao, Y.; Lu, X.T.; Mao, X.P.; Luo, J.H.; Ke, Y.; Zhang, X.J. Distribution characteristics of available nitrogen and phosphorus in the aggregates of sediment and the irrigation silting soils in Ningxia section of the Yellow River. Soil Fertil. Sci. China 2023, 4, 34–39. [Google Scholar]
- Xu, M.G.; Zhang, X.B.; Sun, N.; Zhang, W.J. Advance in research of synergistic effects of soil carbon sequestration on crop yields improvement in croplands. J. Plant Nutr. Fertil. 2017, 23, 1441–1449. [Google Scholar]
- Li, L.; Si, H.L.; Zhu, Z.M. Effeet of substitute of chemical fertilizer N with organic Manure N on N utilization efficiency in maize and soil physicochemical indexes in saline alkali land. Acta Agric. Boreali-Occident. Sin. 2023, 32, 1068–1077. [Google Scholar]
- Ji, J.D. Publishing Information of Doctoral Electronic Journals. Ph.D. Thesis, Ningxia University, Yinchuan, China, 2024; p. 286. [Google Scholar]
- Zhang, S.T.; Lu, J.W.; Zhu, Y.; Fang, Y.T.; Cong, R.H.; Li, X.K.; Ren, T. Rapeseed as a previous crop reduces rice N fertilizer input by improving soil fertility. Field Crops Res. 2022, 281, 108–487. [Google Scholar] [CrossRef]
- Luo, C.; Zang, X.L.; Meng, X.T.; Zhu, H.W.; Ni, C.P.; Chen, M.H.; Liu, H.J. Regional mapping of soil organic matter content using multitemporal synthetic Landsat 8 images in google earth engine. Catena 2022, 209, 105–842. [Google Scholar] [CrossRef]
- Dong, L.B.; Li, J.W.; Zhang, Y.; Bing, M.Y.; Liu, Y.L.; Wu, J.Z.; Hai, X.Y.; Li, A.; Wang, K.B.; Wu, P.X. Effects of vegetation restoration types on soil nutrients and soil erodibility regulated by slope positions on the Loess Plateau. J. Environ. Manag. 2022, 302, 113–985. [Google Scholar] [CrossRef]
- Wang, M.G.; Geng, R.; Cui, Y.; Wang, X.M.; Ding, Y.S.; Li, Z.G.; Wang, X.Y.; Zhang, Z.S. Current situation, existing problems and development ideas of manure utilization of livestock and poultry in Ningxia. Mod. Anim. Husb. Sci. Technol. 2024, 108, 113–117. [Google Scholar]
- Zhao, F.J. Long-term experiments at rothamsted experimental station: Introduction and experience. J. Nanjing Agric. Univ. 2012, 35, 147–153. [Google Scholar]
- Liao, C.L.; Li, L.N.; Xie, L.H.; Sun, Y.X.; Zou, Y.; Dai, Q.; Yin, L.C. Effect of increased or decreased application of organic manure on aggregates stability and soil cement in red paddy soil. Acta Pedol. Sin. 2021, 58, 978–988. [Google Scholar]
- Xie, L.J.; Wang, B.R.; Xu, M.G.; Peng, C.; Liu, H. Changes of soil organic carbon storage under long-term fertilization in black and grey-desert soils. Plant Nutr. Fertil. Sci. 2012, 18, 98–105. [Google Scholar]
- Li, J.; Li, Q.H.; Li, P.R.; Wang, L.L.; Yang, X.Y.; Zhang, S.L. Effects of long-term organic inputs on distribution of aggregate size and its organic carbon content on Lou soil. Chin. J. Soil Sci. 2012, 43, 1456–1460. [Google Scholar]
- Liang, L.; Ma, C.; Zhang, R.; Zhai, B.N.; Li, Z.Y.; Wang, C.H. Improvement of soil nutrient availability and enzyme activities in rainfed wheat field by combined application of organic and inorganic fertilizers. J. Plant Nutr. Fertil. 2019, 25, 544–554. [Google Scholar]
- Zhang, Z.W.; Li, H.Y.; Fu, Q.; Shi, H.B.; Liu, D.P. Effects of combined application of chemical and organic fertilizers on soil salinity and corn water and fertilizer utilization in Hetao irrigation district. J. Basic Sci. Eng. 2023, 31, 1170–1182. [Google Scholar]
- Zhou, H.; Shi, H.B.; Zhang, W.C.; Wang, W.G.; Su, Y.D.; Yan, Y. Evaluation of organic inorganic nitrogen application on maize yield and nitrogen leaching by DNDC Mode. Trans. Chin. Soc. Agric. Mach. 2021, 52, 291–301. [Google Scholar]
- Fei, C. Effects of organic fertilizer replacing chemical fertilizer on nutrient absorption-utilization and yield of rain-fed maize in arid region. J. Nucl. Agric. Sci. 2024, 38, 1355–1364. [Google Scholar]
- NY/T 525-2021; Organic Fertilizer. China Agriculture Press: Beijing, China, 2021.
- NY/T 3442-2019; Technical Specification for Composting of Livestock and Poultry Manure. China Agriculture Press: Beijing, China, 2019.
- Xu, M.G.; Zhang, W.J.; Huang, S.M. Evolution of Soil Fertility in China, 2nd ed.; China Agricultural Science and Technology Press: Beijing, China, 2014. [Google Scholar]
- Bao, S.D. Soil Agrochemical Analysis, 3rd ed.; Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Fan, L.Q.; Yang, J.G.; Xu, X.; Sun, Z.J. Salinity characteristics of soil and correlation of saline-alkali soil in Ningxia irrigation district. Chin. Agric. Sci. Bull. 2012, 28, 221–225. [Google Scholar]
- Ma, R.; Zhu, X.Z.; Tian, Z.Y.; Qu, L.L.; He, Y.Z.; Liang, Y. Spatial distribution and scale specific controls of soil water-stable aggregates in southeastern China. J. Clean. Prod. 2022, 369, 133–305. [Google Scholar] [CrossRef]
- Gazette of the Ministry of Agriculture of the People’s Republic of China. Notice of the General Office of the Ministry of Agriculture of the People ‘s Republic of China on Printing and Issuing the Acceptance Measures for the Establishment of High Yield of Oilseeds (Trial); Gazette of the Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2008; pp. 38–41.
- Cheng, F.; Zhang, H.Y.; Song, J.S.; Yu, R.; Zhang, X.; Li, H.R.; Wang, J.; Kan, Z.R.; Li, Y.Y. Once-middle amount of straw interlayer enhances saline soil quality and sunflower yield in semi-arid regions of China: Evidence from a four-year experiment. J. Environ. Manag. 2023, 344, 118–530. [Google Scholar] [CrossRef] [PubMed]
- Li, P.F.; Zhang, X.C.; Hap, M.D.; Zhang, Y.J.; Cui, Y.X.; Zhu, S.L. Soil quality evaluation for reclamation of mimime area on loess Plateau based on minimum. Trans. Chin. Soc. Agric. Eng. 2019, 35, 265–273. [Google Scholar]
- Tian, S.Y.; Zhu, B.J.; Yin, R.; Wang, M.W.; Jiang, Y.J.; Zhang, C.Z.; Li, D.M.; Chen, X.J.; Kardol, P.; Liu, M.Q. Organic fertilization promotes crop productivity through changes in soil aggregation. Soil Biol. Biochem. 2022, 165, 108–533. [Google Scholar] [CrossRef]
- Ren, L.J.; Yang, H.; Li, J.; Zhang, N.; Han, Y.Y.; Zou, H.T.; Zhang, Y.L. Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon. J. Integr. Agric. 2025, 24, 306–321. [Google Scholar] [CrossRef]
- Mangalassery, S.; Kalaivanan, D.; Philip, P.S. Effect of inorganic fertilisers and organic amendments on soil aggregation and biochemical characteristics in a weathered tropical soil. Soil Tillage Res. 2019, 187, 144–151. [Google Scholar] [CrossRef]
- Zhou, H.; Peng, X.H.; Edmund, P.; Xiao, T.P.; Peng, G.Y. Effects of organic and inorganic fertilization on soil aggregation in an ultisol as characterized by synchrotron based X-ray micro-computed tomography. Geoderma 2013, 195, 23–30. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, J.S.; Yao, R.J.; Gao, S.; Cao, Y.F.; Sun, Y.P. Effects of partial substitution of organic nitrogen for inorganic nitrogen in fertilization on salinity and nitrogen utilization in salinized coastal soily. Chin. J. Eco-Agric. 2019, 27, 441–450. [Google Scholar]
- Xiao, H.; Pan, J.; Cheng, W.J.; Wang, L.Y. Effect of organic fertilizer on soil salt accumulation and pH changes in greenhouse. Chin. Agric. Sci. Bull. 2014, 30, 248–252. [Google Scholar]
- Zhang, J.; Guo JHLi, Y.H.; Li, S.; Xiao, H.S.; Huang, H.; Jian, P.P.; Wu, J.Z.; Wang, R.R.; Shaaban, M. Organic fertilizer substituting 20% chemical N increases wheat productivity and soil fertility but reduces soil nitrate-N residue in drought-prone regions. Front. Plant Sci. 2024, 15, 137–485. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.Y.; Zhang, H.; Lian, J.S.; Zhan, W.; Li, G.H.; Zhang, J.F. Combined application of organic fertilizer with microbial inoculum improved aggregate formation and salt leaching in a secondary salinized soil. Plants 2023, 12, 2945. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.M.; Zhang, S.R.; Liu, L.; Liu, J.G.; Ding, X.D. Organic fertilization increased soil organic carbon stability and sequestration by improving aggregate stability and iron oxide transformation in saline-alkaline soil. Plant Soil 2022, 474, 233–249. [Google Scholar] [CrossRef]
- Cui, J.W.; Yang, B.G.; Zhang, M.L.; Song, D.L.; Xu, X.P.; Ai, C.; Liang, G.Q.; Zhou, W. Investigating the effects of organic amendments on soil microbial composition and its linkage to soil organic carbon: A global meta-analysis. Sci. Total Environ. 2023, 894, 164–899. [Google Scholar] [CrossRef]
- Yan, Z.X.; Zhang, W.Y.; Wang, Q.S.; Liu, E.K.; Sun, D.B.; Liu, B.H.; Liu, X.; Mei, X.R. Changes in soil organic carbon stocks from reducing irrigation can be offset by applying organic fertilizer in the North China Plain. Agric. Water Manag. 2022, 266, 107–539. [Google Scholar] [CrossRef]
- Chen, L.; Hao, M.D.; Zhang, S.M.; Fan, H.L. Effects of long-term application of fertilizer on wheat nutrient uptake and soil fertility in Loess Plateau. Plant Nutr. Fertil. Sci. 2007, 13, 230–235. [Google Scholar]
- He, H.; Peng, M.G.; Ru, S.B.; Hou, Z.N.; Li, J.H. A suitable organic fertilizer substitution ratio could improve maize yield and soil fertility with low pollution risk. Front. Plant Sci. 2022, 13, 663–988. [Google Scholar] [CrossRef]
- Du, T.Y.; Hu, Q.F.; He, H.Y.; Mao, W.J.; Yang, Z.; Chen, H.; Sun, L.N.; Zhai, M.Z. Long-term organic fertilizer and biofertilizer application strengthens the associations between soil quality index, network complexity, and walnut yield. Eur. J. Soil Biol. 2023, 116, 103–492. [Google Scholar] [CrossRef]
- Wang, X.Y.; Huang, H.X.; Ju, L.M.; Tang, Y.Z.; Zhu, X.M.; Li, J.; Qiao, Y.H. Effects of different fertilizer inputs on the soil quality in organic vegetable fields. J. China Agric. Univ. 2024, 29, 197–205. [Google Scholar]
- Ma, Q.; Liu, M.; Zhou, Y.L.; Ye, C.Y.; Yang, P.P.; Li, S.X.; Wang, L.C. The Effect of biochar combined with organic and inorganic fertilizers on soil biological characteristics and quality. J. Southwest Univ. Nat. Sci. Ed. 2024, 46, 115–126. [Google Scholar]
- Li, X.; Zhang, W.J.; Wu, L.; Ren, Y.; Zhang, J.D.; Xu, M.G. Advance in indicator screening and methodologies of soil quality evaluation. Sci. Agric. Sin. 2021, 54, 3043–3056. [Google Scholar]
- Xie, L.H.; Li, L.L.; Xie, J.H.; Wang, J.B.; Zhou, Y.L.; Chen, Q.; Setorkwami, F. Effects of substitution of chemical fertilizer by organic fertilizer on maize growth and field carbon emission in dry farming area of Longzhong, Gansu Province. J. Plant Nutr. Fertil. 2022, 28, 1029–1038. [Google Scholar]
- Bai, C.S.; Fan, H.; Li, B.; Cheng, B.Y.; Wang, Y.; Yin, W.; Hu, F.L.; Gan, Z.L.; Zhao, C. Effects of equal nitrogen organic fertilizer substitution of chemical fertilizer on photosynthetic characteristics and quality of waxy maize in oasis irrigation areas. Agric. Res. Arid Areas 2024, 42, 121–130. [Google Scholar]
- Li, Q.; Gao, J.C.; Zhu, P.; Gao, H.J.; Zhang, X.Z.; Peng, C.; Jiao, Y.F.; Wu, J.N.; Xu, L.Y.; Mu, J. Effects of organic substitution of chemical fertilizer on soil fertility of black soil-based on 30 years long-term fertilization experiment. Soil Fertil. Sci. China 2023, 9, 28–33. [Google Scholar]









| Soil Layer (cm) | Mechanical Composition/mm (%) | Bulk Density (g cm−3) | Water Stable Aggregate Content/mm (%) | ||||
|---|---|---|---|---|---|---|---|
| Sand 0.02~2 | Silt 0.02~0.002 | Clay <0.002 | >2 | 0.25~2 | <0.25 | ||
| 0~20 | 11.30 ± 1.80 a | 59.40 ± 1.21 a | 29.30 ± 0.70 a | 1.35 ± 0.02 a | 3.23 ± 1.32 a | 34.32 ± 3.44 a | 62.45 ± 4.75 b |
| 20~40 | 13.57 ± 1.82 a | 56.53 ± 1.77 a | 29.9 ± 0.10 a | 1.38 ± 0.08 a | 1.12 ± 0.07 b | 29.85 ± 2.23 ab | 69.03 ± 2.3 ab |
| 40~60 | 10.77 ± 1.16 a | 58.63 ± 1.38 a | 30.6 ± 1.80 a | 1.32 ± 0.14 a | 1.05 ± 0.16 b | 24.7 ± 1.25 b | 74.25 ± 1.31 a |
| Soil Layer (cm) | Organic Matter (g kg−1) | Available Nitrogen (mg kg−1) | Available Phosphorus (mg kg−1) | Available Potassium (mg kg−1) | pH | Total Salt (g kg−1) |
|---|---|---|---|---|---|---|
| 0~20 | 15.37 ± 0.48 a | 36.50 ± 0.64 a | 23.23 ± 0.42 a | 135.67 ± 5.73 a | 8.20 ± 0.06 a | 0.50 ± 0.01 a |
| 20~40 | 10.86 ± 0.62 b | 31.19 ± 0.23 b | 26.20 ± 0.46 a | 153.33 ± 1.83 a | 8.21 ± 0.13 a | 0.47 ± 0.02 a |
| 40~60 | 8.06 ± 0.10 c | 19.55 ± 1.01 c | 25.60 ± 0.58 a | 149.33 ± 2.87 a | 8.18 ± 0.21 a | 0.47 ± 0.05 a |
| Treatments | Fertilization Measure | Organic Fertilizer Amount | Organic Fertilizer N | Chemical Fertilizer Application | ||
|---|---|---|---|---|---|---|
| N | P2O5 | K2O | ||||
| CK | 100% chemical nitrogen | 0 | 0 | 450 | 150 | 75 |
| T1 | 15% organic fertilizer nitrogen + 85% chemical fertilizer nitrogen | 3375 | 67.5 | 382.5 | 150 | 75 |
| T2 | 30% organic fertilizer nitrogen + 70% chemical fertilizer nitrogen | 6750 | 135 | 315 | 150 | 75 |
| T3 | 45% organic fertilizer nitrogen + 55% chemical fertilizer nitrogen | 10,125 | 202.5 | 247.5 | 150 | 75 |
| T4 | 100% organic fertilizer nitrogen | 22,500 | 450 | 0 | 150 | 75 |
| Indexes | 2021 | 2022 | 2023 | 2024 | ||||
|---|---|---|---|---|---|---|---|---|
| Communality | Weight | Communality | Weight | Communality | Weight | Communality | Weight | |
| pH | 0.997 | 0.087 | 0.858 | 0.076 | 0.643 | 0.059 | 0.861 | 0.076 |
| TS | 0.958 | 0.084 | 1.000 | 0.088 | 0.998 | 0.092 | 0.969 | 0.085 |
| OM | 0.975 | 0.085 | 0.845 | 0.075 | 0.923 | 0.085 | 0.971 | 0.086 |
| AN | 1.000 | 0.087 | 0.94 | 0.083 | 0.985 | 0.091 | 0.971 | 0.086 |
| AP | 0.797 | 0.069 | 0.995 | 0.088 | 0.813 | 0.075 | 0.881 | 0.078 |
| AK | 0.989 | 0.086 | 0.836 | 0.074 | 0.987 | 0.091 | 0.978 | 0.086 |
| BD | 0.779 | 0.068 | 0.887 | 0.078 | 0.57 | 0.053 | 0.982 | 0.087 |
| R>2 | 0.998 | 0.087 | 1.000 | 0.088 | 0.944 | 0.087 | 0.964 | 0.085 |
| R0.25–2 | 0.995 | 0.087 | 0.983 | 0.087 | 0.995 | 0.092 | 0.903 | 0.08 |
| R<0.25 | 0.996 | 0.087 | 0.984 | 0.087 | 0.991 | 0.092 | 0.933 | 0.082 |
| MWD | 1.000 | 0.087 | 0.992 | 0.088 | 0.963 | 0.089 | 0.996 | 0.088 |
| GMD | 0.985 | 0.086 | 0.986 | 0.087 | 1.000 | 0.092 | 0.931 | 0.082 |
| Target Value | Mean Value | Standard Deviation | Coefficient of Variation (%) | Weight (%) |
|---|---|---|---|---|
| SQI | 0.61 | 0.05 | 8.68 | 28.64 |
| Yield | 10,114.927 | 2188.84 | 21.64 | 71.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Li, L.; Tang, S.; Si, H.; Xie, H.; Zhu, Z.; Ji, L.; Wang, R.; Gao, Z.; Tian, B. Effects of Substituting Organic Fertilizers for Chemical Nitrogen Fertilizers on Physical and Chemical Properties and Maize Yield of Anthropogenic-Alluvial Soil. Agronomy 2025, 15, 2581. https://doi.org/10.3390/agronomy15112581
Wang S, Li L, Tang S, Si H, Xie H, Zhu Z, Ji L, Wang R, Gao Z, Tian B. Effects of Substituting Organic Fertilizers for Chemical Nitrogen Fertilizers on Physical and Chemical Properties and Maize Yield of Anthropogenic-Alluvial Soil. Agronomy. 2025; 15(11):2581. https://doi.org/10.3390/agronomy15112581
Chicago/Turabian StyleWang, Shengbo, Lei Li, Shuting Tang, Haili Si, Haojun Xie, Zhiming Zhu, Lidong Ji, Rui Wang, Zongyuan Gao, and Bo Tian. 2025. "Effects of Substituting Organic Fertilizers for Chemical Nitrogen Fertilizers on Physical and Chemical Properties and Maize Yield of Anthropogenic-Alluvial Soil" Agronomy 15, no. 11: 2581. https://doi.org/10.3390/agronomy15112581
APA StyleWang, S., Li, L., Tang, S., Si, H., Xie, H., Zhu, Z., Ji, L., Wang, R., Gao, Z., & Tian, B. (2025). Effects of Substituting Organic Fertilizers for Chemical Nitrogen Fertilizers on Physical and Chemical Properties and Maize Yield of Anthropogenic-Alluvial Soil. Agronomy, 15(11), 2581. https://doi.org/10.3390/agronomy15112581
