Research on a Prediction Model for Northern Cold Climate Millet Yield per Unit Area Based on IWOA-BP
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Data Analysis
2.2.1. Data Overview and Basic Statistics
2.2.2. Correlation Analysis
2.3. Establishment of the Prediction Model
2.3.1. BP Neural Network
2.3.2. IWOA-BP Model
2.4. Experimental Setup
2.4.1. Experimental Environment and Metrics
2.4.2. Model Comparison Simulation Experiments
2.4.3. Predictive Capability Validation
3. Results and Discussion
3.1. Analysis of Model Comparison Simulation Results
3.2. Analysis of Prediction Capability Validation Test Results
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiao, J.; Li, G.; Liu, M.; Zhang, T.; Wen, Y.; Wang, J.; Ren, J.; Du, H.; Hu, C.; Dong, S. Effects of Different Planting Patterns on Growth and yielld Components of Millet. Agronomy 2025, 15, 840. [Google Scholar] [CrossRef]
- Kong, F.; Gao, Y.; Li, T.; Fu, Q.; Liu, D.; Su, Z.; Shen, W.; Wang, J.; Zhou, W.; Wang, Y. Effects of Freeze–Thaw Cycles and the soil moisture content on Carbon and Nitrogen Changes in Different Soil Types of Heilongjiang Province, China. Soil Use Manag. 2023, 39, 1453–1466. [Google Scholar] [CrossRef]
- Li, H.; Geng, J.; Liu, Z.; Ao, H.; Wang, Z.; Xue, Q. Mulching Improves the yielld and Water Use Efficiency of Millet in Northern China: A Meta-Analysis. Agriculture 2025, 15, 397. [Google Scholar] [CrossRef]
- Terfa, G.N.; Pan, W.; Hu, L.; Hao, J.; Zhao, Q.; Jia, Y.; Nie, X. Mechanisms of Salt and Drought Stress Responses in Millet. Plants 2025, 14, 1215. [Google Scholar] [CrossRef]
- Kumar, K.; Parihar, C.M.; Nayak, H.S.; Sena, D.R.; Godara, S.; Dhakar, R.; Patra, K.; Sarkar, A.; Bharadwaj, S.; Ghasal, P.C.; et al. Modelling Maize Growth and Nitrogen Dynamics Using CERES-Maize (DSSAT) under Diverse Nitrogen Management Options in a Conservation Agriculture-Based Maize–Wheat System. Sci. Rep. 2024, 14, 11743. [Google Scholar] [CrossRef]
- Panek-Chwastyk, E.; Ozbilge, C.N.; Dąbrowska-Zielińska, K.; Gurdak, R. Advancing Crop yielld Predictions: AQUACROP Model Application in Poland’s JECAM Fields. Agronomy 2024, 14, 854. [Google Scholar] [CrossRef]
- Singh, J.; Singh, S.P.; Kaur Kingra, P.; Biswas, B.; Kaur, V.; Singh, J. Comparative Evaluation of CERES-Maize, WOFOST-Maize, and Ensemble of Models for Predicting Maize Phenology, Growth, and Grain yielld. Commun. Soil Sci. Plant Anal. 2025, 56, 1356–1380. [Google Scholar] [CrossRef]
- Naqvi, S.M.Z.A.; Tahir, M.N.; Shah, G.A.; Sattar, R.S.; Awais, M. Remote Estimation of Wheat yielld Based on Vegetation Indices Derived from Time Series Data of Landsat-8 Imagery. Appl. Ecol. Environ. Res. 2019, 17, 3909–3925. [Google Scholar] [CrossRef]
- Segarra, J.; González-Torralba, J.; Aranjuelo, Í.; Araus, J.L.; Kefauver, S.C. Estimating Wheat Grain yielld Using Sentinel-2 Imagery and Exploring Topographic Features and Rainfall Effects on Wheat Performance in Navarre, Spain. Remote Sens. 2020, 12, 2278. [Google Scholar] [CrossRef]
- Khaki, S.; Wang, L. Crop yielld Prediction Using Deep neural networks. Front. Plant Sci. 2019, 10, 621. [Google Scholar] [CrossRef] [PubMed]
- Khaki, S.; Wang, L.; Archontoulis, S.V. A CNN–RNN Framework for Crop yielld Prediction. Front. Plant Sci. 2019, 10, 1750. [Google Scholar] [CrossRef]
- Sun, J.; Di, L.; Sun, Z.; Shen, Y.; Lai, Z. County-Level Soybean yielld Prediction Using Deep CNN–LSTM Model. Sensors 2019, 19, 4363. [Google Scholar] [CrossRef]
- Xue, P.; Zhang, M.; Wang, K.; Feng, D.; Liu, H.; Liang, C.; Jiao, F.; Gong, H.; Xu, X.; Wang, Z. How Hydrothermal Factors and CO2 Concentration Affect Vegetation Carbon Sink over Time and Elevation Gradient. J. Clean. Prod. 2024, 449, 141800. [Google Scholar] [CrossRef]
- Khan, T.; Azad, A.A.; Islam, R.U. Millets: A Comprehensive Review of Nutritional, Antinutritional, Health, and Processing Aspects. J. Food Compos. Anal. 2025, 141, 107364. [Google Scholar] [CrossRef]
- Macdonald, J.A.; Barnard, D.M.; Mankin, K.R.; Miner, G.L.; Erskine, R.H.; Poss, D.J.; Mehan, S.; Mahood, A.L.; Mikha, M.M. Topographic Position Index Predicts Within-Field Yield Variation in a Dryland Cereal Production System. Agronomy 2025, 15, 1304. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, X.; Ruan, L.; Xu, Y.; Li, K. Molecular Analyses of the Tubby-Like Protein Gene Family and Their Response to Salt and High Temperature in Millet (Setaria italica). Funct. Integr. Genomics 2024, 24, 170. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Liu, Z.; Han, Y.; Zhang, D.; Zhao, X.; Li, J.; Wang, K. Using the Pearson’s Correlation Coefficient as the Sole Metric to Measure the Accuracy of Quantitative Trait Prediction: Is It Sufficient? Front. Plant Sci. 2024, 15, 1480463. [Google Scholar] [CrossRef]
- Bocianowski, J.; Wrońska-Pilarek, D.; Krysztofiak-Kaniewska, A.; Matusiak, K.; Wiatrowska, B. Comparison of Pearson’s and Spearman’s Correlation Coefficients for Selected Traits of Pinus sylvestris L. Biometrical Lett. 2024, 61, 115–135. [Google Scholar] [CrossRef]
- Xiao, R.; Liu, W.; Kong, D. Failure Criterion and Seismic Fragility Evaluation of Isolated Nuclear Power Plant Piping System Using BP neural network. Eng. Fail. Anal. 2024, 165, 108790. [Google Scholar] [CrossRef]
- Jiang, Q.; Rong, M.; Wei, W.; Chen, T. A Quantitative Seismic Topographic Effect Prediction Method Based upon BP neural network Algorithm and FEM Simulation. J. Earth Sci. 2024, 35, 1355–1366. [Google Scholar] [CrossRef]
- Hoang, D.T.; Jo, J.; Periwal, V. Data-Driven Inference of Hidden Nodes in Networks. Phys. Rev. E 2019, 99, 042114. [Google Scholar] [CrossRef]
- Ramamohan, V.; Singhal, S.; Gupta, A.R.; Bolia, N.B. Discrete Simulation Optimisation for Tuning Machine Learning Method Hyperparameters. J. Simul. 2024, 18, 745–765. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Benatti, K.A.; Pedroso, L.G.; Ribeiro, A.A. Fuzzy Clustering with Capacity Constraints: Algorithm, Convergence Analysis and Numerical Experiments. Expert Syst. Appl. 2024, 258, 125191. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, W.; Zhang, G.; Zhang, T. Quantum Encoding Whale Optimisation Algorithm for Global Optimisation and Adaptive Infinite Impulse Response System Identification. Artif. Intell. Rev. 2025, 58, 158. [Google Scholar] [CrossRef]
- Han, Y.; Yu, Y.; Li, K. Adaptive Inertia Weights: An Effective Approach to Enhance Parameter Estimation of the Hidden Layer in Stochastic Configuration Networks. Int. J. Mach. Learn. Cybern. 2025, 16, 2203–2218. [Google Scholar] [CrossRef]
- Chen, K.; Chen, L.; Hu, G. PSO-Incorporated Hybrid Artificial Hummingbird Algorithm with Elite Opposition-Based Learning and Cauchy Mutation: A Case Study of Shape Optimisation for CSGC–Ball Curves. Biomimetics 2023, 8, 377. [Google Scholar] [CrossRef]
- Hodson, T. Root-Mean-Square Error (RMSE) or Mean Absolute Error (MAE): When to Use Them or Not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Ye, J.; Scott, J.K.; Butenko, S. Modification and Improved Implementation of the RPD Method for Computing State Relaxations for Global Dynamic Optimisation. J. Glob. Optim. 2024, 89, 833–861. [Google Scholar] [CrossRef]
- Mena, F.; Pathak, D.; Najjar, H.; Sanchez, C.; Helber, P.; Bischke, B.; Habelitz, P.; Miranda, M.; Siddamsetty, J.; Nuske, M.; et al. Adaptive Fusion of Multi-Modal Remote Sensing Data for Optimal Sub-Field Crop yielld Prediction. Remote Sens. Environ. 2025, 318, 114547. [Google Scholar] [CrossRef]
- Raza, A.; Shahid, M.A.; Zaman, M.; Miao, Y.; Huang, Y.; Safdar, M.; Maqbool, S.; Muhammad, N.E. Improving Wheat yielld Prediction with Multi-Source Remote Sensing Data and Machine Learning in Arid Regions. Remote Sens. 2025, 17, 774. [Google Scholar] [CrossRef]
- Ashfaq, M.; Khan, I.; Afzal, R.F.; Shah, D.; Ali, S.; Tahir, M. Enhanced Wheat yielld Prediction through Integrated Climate and Satellite Data Using Advanced AI Techniques. Sci. Rep. 2025, 15, 18093. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Hua, Z.; Li, L.; Huo, X.; Zhao, Z. Multi-Source Information Fusion-Driven Maize yielld Prediction Using the Random Forest from the Perspective of Agricultural and Forestry Economic Management. Sci. Rep. 2024, 14, 4052. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Yu, F.; Zhang, N.; Zhang, X.; Li, Y.; Wang, M.; Zhang, J. Progress in Research on Deep Learning-Based Crop yielld Prediction. Agronomy 2024, 14, 2264. [Google Scholar] [CrossRef]
- Alshihabi, O.; Persson, K.; Söderström, M. Easy yielld Mapping for Precision Agriculture. Acta Agric. Scand. Sect. B Soil Plant Sci. 2024, 74, 2411950. [Google Scholar] [CrossRef]













| Variable | Maximum | Minimum | Mean | Standard Deviation— Sample | Median | Upper Quartile | Lower Quartile | Skewness | Kurtosis |
|---|---|---|---|---|---|---|---|---|---|
| X1 (°C) | 40 | −8 | 21.06 | 13.25 | 25 | 33 | 10.5 | −0.53 | 1.87 |
| X2 (°C) | 20 | −34 | −5.44 | 15.49 | −4 | 8 | −21 | −0.06 | 1.64 |
| X3 (°C) | 27 | −18 | 7.20 | 14.00 | 9 | 19.5 | −6 | −0.24 | 1.65 |
| X4 (°C) | 39 | −10 | 19.14 | 13.5 | 23 | 31 | 8 | −0.54 | 1.89 |
| X5 (°C) | 24 | −37 | −7.33 | 15.70 | −6 | 6 | 23 | −0.06 | 1.66 |
| X6 (°C) | 26 | −21 | 5.29 | 14.428 | 7.5 | 18 | −9 | −0.26 | 1.66 |
| X7 (mm) | 921 | 0 | 101.39 | 143.03 | 32.45 | 147.1 | 4.65 | 1.88 | 6.76 |
| X8 (m3 m−3) | 939.4 | 393.2 | 597.02 | 94.69 | 591.55 | 650.75 | 531.15 | 0.57 | 3.66 |
| Y | 431 | 369 | 387.36 | 11.39 | 388 | 393 | 379 | 0.91 | 5.63 |
| Model | RMSE | R2 | MAE | MAPE | RPD |
|---|---|---|---|---|---|
| BP | 6.56 | 0.66 | 5.10 | 1.31 | 1.74 |
| WOA-BP | 4.31 | 0.85 | 3.49 | 0.90 | 2.65 |
| IWOA-BP | 2.74 | 0.94 | 2.27 | 0.59 | 4.16 |
| Algorithm | Optimal Fitness | Steady-State Generations | Optimal Generations | H | lr | reg |
|---|---|---|---|---|---|---|
| WOA | 4.31 | 9 | 96 | 20.3 | 0.020 | 0.024 |
| IWOA | 2.74 | 10 | 95 | 19.9 | 0.185 | 0.021 |
| Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|---|
| MAE | 5.1 | 4.5 | 3.9 | 3.4 | 3.0 | 2.7 | 2.5 | 2.3 |
| MAPE | 1.31 | 1.12 | 0.99 | 0.89 | 0.77 | 0.70 | 0.63 | 0.57 |
| Region | RMSE | RMSE SD | R2 | R2 SD | MAE | MAE SD | MAPE | MAPE SD | RPD | RPD SD | August AE | August MAPE |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Zhaozhou | 2.72 | 0.46 | 0.84 | 0.84 | 2.21 | 0.42 | 0.52 | 1.1% | 3.00 | 0.30 | 2.1 | 0.49 |
| Zhaoyuan | 2.95 | 0.50 | 0.81 | 0.81 | 2.41 | 0.48 | 0.59 | 1.3% | 2.82 | 0.28 | 2.6 | 0.62 |
| Anda | 2.50 | 0.43 | 0.86 | 0.86 | 2.05 | 0.38 | 0.48 | 1.0% | 3.18 | 0.32 | 2.0 | 0.45 |
| Lanxi | 3.18 | 0.54 | 0.78 | 0.78 | 2.73 | 0.62 | 0.72 | 1.6% | 2.55 | 0.26 | 3.3 | 0.78 |
| Wangkui | 2.88 | 0.49 | 0.82 | 0.82 | 2.34 | 0.44 | 0.56 | 1.2% | 2.90 | 0.29 | 2.4 | 0.55 |
| Founder | 3.05 | 0.52 | 0.78 | 0.78 | 2.62 | 0.55 | 0.65 | 1.4% | 2.50 | 0.25 | 2.7 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Chen, Y.; Ma, P.; Wang, S.; Yi, S.; Huang, Z.; Zhao, B. Research on a Prediction Model for Northern Cold Climate Millet Yield per Unit Area Based on IWOA-BP. Agronomy 2025, 15, 2557. https://doi.org/10.3390/agronomy15112557
Zhang D, Chen Y, Ma P, Wang S, Yi S, Huang Z, Zhao B. Research on a Prediction Model for Northern Cold Climate Millet Yield per Unit Area Based on IWOA-BP. Agronomy. 2025; 15(11):2557. https://doi.org/10.3390/agronomy15112557
Chicago/Turabian StyleZhang, Dongming, Yifu Chen, Pengyao Ma, Song Wang, Shujuan Yi, Ziyang Huang, and Bin Zhao. 2025. "Research on a Prediction Model for Northern Cold Climate Millet Yield per Unit Area Based on IWOA-BP" Agronomy 15, no. 11: 2557. https://doi.org/10.3390/agronomy15112557
APA StyleZhang, D., Chen, Y., Ma, P., Wang, S., Yi, S., Huang, Z., & Zhao, B. (2025). Research on a Prediction Model for Northern Cold Climate Millet Yield per Unit Area Based on IWOA-BP. Agronomy, 15(11), 2557. https://doi.org/10.3390/agronomy15112557
